Skip to main content

Advertisement

Log in

Distribution of ammonia-oxidizing Betaproteobacteria community in surface sediment off the Changjiang River Estuary in summer

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

The spatial distribution of ammonia-oxidizing Betaproteobacteria (βAOB) was investigated by FISH (fluorescence in situ hybridization) and DGGE (denaturing gradient gel electrophoresis) techniques in the sediment off the Changjiang River Estuary. Sediment samples were collected from eight stations in June before the formation of hypoxia zone in 2006. The abundance of βAOB ranged from 1.87×105 to 3.53×105 cells/g of sediment. βAOB abundance did not present a negative correlation with salinity, whereas salinity was implicated as the primary factor affecting nitrification rates. The DGGE profiles of PCR-amplified amoA gene fragments revealed that the βAOB community structure of sample S2 separated from other samples at the level of 40% similarity. The variations in composition of βAOB were significantly correlated with the salinity, temperature, absorption ability of sediments and TOC. The statistical analysis indicates that the βAOB abundance was a main factor to influence nitrification rates with an influence ratio of 87.7% at the level of 40% biodiversity similarity. Considering the good correlation between βAOB abundance and nitrification estimates, the abundance and diversity of βAOB community could be expected as an indirect index of nitrification activity at the study sea area in summer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen J G, Beutel M W, Call D R, et al. 2010. Effects of oxygenation on ammonia oxidation potential and microbial diversity in sediment from surface-flow wetland mesocosms. Bioresour Technol, 101(4): 1389–1392

    Article  Google Scholar 

  • Álvarez-Salgado X A, Gilcoto M. 2004. Inferring nitrification rates with an inverse method in a coastal upwelling system, Ra de Vigo (NW Spain). Mar Ecol Prog Ser, 276: 3–17

    Article  Google Scholar 

  • Bernhard A E, Bollmann A. 2010. Estuarine nitrifiers: new players, patterns and processes. Ertuar Coast Shelf S, 88(1): 1–11

    Article  Google Scholar 

  • Bernhard A E, Donn T, Giblin A E, et al. 2005. Loss of diversity of ammonia-oxidizing bacteria correlates with increasing salinity in an estuary system. Environ Microbiol, 7(9): 1289–1297

    Article  Google Scholar 

  • Bernhard A E, Tucker J, Giblin A E, et al. 2007. Functionally distinct communities of ammoniumoxidizing bacteria along an estuarine salinity gradient. Environ Microbiol, 9(6): 1439–1447

    Article  Google Scholar 

  • Cetecioğlu Z, Ince B K, Kolukirik M, et al. 2009. Biogeographical distribution and diversity of bacterial and archaeal communities within highly polluted anoxic marine sediments from the marmara sea. Mar Pollut Bull, 58(3): 384–395

    Article  Google Scholar 

  • Chen Chung-chi, Gong Gwo-ching C, Shiah Fuh-kwo. 2007. Hypoxia in the East China Sea: one of the largest coastal low-oxygen areas in the world. Mar Environ Res, 64(4): 399–408

    Article  Google Scholar 

  • Chen Hongtao, Yu Zhigang, Yao Qingzheng, et al. 2010. Nutrient concentrations and fluxes in the Changjiang Estuary during summer. Acta Oceanol Sin, 29(2): 107–119

    Article  Google Scholar 

  • Clark K R, Gorley R N. 2006. PRIMER v6: user manual/tutorial. PRIMER-E, Plymouth, UK

    Google Scholar 

  • Coolen M J L, Hopmans E C, Rijpstra W I C, et al. 2004. Evolution of the methane cycle in Ace Lake (Antarctica) during the Holocene: response of methanogens and methanotrophs to environmental change. Org Geochem, 35(10): 1151–1167

    Article  Google Scholar 

  • Dang Hongyue, Li Jing, Chen Ruipeng, et al. 2010. Diversity, abundance, and spatial distribution of sediment ammonia-oxidizing Betaproteobacteria in response to environmental gradients and coastal eutrophication in Jiaozhou bay, China. Appl Environ Microbiol, 76(14): 4691–4702

    Article  Google Scholar 

  • Dang Hongyue, Zhang Xiaoxia, Sun Jun, et al. 2008. Diversity and spatial distribution of sediment ammonia-oxidizing Crenarchaeota in response to estuarine and environmental gradients in the Changjiang Estuary and East China Sea. Microbiology, 154(7): 2084–2095

    Article  Google Scholar 

  • Di H J, Cameron K C, Shen J P, et al. 2009. Nitrogen driven by bacteria and not archaea in nitrogen-rich grassland soils. Nature Geoscience, 2: 621–624

    Article  Google Scholar 

  • Francis C A, O’Mullan G D, Ward B B. 2003. Diversity of ammonia monooxygenase (amoA) genes across environmental gradients in Cheasapeake Bay sediments. Geobiology, 1(2): 129–140

    Article  Google Scholar 

  • Francis C A, Roberts K J, Beman J M, et al. 2005. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Nat Acad Sci USA, 102(41): 14683–14688

    Article  Google Scholar 

  • Freitag T E, Chang L, Prosser J I. 2006. Changes in the community structure and activity of betaproteobacterial ammonia-oxidizing sediment bacteria along a freshwater-marine gradient. Environ Microbiol, 8(4): 684–696

    Article  Google Scholar 

  • Gong Gwo-ching, Chang Jeng, Chiang Kuo-ping, et al. 2006. Reduction of primary production and changing of nutrient ratio in the East China Sea: effect of the Three Gorges Dam? Geophys Res Lett, 33: L07610, doi:10.1029/2006GL025800

    Article  Google Scholar 

  • Henriksen K. 1980. Measurement of in situ rates of nitrification in sediment. Microb Ecol, 6(4): 329–337

    Article  Google Scholar 

  • Howarth R W, Sharpley A, Walker D. 2002. Sources of nutrient pollution to coastal waters in the United States: implications for achieving coastal water quality goals. Estuaries and Coasts, 25(4): 656–676

    Article  Google Scholar 

  • Hug T, Gujer W, Siegrist H. 2005. Rapid quantification of bacteria in activated sludge using fluorescence in situ hybridization and epifluorescence microscopy. Water Res, 39(16): 3837–3848

    Article  Google Scholar 

  • Kim D J, Lee D I, Keller J. 2006. Effect of temperature and free ammonia on nitrification and nitrite accumulation in landfill leachate and analysis of its nitrifying bacterial community by FISH. Bioresour Technol, 97(3): 459–468

    Article  Google Scholar 

  • Konneke M, Bernhard A E, de la Torre J R, et al. 2005. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature, 437(7058): 543–546

    Article  Google Scholar 

  • Junier P, Kim O S, Hadas O, et al. 2008. PCR primer selectivity and phylogenetic specificity evaluated using amplification of 16S rRNA genes from betaproteobacterial ammonia-oxidizing bacteria (AOB) in environmental samples. Appl Environ Microbiol, doi:10.1128/AEM.00288-08

  • Lage M D, Reed H E, Weihe C, et al. 2010. Nitrogen and phosphorus enrichment alter the composition of ammonia-oxidizing bacteria in salt marsh sediments. The ISME Joural, 4: 933–944

    Article  Google Scholar 

  • Li Daoji, Zhang Jing, Huang Daji, et al. 2002. Oxygen depletion off the Changjiang (Changjiang River) Estuary. Science in China Series D-Earth Sciences (in Chinese), 45(12): 1137–1146

    Article  Google Scholar 

  • Li Daoji, Dag D. 2004. Ocean pollution from land-based sources: East China Sea, China. Ambio, 33(1): 107–113

    Google Scholar 

  • Li Jialin, Bai Jie, Gao Huiwang, et al. 2009. Nitrifying bacteria in sediment at the adjacent sea area of Yangtze River Estuary in summer. Chinese Journal of Environmental Science (in Chinese), 30(11): 3203–3208

    Google Scholar 

  • Łysiak-Pastuszak E, Drgas N, Piatkowska Z. 2004. Eutrophication in the Polish coastal zone: the past, present status and future scenarios. Mar Pollut Bull, 49(3): 186–195

    Article  Google Scholar 

  • Manz W, Amann R, Ludwig W, et al. 1992. Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems and solutions. Syst Appl Microbiol, 15(4): 593–600

    Google Scholar 

  • Nicol G W, Schleper C. 2006. Ammonia-oxidising Crenarchaeota: important players in the nitrogen cycle? Trends Microbiol, 14(5): 207–212

    Article  Google Scholar 

  • O’Mullan G D, Ward B B. 2005. Relationship of temporal and spatial variabilities of ammonia-oxidizing bacteria to nitrification in Monterrey Bay, California. Appl Environ Microbiol, 71(2): 697–705

    Article  Google Scholar 

  • Pollard P C. 2006. A quantitative measure of nitrifying bacteria growth. Water Res, 40(8): 1569–1576

    Article  Google Scholar 

  • Powell S M, Bowman J P, Snape I, et al. 2003. Microbial community variation in pristine and polluted nearshore Antarctic sediments. FEMS Microbiol Ecol, 45(2): 135–145

    Article  Google Scholar 

  • Purkhold U, Pommerening-Röser A, Juretschko S, et al. 2000. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl Environ Microbiol, 66(12): 5368–5382

    Article  Google Scholar 

  • Pruell P J, Taplin B K, Lake J L, et al. 2006. Nitrogen isotope ratios in estuarine biota collected along a nutrient gradient in Narragansett Bay, Rhode Island, USA. Mar Pollut Bull, 52(6): 612–620

    Article  Google Scholar 

  • Rottthauwe J H, Witzel K P, Liesack W. 1997. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of national ammonia-oxidizing population. Appl Environ Microbiol, 63(12): 4704–4712

    Google Scholar 

  • Sahan E, Muyzer G. 2008. Diversity and spatio-temporal distribution of ammonia-oxidizing Archaea and Bacteria in sediments of the Westerschelde estuary. FEMS Microbiol Ecol, 64(2): 175–186

    Article  Google Scholar 

  • Santoro A E, Casciotti K L, Francis C A. 2010. Activity, abundance and diversity of nitrifying archaea and bacteria in the central California Current. Environ Microbiol, 12(7): 1989–2006

    Article  Google Scholar 

  • Ward B B, Carlucci A F. 1985. Marine ammonia- and nitrite-oxidizing bacteria: serological diversity determined by immunofluorescence in culture and in the environment. Appl Environ Microbiol, 50(2): 194–201

    Google Scholar 

  • Webster G, Embley T M, Prosser J I. 2002. Grassland management regimens reduce small-scale heterogeneity and species diversity of β-proteobacteria ammonia oxidizer populations. Appl Environ Microbiol, 68(1): 20–30

    Article  Google Scholar 

  • Wu Yucheng, Xiang Yan, Wang Jianjun et al. 2010. Heterogeneity of archaeal and bacterial ammoniaoxidizing communities in Lake Taihu, China. Environ Microbiol Reports, 2(4): 569–576

    Article  Google Scholar 

  • Wuchter C, Abbas B, Coolen M J L, et al. 2006. Archaeal nitrification in the Ocean. Proc Nat Acad Sci USA, 103(33): 12317–12322

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Bai.

Additional information

Foundation item: The National Fundamental Project of China under grant No. 2006CB400602.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Bai, J., Gao, H. et al. Distribution of ammonia-oxidizing Betaproteobacteria community in surface sediment off the Changjiang River Estuary in summer. Acta Oceanol. Sin. 30, 92–99 (2011). https://doi.org/10.1007/s13131-011-0123-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-011-0123-6

Key words

Navigation