Skip to main content
Log in

On the parameterization of drag coefficient over sea surface

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

Six parameterization schemes of roughness or drag coefficient are evaluated on the basis of the data from six experiments. They present great consistency with measurement when friction velocity u*<0.5 m/s (approximately corresponding to 10 m wind speed U 10<12 m/s) and large deviation from measurement when u*⩾0.5m/s (approximatelyU 10⩾12m/s). In order to improve the deviation, a newparameterization of drag coefficient is derived on the basis of the similarity theory, Charnock relationship and Toba 3/2 power law. Wave steepness andwind-sea Reynolds number are considered in the new parameterization. Then it is tested on the basis of the measurements and shows significant improvement when u* ⩾0.5 m/s. Its standard errors are much smaller than the ones of the other six parameterizations. However, the new parameterization still needs more tests especially for high winds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anctil F, Donelan M A. 1996. Air-water momentum flux observations over shoaling waves. J Phys Oceanogr, 26: 1344–1353

    Article  Google Scholar 

  • Austin T, Edson J, McGills W, et al. 2000. The Martha’s Vineyard coastal observatory: along term facility for monitoring air-sea processes. Oceans 2000 Mts/Ieee-Where Marine Science and Technology Meet, Vols 1–3, Conference Proceedings. Providence Rhode Island, Marine Technol Soc; IEEE; OES, 1937–1941

    Google Scholar 

  • Bye J A T, Jenkins A D. 2006. Drag coefficient reduction at very high wind speeds. J Geophys Res, 111(C3): doi: 10.1029/2005JC003114

    Google Scholar 

  • Dobson F W, Smith S D, Anderson R J. 1994. Measuring the relationship between wind stress and sea state in the open ocean in the presence of swell. Atmos-Ocean, 32: 237–256

    Article  Google Scholar 

  • Donelan M A, Dobson F W, Smith S D, et al. 1993. On the dependence of sea-surface roughness on wave development. J Phys Oceanogr, 23: 2143–2149

    Article  Google Scholar 

  • Drennan W M, Graber H C, Hauser D, et al. 2003. On the wave age dependence of wind stress over pure wind seas. J Geophys Res, 108(C3): doi:10.1029/2000JC000715

    Google Scholar 

  • Edson J B, McGillis W R, Austin T C. 2000. A new coastal observatory is born. Oceanus, 42: 31–33

    Google Scholar 

  • Fairall CW, Bradley E F, Hare J E, et al. 2003. Bulk parameterization of air-sea fluxes: updates and verification for the COARE algorithm. J Climate, 16: 571–591

    Article  Google Scholar 

  • Gao Zhiqiu, Hu Wen, Liu Shaomin. 2005. Test of the Louis scheme and COARE algorithm for friction velocity in different windsea/swell regimes. Acta Oceanologica Sinica, 24(4): 20–28

    Google Scholar 

  • Gao Zhiqiu, Wang Linlin, Bi Xueyan, et al. 2012. A simple extension of “an alternative approach to sea surface aerodynamic roughness” by Zhiqiu Gao, Qing Wang, and Shouping Wang. J Geophys Res, doi:10.1029/2012JD017478

    Google Scholar 

  • Gao Zhiqiu, Wang Qing, Wang Shouping. 2006. An alternative approach to sea surface aerodynamic roughness. J Geophys Res, 111:D22108, doi:10.1029/2006JD007323

    Article  Google Scholar 

  • Gao Zhiqiu, Wang Qing, Zhou Mingyu. 2009. Wave-dependence of friction velocity, roughness length, and drag coefficient over coastal and open water surfaces by using three databases. Adv Atmos Sci, 26: 887–894

    Article  Google Scholar 

  • Guan Changlong, Xie Lian. 2004. On the linear parameterization of drag coefficient over sea surface. J Phys Oceanogr, 34: 2847–2851

    Article  Google Scholar 

  • Huang Yansong, Song Jinbao, Fan Conghui. 2013. Motion correction on direct estimations of air-sea fluxes from a buoy. Acta Oceanologica Sinica, 32(3):63–70

    Article  Google Scholar 

  • Janssen J A M. 1997. Does wind stress depend on sea-state or not? A statistical error analysis of HEXMAX data. Bound Layer Meteor, 83: 479–503

    Article  Google Scholar 

  • Johnson H K, Hojstrup J, Vested H J. 1998. On the dependence of sea surface roughness on wind waves. J Phys Oceanogr, 28: 1702–1716

    Article  Google Scholar 

  • Li Yubin, Gao Zhiqiu, Lenschow D H, et al. 2010. An Improved Approach for Parameterizing Surface-Layer Turbulent Transfer Coefficients in Numerical Models. Bound Layer Meteor, 137: 153–165

    Article  Google Scholar 

  • Makin V K. 2005. A note on the drag of the sea surface at hurricane winds. Bound LayerMeteor, 115: 169–176

    Article  Google Scholar 

  • Miller S D, Hristov T S, Edson J B, et al. 2008. Platform motion effects on measurements of turbulence and air-sea exchange over the open ocean. J Atmos Ocean Technol, 25: 1683–1694

    Article  Google Scholar 

  • Oost W A, Komen G J, Jacobs C M J, et al. 2002. New evidence for a relation between wind stress and wave age from measurements during ASGAMAGE. Bound LayerMeteor, 103: 409–438

    Article  Google Scholar 

  • Powell M D, Vickery P J, Reinhold T A. 2003. Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422: 279–283

    Article  Google Scholar 

  • Shi Jian, Zhong Zhong, Li Ruijie, et al. 2011. Dependence of sea surface drag coefficient on wind-wave parameters. Acta Oceanologica Sinica, 30(2): 14–24

    Article  Google Scholar 

  • Smith S D. 1980. Wind stress and heat flux over the ocean in gale force winds. J Phys Oceanogr, 10: 709–726

    Article  Google Scholar 

  • Smith S D, Anderson R J, Oost WA, et al. 1992. Sea-surface wind stress and drag coefficientsąłthe HEXOS results. Bound Layer Meteor, 60: 109–142

    Article  Google Scholar 

  • Taylor P K, Yelland M J. 2001. The dependence of sea surface roughness on the height and steepness of the waves. J Phys Oceanogr, 31: 572–590

    Article  Google Scholar 

  • Toba Y. 1972. Local balance in the air-sea boundary processes I. On the growth process of wind waves. Journal of the Oceanographical Society of Japan, 28: 109–120

    Article  Google Scholar 

  • Vickers D, Mahrt L. 1997. Quality control and flux sampling problems for tower and aircraft data. J Atmos Ocean Technol, 14: 512–526

    Article  Google Scholar 

  • Vickers D, Mahrt L. 2003. The cospectral gap and turbulent flux calculations. J Atmos Ocean Technol, 20: 660–672

    Article  Google Scholar 

  • Wang Bingxiang, Chang Ruifang, Wang Yifei. 1990. Criteria of differentiating swell from wind waves. Advances in Marine Science (in Chinese), 01: 16–24

    Google Scholar 

  • Wu Jin. 1980. Wind-stress coefficients over sea-surface near neutral conditions-a revisit. J Phys Oceanogr, 10: 727–740

    Article  Google Scholar 

  • Yelland M, Taylor P K. 1996. Wind stress measurements from the open ocean. J Phys Oceanogr, 26: 541–558

    Article  Google Scholar 

  • Zeng Lili, Shi Ping, Liu WT, et al. 2009. Evaluation of a satellite-derived latent heat flux product in the South China Sea: A comparison with moored buoy data and various products. Atmos Res, 94(1): 91–105

    Article  Google Scholar 

  • Zeng Lili, Wang Dongxiao. 2009. Intra seasonal variability of latentheat flux in the South China Sea. Theor Appl Climatol, 97(1–2): 53–64

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinbao Song.

Additional information

Foundation item: The National Basic Research Program of China under contract Nos 2011CB403501 and 2012CB417402; the Fund for Creative Research Groups by the National Natural Science Foundation of China under contract No. 41121064.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Song, J., Huang, Y. et al. On the parameterization of drag coefficient over sea surface. Acta Oceanol. Sin. 32, 68–74 (2013). https://doi.org/10.1007/s13131-013-0315-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-013-0315-3

Key words

Navigation