Advertisement

Acta Oceanologica Sinica

, Volume 33, Issue 2, pp 1–12 | Cite as

Transcriptome sequencing of essential marine brown and red algal species in China and its significance in algal biology and phylogeny

  • Shuangxiu Wu
  • Jing Sun
  • Shan Chi
  • Liang Wang
  • Xumin Wang
  • Cui Liu
  • Xingang Li
  • Jinlong Yin
  • Tao LiuEmail author
  • Jun Yu
Article

Abstract

Most phaeophytes (brown algae) and rhodophytes (red algae) dwell exclusively in marine habitats and play important roles in marine ecology and biodiversity. Many of these brown and red algae are also important resources for industries such as food, medicine and materials due to their unique metabolisms and metabolites. However, many fundamental questions surrounding their origins, early diversification, taxonomy, and special metabolisms remain unsolved because of poor molecular bases in brown and red algal study. As part of the 1 000 Plant Project, the marine macroalgal transcriptomes of 19 Phaeophyceae species and 21 Rhodophyta species from China’s coast were sequenced, covering a total of 2 phyla, 3 classes, 11 orders, and 19 families. An average of 2 Gb per sample and a total 87.3 Gb of RNA-seq raw data were generated. Approximately 15 000 to 25 000 unigenes for each brown algal sample and 5 000 to 10 000 unigenes for each red algal sample were annotated and analyzed. The annotation results showed obvious differences in gene expression and genome characteristics between red algae and brown algae; these differences could even be seen between multicellular and unicellular red algae. The results elucidate some fundamental questions about the phylogenetic taxonomy within phaeophytes and rhodophytes, and also reveal many novel metabolic pathways. These pathways include algal CO2 fixation and particular carbohydrate metabolisms, and related gene/gene family characteristics and evolution in brown and red algae. These findings build on known algal genetic information and significantly improve our understanding of algal biology, biodiversity, evolution, and potential utilization of these marine algae.

Key words

Phaeophyceae brown algae Rhodophyta red algae marine macroalgae transcriptome sequencing secondary generation sequencing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal P K, Agarwal P, Jain P, et al. 2008. Constitutive overexpression of a stress-inducible small GTP-binding protein PgRab7 from Pennisetum glaucum enhances abiotic stress tolerance in transegene tabacco. Plant Cell Rep, 27: 105–115CrossRefGoogle Scholar
  2. Armbrust E V, Berges J A, Bowler C, et al. 2004. The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science, 306(5693): 79–86CrossRefGoogle Scholar
  3. Baldauf S L. 2008. An overview of the phylogeny and diversity of eukaryotes. Journal of Systematics and Evolution, 46: 263–273Google Scholar
  4. Bartsch I, Wiencke C, Bischof K, et al. 2008. The genus Laminaria sensu lato: recent insights and developments. Euro J of Phycol, 43: 1–86CrossRefGoogle Scholar
  5. Ben Ali A, De Baere R, Van der Auwera G, et al. 2001. Phylogenetic relationships among algae based on complete large-subunit rRNA sequences. International Journal of Systematic and Evolutionary Microbiology, 51: 737–749CrossRefGoogle Scholar
  6. Berteau O, Mulloy B. 2003. Sulfated fucans, fresh perspectives: Structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharide. Glycobiology, 13(6): 29R–40RCrossRefGoogle Scholar
  7. Blanc G, Agarkova I, Grimwood J, et al. 2012. The genome of the polar eukaryotic microalga Coccomyxa subellipsoidea reveals traits of cold adaptation. Genome Biol, 13(5): R39CrossRefGoogle Scholar
  8. Blanc G, Duncan G, Agarkova I, et al. 2010. The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. Plant Cell, 22(9): 2943–2955CrossRefGoogle Scholar
  9. Bolte S, Schiene K, Dietz K, et al. 2000. Characterization of a small GTP-binding protein of the rab5 family in Mesembryanthemum crystallium with increased level of expression during early salt stress. Plant Mol Biol, 42: 923–936CrossRefGoogle Scholar
  10. Bowler C, Allen A E, Badger J H, et al. 2008. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature, 456(7219): 239–244CrossRefGoogle Scholar
  11. Butler A, Carter-Franklin J N. 2004. The role of vanadium bromoperoxidase in the biosynthesis of halogenated marine natural products. Nat Prod Rep, 21(1): 180–188CrossRefGoogle Scholar
  12. Cavalier-Smith T. 2010. Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree. Biol Lett, 6(3): 342–345CrossRefGoogle Scholar
  13. Cho G Y, Rousseau F, de Reviers B, et al. 2006. Phylogenetic relationships within the Fucales (Phaeophyceae) assessed by the photosystem I coding psaA sequences. Phycologia, 45: 512–519CrossRefGoogle Scholar
  14. Cock J M, Arun A, Godfroy O, et al. 2012. Genomics of brown algae: current advances and future prospects. Genes & Genomics, 34(1): 1–5CrossRefGoogle Scholar
  15. Cock J M, Sterck L, Rouz P, et al. 2010. The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature, 465(7298): 617–621CrossRefGoogle Scholar
  16. Collén J, Porcel B, Carr W, et al. 2013. Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida. Proc Natl Acad Sci U S A, 110(13): 5247–5252CrossRefGoogle Scholar
  17. Curtis B A, Tanifuji G, Burki F, et al. 2012. Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature, 492: 59–65CrossRefGoogle Scholar
  18. Delwiche C F, Palmer J D. 1996. Rampant horizontal transfer and duplication of rubisco genes in eubacteria and plastids. Mol Biol Evol, 13: 873–882CrossRefGoogle Scholar
  19. Deng Yunyan, Yao Jianting, Wang Xiuliang, et al. 2012. Transcriptome sequencing and comparative analysis of Saccharina japonica (Laminariales, Phaeophyceae) under blue light induction. PLoS One, 7(6): e39704CrossRefGoogle Scholar
  20. Derelle E, Ferraz C, Lagoda P, et al. 2002. DNA libraries for sequencing the genome of Ostreococcus tauri (chlorophyta, prasinophyceae): the smallest free-living eukaryotic cell. J Phycol, 38: 1150–1156CrossRefGoogle Scholar
  21. Dittami S M, Scornet D, Petit J L, et al. 2009. Global expression analysis of the brown alga Ectocarpus siliculosus (Phaeophyceae) reveals large-scale reprogramming of the transcriptome in response to abiotic stress. Genome Biol, 10(6): R66CrossRefGoogle Scholar
  22. Drury J L, Dennis R G, Mooney D J. 2003. The tensile properties of alginate hydrogels. Biomaterials, 25(l6): 3187–3199Google Scholar
  23. Dufosséa L, Galaupa P, Yaronb A. 2005. Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality. Trends in Food Science and Technology, 16: 389–406CrossRefGoogle Scholar
  24. Falkowski P G, Raven J A. 1997. Aquatic Photosynthesis. Malden, MA: Blackwell ScienceGoogle Scholar
  25. Ghangal R, Raghuvanshi S, Chand Sharma P, et al. 2009. Isolation of good quality RNA from a medicinal plant seabuckthorn, rich in secondary metabolites. Plant Physiology and Biochemistry, 47: 1113–1115CrossRefGoogle Scholar
  26. Glazer A N. 1997. Phycobiliproteins: A family of valuable, widely used fluorophores. Scanning, 19: 154–155Google Scholar
  27. Gobler C J, Berry D L, Dyhrman S T, et al. 2011. Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics. Proc Natl Acad Sci USA, 108(11): 4352–4357CrossRefGoogle Scholar
  28. Gould S B, Waller R F, McFadden G I. 2008. Plastid evolution. Annu Rev Plant Biol, 59: 491–517CrossRefGoogle Scholar
  29. Green B. 2011. After the primary endosymbiosis: an update on the chromalveolate hypothesis and the origins of algae with Chl c. Photosynth Res, 107: 103–115CrossRefGoogle Scholar
  30. Grosberg R K, Strathmann R R. 2007. The evolution of multicellularity: a minor major transition? Annual Review of Ecology, Evolution, and Systematics, 38: 621–654CrossRefGoogle Scholar
  31. Grossman A R. 2007. In the grip of algal genomics. Adv Exp Med Biol, 616: 54–76CrossRefGoogle Scholar
  32. Heinrich S, Valentin K, Frickenhaus S, et al. 2012. Transcriptomic Analysis of Acclimation to Temperature and Light Stress in Saccharina latissima (Phaeophyceae). PLoS ONE, 7: e44342CrossRefGoogle Scholar
  33. Huovinen P, Gomez I, Lovengreen C. 2006. A five-year study of solar ultraviolet radiation in southern Chile (39 degrees S): potential impact on physiology of coastal marine algae? Photochemistry and Photobiology, 82(2): 515–522CrossRefGoogle Scholar
  34. Jia Shangang, Wang Xumin, Li Tianyong, et al. 2014a. Phylogenomic analysis of transcriptomic sequences of mitochondria and chloroplasts of essential brown algae (Phaeophyceae) in China. Acta Oceanologica Sinica, 33(2): 94–101CrossRefGoogle Scholar
  35. Jia Shangang, Wang Xumin, Qian Hao, et al. 2014b. Phylogenomic analysis of transcriptomic sequences of mitochondria and chloroplasts for marine red algae (Rhodophyta) in China. Acta Oceanologica Sinica, 33(2): 86–93CrossRefGoogle Scholar
  36. Johnson M T, Carpenter E J, Tian Z, et al. 2012. Evaluating methods for isolating total RNA and predicting the success of sequencing phylogenetically diverse plant transcriptomes. PLoS One, 7(11): e50226CrossRefGoogle Scholar
  37. Kawai H, Sasaki H, Maeba S, et al. 2005. Morphology and molecular phylogeny of Phaeostrophion irregulare (Phaeophyceae) with a proposal for Phaeostrophiaceae fam. nov., and a review of Ishigeaceae. Phycologia, 44: 169–182CrossRefGoogle Scholar
  38. Küpper F C, Schweigert N, Ar Gall E, et al. 1998. Iodine uptake in Laminariales involves extracellular, haloperoxidase-mediated oxidation of iodide. Planta, 207(2): 163–171CrossRefGoogle Scholar
  39. Kutschera U, Niklas K J. 2005. Endosymbiosis, cell evolution and speciation. Theory Biosci, 124: 1–24CrossRefGoogle Scholar
  40. Kutschera U, Niklas K J. 2008. Macroevolution via secondary endosymbiosis: a Neo-Goldschmidtian view of unicellular hopeful monsters and Darwin’s primordial intermediate form. Theory Biosci, 127: 277–289CrossRefGoogle Scholar
  41. Lane C E, Mayes C, Druehl L D, et al. 2006. A multi-gene molecular investigation of the kelp (Laminariales, Phaeophyceae) supports substantial taxonomic re-organization. Journal of Phycology, 42: 493–512CrossRefGoogle Scholar
  42. Li Tianyong, Ren Lei, Zhou Guan, et al. 2012. A suitable method for extracting total RNA from red algae. Transactions of Oceanology and Limnology (in Chinese), 4: 64–71Google Scholar
  43. Li Ruiqiang, Zhu Hongmei, Ruan Jue, et al. 2010. De novo assembly of human genomes with massively parallel short read sequencing. Genome Research, 20: 265–272CrossRefGoogle Scholar
  44. Liang Chengwei, Zhang Xiaowen, Zou Jian, et al. 2010. Identification of miRNA from Porphyra yezoensis by high-throughput sequencing and bioinformatics analysis. PLoS One, 5(5): e10698CrossRefGoogle Scholar
  45. Lommer M, Specht M, Roy A S, et al. 2012. Genome and low-iron response of an oceanic diatom adapted to chronic iron limitation. Genome Biol, 13(7): R66CrossRefGoogle Scholar
  46. Matsubara K. 2004. Recent advances in marine algal anticoagulants. Curr Med Chem Cardiovasc Hematol Agents, 2(1): 13–19CrossRefGoogle Scholar
  47. Matsuzaki M, Misumi O, Shin-I T, et al. 2004. Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature, 428(6983): 653–657CrossRefGoogle Scholar
  48. Merchant S S, Prochnik S E, Vallon O, et al. 2007. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science, 318: 245–250CrossRefGoogle Scholar
  49. Misumi O, Yoshida Y, Nishida K, et al. 2008. Genome analysis and its significance in four unicellular algae, Cyanidioschyzon [corrected] merolae, Ostreococcus tauri, Chlamydomonas reinhardtii, and Thalassiosira pseudonana. J Plant Res, 121(1): 3–17CrossRefGoogle Scholar
  50. Moreau H, Verhelst B, Couloux A, et al. 2012. Gene functionalities and genome structure in Bathycoccus prasinos reflect cellular specializations at the base of the green lineage. Genome Biology, 13: R74CrossRefGoogle Scholar
  51. Moriya Y, Itoh M, Okuda S, et al. 2007. KAAS: an automatic genome annotation and pathway reconstruction server. Nuleic Acids Res, 35: W182–W185CrossRefGoogle Scholar
  52. Nakamura Y, Sasaki N, Kobayashi M, et al. 2013. The First Symbiont-Free Genome Sequence of Marine Red Alga, Susabi-nori (Pyropia yezoensis). PLoS ONE 8(3): e57122, doi: 10.1371/journal.pone.0057122 CrossRefGoogle Scholar
  53. Nyvall P, Corre E, Boisset C, et al. 2003. Characterization of mannuronan C-5-epimerase genes from the brown alga Laminaria digitata. Plant Physiol, 133(2): 726–735.CrossRefGoogle Scholar
  54. Palenik B, Grimwood J, Aerts A, et al. 2007. The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proc Natl Acad Sci USA, 104(18): 7705–7710CrossRefGoogle Scholar
  55. Pan Kehou, Qin Junjie, Li Si, et al. 2011. Nuclear monoploidy and asexual propagation of Nannochloropsis oceanica (Eustigmatophyceae) as revealed by its genome sequence. J Phycol, 47(6): 1425–1432CrossRefGoogle Scholar
  56. Parker M S, Mock T, Armbrust E V. 2008. Genomic insights into marine microalgae. Annu Rev Genet, 42: 619–645CrossRefGoogle Scholar
  57. Price D C, Chan C X, Yoon H S, et al. 2012. Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants. Science, 335(6070): 843–847CrossRefGoogle Scholar
  58. Prochnik S E, Umen J, Nedelcu A M, et al. 2010. Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri. Science, 329(5988): 223–226CrossRefGoogle Scholar
  59. Qu Jieqiong, Wang Xumin, Chi Shan, et al. 2014. Transcriptome characterization of Ishige okamurae (Phaeophyceae) shows strong environmental acclimation. Acta Oceanologica Sinica, 33(2): 20–26CrossRefGoogle Scholar
  60. Radakovits R, Jinkerson R E, Fuerstenberg S I, et al. 2012. Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana. Nat Commun, 3: 686–695CrossRefGoogle Scholar
  61. Raj N K, Sharma C P. 2003. Oral insulin—a perspective. J Biomater Appl, 17(3): 183–196CrossRefGoogle Scholar
  62. Read B A, Kegel J, Klute M J, et al. 2013. Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature, 499(7457): 209–213CrossRefGoogle Scholar
  63. Reyes-Prieto A, Weber A P, Bhattacharya D. 2007. The origin and establishment of the plastid in algae and plants. Annual Review of Genetics, 41: 147–168CrossRefGoogle Scholar
  64. Rousvoal S, Groisillier A, Dittami S M, et al. 2011. Mannitol-1-phosphate dehydrogenase activity in Ectocarpus siliculosus, a key role for mannitol synthesis in brown algae. Planta, 233: 261–273CrossRefGoogle Scholar
  65. Rudolph B. 2000. Seaweed products: red algae of economic significance. In: Martin R E, Carter E P, Davis L M, et al., eds. Marine and Freshwater Products Handbook. Lancarster, UK: Technomic Publishing Co, 515–529Google Scholar
  66. Schönknecht G, Chen W H, Temes C M, et al. 2013. Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote. Science, 339: 1207–1210CrossRefGoogle Scholar
  67. Shih C M, Cheng S N, Wong C S, et al. 2009. Antiinflammatory and anti-hyperalgesic activity of C-phycocyanin. Anesthesia and Analgesia, 108(4): 1303–1310CrossRefGoogle Scholar
  68. Silberfeld T, Leigh J W, Verbruggen H, et al. 2010. A multi-locus time-calibrated phylogeny of the brown algae (Heterokonta, Ochrophyta, Phaeophyceae): Investigating the evolutionary nature of the “brown algal crown radiation. Molecular Phylogenetics and Evolution, 56: 659–674CrossRefGoogle Scholar
  69. Simon N, Cras A L, Foulon E, et al. 2009. Diversity and evolution of marine phytoplankton. C R Biol, 332: 159–170CrossRefGoogle Scholar
  70. Song Lipu, Wu Shuangxiu, Sun Jing, et al., 2014. De novo sequencing and comparative analysis of three red algal species of Family Solieriaceae to discover putative genes associated with carrageenan biosysthesis. Acta Oceanologica Sinica, 33(2): 45–53CrossRefGoogle Scholar
  71. Sun Jing, Wang Liang, Wu Shuangxiu, et al. 2014. Transcriptome-wide evolutionary analysis on essential brown algae (Phaeophyceae) in China. Acta Oceanologica Sinica, 33(2): 13–19CrossRefGoogle Scholar
  72. Tatusov R L, Fedorova N D, Jackson J D, et al. 2003. The COG database: an updated version includes eukaryotes. BMC Bioinformatics, 4: 41CrossRefGoogle Scholar
  73. Tenhaken R, Voglas E, Cock J M, et al. 2011. Characterization of GDP-mannose dehydrogenase from the brown alga Ectocarpus siliculosus providing the precursor for the alginate polymer. J Biol Chem, 286(19): 16707–16715CrossRefGoogle Scholar
  74. Tirichine L, Bowler C. 2011. Decoding algal genomes: tracing back the history of photosynthetic life on Earth. Plant J, 66(1): 45–57CrossRefGoogle Scholar
  75. Wang Hongwei, Kawaguchi S, Horiguchi T, et al. 2001. A morphological and molecular assessment of the genus Prionitis J. Agardh (Halymeniaceae, Rhodophyta). Phycological Research, 49(3): 251–261CrossRefGoogle Scholar
  76. Wang Ren, Wang Xumin, Zhang Yalan, et al. 2014. Origin and evolution of alginate-c5-mannuronan-epimerase gene based on transcriptomic analysis of brown algae. Acta Oceanologica Sinica, 33(2): 73–85CrossRefGoogle Scholar
  77. Wang Liang, Wu Shuangxiu, Liu Tao, et al. 2014 Endogenous Viral Elements in Algal Genomes. Acta Oceanologica Sinica, 33(2): 102–107CrossRefGoogle Scholar
  78. Weber A P M, Oesterhelt C, Gross W, et al. 2004. EST-analysis of the thermo-acidophilic red microalga Galdieria sulphuraria reveals potential for lipid A biosynthesis and unveils the pathway of carbon export from rhodoplasts. Plant Mol Biol, 55: 17–32CrossRefGoogle Scholar
  79. Worden A Z, Lee J H, Mock T, et al. 2009. Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas. Science, 324(5924): 268–272CrossRefGoogle Scholar
  80. Xu Jia, Aileni M, Abbagani S, et al. 2010. A reliable and efficient method for total RNA isolation from various members of spurge family (Euphorbiaceae). Phytochemical Analysis, 21: 395–398CrossRefGoogle Scholar
  81. Xu Jiayue, Sun Jing, Yin Jinlong, et al. 2014. Comparative analysis of four essential Gracilariaceae species in China based on whole transcriptomic sequencing. Acta Oceanologica Sinica, 33(2): 54–62CrossRefGoogle Scholar
  82. Yao Jianting, Fu Wandong, Wang Xiuliang. 2009. Improved RNA isolation from Laminaria japonica Aresch (Laminariaceae, Phaeophyta). Appl Phycol, 21: 233–238CrossRefGoogle Scholar
  83. Zdobnov E M, Apweiler R. 2001. InterProScan—an integration platform for the signature-recognition methods in InterPro. Bioinformatics, 17(9): 847–848CrossRefGoogle Scholar
  84. Zhang Junfu, Xia Bangmei. 1992. Studies on two new Gracilaria from South China and a summary of Gracilaria species in China. Taxonomy of Economic Seaweeds, 3: 195–206Google Scholar

Copyright information

© The Chinese Society of Oceanography and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Shuangxiu Wu
    • 1
    • 3
  • Jing Sun
    • 1
    • 3
    • 4
  • Shan Chi
    • 2
  • Liang Wang
    • 1
    • 3
    • 4
  • Xumin Wang
    • 1
    • 3
  • Cui Liu
    • 2
  • Xingang Li
    • 1
    • 3
  • Jinlong Yin
    • 1
  • Tao Liu
    • 2
    Email author
  • Jun Yu
    • 1
    • 3
  1. 1.CAS Key Laboratory of Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of GenomicsChinese Academy of SciencesBeijingChina
  2. 2.College of Marine Life ScienceOcean University of ChinaQingdaoChina
  3. 3.Beijing Key Laboratory of Functional Genomics for Dao-di Herbs, Beijing Institute of GenomicsChinese Academy of SciencesBeijingChina
  4. 4.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations