Skip to main content
Log in

Tryptophan synthase of Phaeophyceae originated from the secondary host nucleus

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

Tryptophan synthase (TS, EC 4.2.1.20) catalyzes the last two steps of L-tryptophan biosynthesis. In prokaryotes, tryptophan synthase is a multi-enzyme complex, and it consists of α and β subunit which forms an α-ββ-α complex. In fungi and diatoms, TS is a bifunctional enzyme. Because of the limited genomic and transcriptomic data of algae, there are few studies on TS evolution of algae. Here we analyzed the data of the 1000 Plants Project (1KP), and focused on red algae and brown algae. We found out that the TS of Phaeophyceae were fusion genes, which probably originated from the secondary host nucleus, and that the TS of Rhodophyta contained two genes, TSA and TSB, which both display a possible cyanobacterial origin at the time of primary endosymbiosis. In addition, there were two types of TSB genes (TSB1 and TSB2). Through the multiple sequence alignment of TSB proteins, we found several residues conserved in TSB1 but variable in TSB2 which connect with α subunit. The phenomenon may suggest that the TSB2 sequences of Rhodophyta cannot form stable complex with TSA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bail A L, Billoud B, Kowalczyk N, et al. 2010. Auxin metabolism and function in the multicellular brown alga Ectocarpus siliculosus. Plant Physiology, 153(1): 128–144

    Article  Google Scholar 

  • Barends T R M, Domratcheva T, Kulik V, et al. 2008. Structure and mechanistic implications of a tryptophan synthase quinonoid intermediate. Chemi Bio Chem, 9(7): 1024–1028

    Article  Google Scholar 

  • Bentley R. 1990. The shikimate pathway—a metabolic tree with many branches. Crit Rev Biochem Mol Biol, 25(5): 307–384

    Article  Google Scholar 

  • Berlyn M B, Last R L, Fink G R. 1989. A gene encoding the tryptophan synthase β subunit of Arabidopsis thaliana. Proc Natl Acad Sci, 86(12): 4604–4608

    Article  Google Scholar 

  • Dettwiler M, Kirschner K. 1979. Tryptophan synthase from Saccharomyces cerevisiae is a dimer of two polypeptide chains of Mr 76000 each. Eur J Biochem, 102(1): 159–165

    Article  Google Scholar 

  • Dorrell R D, Smith A G. 2011. Do red and green make brown?: perspectives on plastid acquisitions within chromalveolates. Eukaryotic Cell, 10(7): 856–868

    Article  Google Scholar 

  • Hettwer S, Sterner R. 2002. A novel tryptophan synthase beta-subunit from the hyperthermophile Thermotoga maritima. Quaternary structure, steady-state kinetics, and putative physiological role. J Biol Chem, 277(10): 8194–8201

    Article  Google Scholar 

  • Hioki Y, Ogasahara K, Lee S J, et al. 2004. The crystal structure of the tryptophan synthase beta subunit from the hyperthermophile Pyrococcus furiosus. Investigation of stabilization factors. Eur J Biochem, 271(13): 2624–2635

    Article  Google Scholar 

  • Hyde C C, Ahmed S A, Padlan E A, et al. 1988. Three-dimensional structure of the tryptophan synthase α2β2 multienzyme complex from Salmonella typhimurium. J Biol Chem, 263(33): 17857–17871

    Google Scholar 

  • Jiroutov K, Horák A, Bowler C, et al. 2007. Tryptophan biosynthesis in stramenopiles: eukaryotic winners in the diatom complex chloroplast. J Mol Evol, 65(5): 496–511

    Article  Google Scholar 

  • Kriechbaumer V, Glawischnig E. 2005. Auxin biosynthesis within the network of tryptophan metabolism. J Nanobiotechnol, 2: 55–58

    Google Scholar 

  • Kriechbaumer V, Linda W, Andreas F, et al. 2008. Characterisation of the tryptophan synthase alpha subunit in maize. BMC Plant Biology, 8: 44

    Article  Google Scholar 

  • Kulik V, Hartmann E, Weyand, M, et al. 2005. On the structural basis of the catalytic mechanism and the regulation of the alpha subunit of tryptophan synthase from Salmonella typhimurium and BX1 from maize, two evolutionarily related enzymes. J Biol Chem, 352: 608–620

    Google Scholar 

  • Lee S J, Ogasahara K, Ma J, et al. 2005. Conformational changes in the tryptophan synthase from a hyperthermophile upon a2b2 complex formation: crystal structure of the complex. Biochemistry, 44(34): 11417–11427

    Article  Google Scholar 

  • Leopoldseder S, Hettwer S, Sterner R. 2006. Evolution of multi-enzyme complexes: the case of tryptophan synthase. Biochemistry, 45(47): 14111–14119

    Article  Google Scholar 

  • Matchett W H, Demoss J A. 1975. The Subnit structure of tryptophan synthase from Neurospora crassa. J Biol Chem, 250(8): 2941–2946

    Google Scholar 

  • Merkl R. 2007. Modelling the evolution of the Archaeal tryptophan synthase. BMC Evolutionary Biology, 7: 59

    Article  Google Scholar 

  • Miles E W. 1979. Tryptophan synthase: structure, function, and subunit interaction. Adv Enzymol Relat Areas Mol Biol, 49: 127–186

    Google Scholar 

  • Miles E W. 1991. Structural basis for catalysis by tryptophan synthase. Adv Enzymol Relat Areas Mol Biol, 64: 93–172

    Google Scholar 

  • Miles E W. 2001. Tryptophan synthase: a multienzyme complex with an intramolecular tunnel. The Chemical Reccord, 1(2): 140–151

    Article  Google Scholar 

  • Radwanski E R, Zhao J, Last R L. 1995. Arabidopsis thaliana tryptophan synthase alpha: gene cloning, expression, and subunit interaction. Mol Gen Genet, 248(6): 657–667

    Article  Google Scholar 

  • Rodriguez-Ezpeleta N, Brinkmann H, Burey S C, et al. 2005. Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. Curr Biol, 15(14): 1325–1330

    Article  Google Scholar 

  • Ronquist F, Huelsenbeck J P. 2003. Mrbayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19(12): 1572–1574

    Article  Google Scholar 

  • Schneider T R, Gerhardt E, Lee M, et al. 1998. Loop Closure and Intersubunit Communication in Tryptophan Synthase. Biochemistry, 37(16): 5394–5406

    Article  Google Scholar 

  • Tamura K, Peterson D, Peterson N, et al. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10): 2731–2739

    Article  Google Scholar 

  • Weyand M, Schlichting I, Marabotti A, et al. 2001. Crystal Structures of a New Class of Allosteric Effectors Complexed to Tryptophan Synthase. J Biol Chem, 277(12): 10647–10652

    Article  Google Scholar 

  • Xie G, Forst C, Bonner C, et al. 2001. Significance of two distinct types of tryptophan synthase beta chain in Bacteria, Archaea and higher plants. Genome Biol, 3(1): RESEARCH0004

    Article  Google Scholar 

  • Yin R, Frey M, Gierl A, et al. 2010. Plants contain two distinct classes of functional tryptophan synthase beta proteins. Phytochemistry, 71(14–15): 1667–1672

    Article  Google Scholar 

  • Yoon H S, Hacket J D, Pinto G, et al. 2004. Molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol, 21(5): 809–81

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xumin Wang or Tao Liu.

Additional information

Foundation item: The National Natural Science Foundation of China under contract Nos 41206116, 31140070 and 31271397; National High Technology Research and Development Program of China under contract No. 2012AA10A406; Technology Project of Ocean and Fisheries of Guangdong Province under contract No. A201201E03; the Fundamental Research Funds for the Central Universities under contract No. 201262003; the algal transcriptome sequencing was supported by 1KP Project (www.onekp.com).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Chi, S., Wu, S. et al. Tryptophan synthase of Phaeophyceae originated from the secondary host nucleus. Acta Oceanol. Sin. 33, 63–72 (2014). https://doi.org/10.1007/s13131-014-0442-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-014-0442-5

Key words

Navigation