Skip to main content
Log in

Nonculturability of the pathogenic Vibrio parahaemolyticus in live culture of Grateloupia turuturu is associated with bacterial attachment to the algal thalli

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

The invasive red alga Grateloupia turuturu Yamada could turn Vibrio parahaemolyticus into nonculturable state in live algal culture. In order to elucidate the mechanism of such an effect, a series of culture experiments were performed in this investigation based on three hypothesized causes, namely bacterial attachment, production of reactive oxygen species (ROS) and the discharge of water soluble secondary metabolic compounds. The results reveal that attachment to the thallus surface of G. turuturu was the major reason for the decrease of V. parahaemolyticus in seawater. Further investigations show that V. parahaemolyticus attachment to the surface of algal thallus in live cultures of seaweeds was a common phenomenon. However, the disappearance of the culturability of V. parahaemolyticus occurred only on the thallus of G. turuturu over 72 h among all six algal species tested. Electron microscopic scanning shows that most of V. parahaemolyticus attached to G. turuturu changed from the initial normal bacilli to coccoid-shape after 72 h. The enclosure experiments by enclosing the algal thallus in tubes demonstrate that the nonculturability of V. parahaemolyticus in the water of live culture of G. turuturu occurred after the physical contact of the V. parahaemolyticus to the alga. The capacity of G. turuturu in affecting the culturability of V. parahaemolyticus was not influenced after inhibition of photosynthesis by treatment of 3′-(3,4-dichlorophenyl)-1′,1′-dimethyl urea (DCMU) at non-lethal levels. Production of reactive oxygen species after addition of live culture of bacteria was excluded by on-line analyzing the oxidation of dichlorohydrofluorescein (DCFH) to dichlorofluorescein (DCF) in the presence of peroxidase on a VersaFluor fluorometer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Borchardt S A, Allain E J, Michels J J, et al. 2001. Reaction of acylated homoserine lactone bacterial signaling molecules with oxidized halogen antimicrobials. Appl Environ Microbiol, 67: 3174–3179

    Article  Google Scholar 

  • Bouarab K, Potin P, Correa J, et al. 1999. Sulfated oligosaccharides mediate the interaction between a marine red alga and its green algal pathogenic endophyte. Plant Cell, 11: 1635–1650

    Article  Google Scholar 

  • Carpenter E J, Liss P S. 2000. On temperate sources of bromoform and other reactive organic bromine gases. J Geophys Res, 105: 20539–20547

    Article  Google Scholar 

  • Chopin T, Buschmann A H, Halling C, et al. 2001. Integrateing seaweeds into marine aquaculture systems: a key toward sustainability. J Phycol, 37: 975–986

    Article  Google Scholar 

  • Collén J, Davison I R. 2001. Seasonality and thermal acclimation of reactive oxygen metabolism in Fucus vesiculosus (Phaeophyceae). J Phycol, 37: 474–481

    Article  Google Scholar 

  • Collén J, Del Río, M J, Garcéa-Reina G, et al. 1995. Photosynthetic production of hydrogen peroxide by Ulva rigida C. Ag. (Chlorophyta). Planta, 196:225–230

    Article  Google Scholar 

  • Colwell R R, Huq A. 1994. Vibrios in the environment: viable but nonculturable Vibrio cholerae. In: Wachsmuth K, Blake P A, Olsvik O, eds. Vibrio Cholerae and Cholera: Molecular to Global Perspectives. Washighton DC: American Society for Microbiology, 117–133

    Google Scholar 

  • Du M, Chen J X, Zhang X H, et al. 2007. Characterization and resuscitation of viable but nonculturable Vibrio alginolyticus VIB283. Arch Microbiol, 188:283–288

    Article  Google Scholar 

  • Dworjanya S A, Wright J T, Paul N A, et al. 2006. Cost of chemical defence in the red alga Delisea pulchra. OIKOS, 113: 13–22

    Article  Google Scholar 

  • Elston R A. 2009. Prevention and management of infectious disease in intensice mollusc husbandry. J World Aquac Soc, 15: 284–300

    Google Scholar 

  • Gavio B, Fredericq S. 2002. Grateloupia turuturu (Halymeniaceae, Rhodophyta) is the correct name of the non-native species in the Atlantic known as Grateloupia doryphora. Eur J Phycol, 37: 349–359

    Article  Google Scholar 

  • Hellio C, Simon-Colin C, Clare A, et al. 2004. Isethionic acid and floridoside isolated from the red alga, Grateloupia turuturu, inhibit settlement of Balanus amphitrite cyprid larvae. Biofouling, 3: 139–145

    Article  Google Scholar 

  • Hood M A, Winter P A. 1997. Attachment of Vibrio cholerae under various environmental conditions and to selected substrates. FEMS Microbiol Ecol, 22: 215–223

    Article  Google Scholar 

  • Houlden A, Timms-Wilson T M, Day M J, et al. 2008. Influence of plant developmental stage on microbial community structure and activity in the rhizosphere of three field crops. FEMS Microbiol Ecol, 65: 193–201

    Article  Google Scholar 

  • Islam M S, Drasar B S, Bradley D J. 1989. Attachment of toxigenic Vibrio cholerae 01 to various freshwater plants and survival with a filamentous green algae, Rhizoclonium fontanum. Am J Trop Med Hyg, 92:396–401

    Google Scholar 

  • Islam M S, Tasmin R, Khan S I, et al. 2004. Pandemic strains of O3:K6 Vibrio parahaemolyticus in the aquatic environment of Bangladesh. Can J Microbiol, 50: 827–834

    Article  Google Scholar 

  • Jaffray A E, Anderson R J, Coyne V E. 1997. Investigation of bacterial epiphytes of the agar-producing red seaweed Gracilaria gracilis (Stackhouse) Steentoft, Irvine et Farnham from Saldanha Bay, South Africa and Luderitz, Namibia. Bot Mar, 40: 569–576

    Article  Google Scholar 

  • Kelly S R, Jensen P R. Henkel T P, et al. 2003. Effects of Caribbean sponge extracts on bacterial attachment. Aquat Microb Ecol, 31: 175–182

    Article  Google Scholar 

  • Koblížek M, Komenda J, Masojdek J, et al. 2000. Cell aggregation of the cyanobacterium Synechococcus elongatus: role of the electron transport chain. J Phycol, 36: 662–668

    Article  Google Scholar 

  • Küpper F C, Gaquerel E, Boneberg E M, et al. 2006. Early events in the perception of lipopolysaccharides in the brown alga Laminaria digitata include an oxidative burst and activation of fatty acid oxidation cascades. J Exp Bot, 57: 1991–1999

    Article  Google Scholar 

  • Küpper F C, Kloareg B, Guern J, et al. 2001. Oligoguluronates elicit an oxidative burst in the brown algal kelp Laminaria digitata. Plant Physiol, 125: 278–291

    Article  Google Scholar 

  • Largo D B, Fukami K, Nishijima T. 1995. Occasional pathogenic bacteria promoting ice-ice disease in the carrageenan-producing red algae Kappaphycus alvarezii and Eucheuma denticulatum (Solieriaceae, Gigartinales, Rhodophyta). J Appl Phycol, 7: 545–554

    Article  Google Scholar 

  • Liu F, Pang S J. 2009. Performances of growth, photochemical efficiency, and stress tolerance of young sporophytes from seven populations of Saccharina japonica (Phaeophyta) under short-term heat stress. J Appl Phycol, DOI10.1007/s10811-009-9445-6

  • Lu K G, Lin W, Liu J G. 2008. The characteristics of nutrient removal and inhibitory effect of Ulva clathrata on Vibrio anguillarum 65. J Appl Phycol, 20: 1061–1068

    Article  Google Scholar 

  • Mahmud Z H, Neogi S B, Kassu A, et al. 2007. Seaweeds as a reservoir for diverse Vibrio parahaemolyticus populations in Japan. Int J Food Microbiol, 118: 92–96

    Article  Google Scholar 

  • Manefield M, Welch M, Givskov M, et al. 2001. Halogenated furanones from the red alga, Delisea pulchra, inhibit carbapenem antibiotic synthesis and exoenzyme virulence factor production in the phytopathogen Erwinia carotovora. FEMS Microbiol Lett, 205: 131–138

    Article  Google Scholar 

  • Marston M, Villalard-Bohnsack M. 2002. Genetic variability and potential sources of Grateloupia doryphora (Halymeniaceae, Rhodophyta), an invasive species in Rhode Island waters (USA). J Phycol, 38:649–658

    Article  Google Scholar 

  • Maugeri T L, Carbone M, Fera M T, et al. 2004. Distribution of potentially pathogenic bacteria as free living and plankton associated in a marine coastal zone. J Appl Phycol, 97: 354–361

    Google Scholar 

  • Maximilien R, de Nys R, Holmstrom C, et al. 1998. Chemical mediation of bacterial surface colonisation by secondary metabolites from the red alga Delisea pulchra. Aquat Microb Ecol, 15: 233–246

    Article  Google Scholar 

  • Meyer F P. 1991. Aquaculture disease and health management. J Anim Sci, 69: 4201–4208

    Google Scholar 

  • Nürnberger T, Lipka V. 2005. Non-host resistance in plants: new insights into an old phenomenon. Mol Plant Pathol, 6: 335–345

    Article  Google Scholar 

  • Nürnberger T, Brunner F, Kemmerling B, et al. 2004. Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev, 198: 249–266

    Article  Google Scholar 

  • Nylund G M, Cervin G, Hermansson M, et al. 2005. Chemical inhibition of bacterial colonization by the red alga Bonnemaisonia hamifera. Mar Ecol Prog Ser, 302: 27–36

    Article  Google Scholar 

  • Oliver J D, Hite M F, McDougald D, et al. 1995. Entry into, and resuscitation from, the viable but nonculturable state by Vibrio vulnificus in an estuarine environment. Appl Environ Microbiol, 61: 2624–2630

    Google Scholar 

  • Pang S J, Xiao T, Bao Y. 2006. Dynamic changes of total bacteria and Vibrio in an integrated seaweed-abalone culture system. Aquaculture, 252: 289–297

    Article  Google Scholar 

  • Pang S J, Xiao T, Shan T F, et al. 2006. Evidences of the intertidal red alga Grateloupia turuturu in turning Vibrio parahaemolyticus into non-culturable state in the presence of light. Aquaculture, 260: 369–374

    Article  Google Scholar 

  • Patten P V. 2006. Beware of the Red Menace-Grateloupia is invading Long Island Sound. Wrack line, 2:7–10

    Google Scholar 

  • Plouguerné E, Kikuchi H, Oshima Y, et al. 2006. Isolation of Cholest-5-en-3-ol formate from the red alga Grateloupia turuturu Yamada and its chemotaxonomic significance. Biochem Syst Ecol, 34: 714–717

    Article  Google Scholar 

  • Qu L, Sun X, Zhang J. 2007. Phylogenetic analysis of bacteria in the China Sea. Available at: http://www.ncbi.nlm.nih.gov/nuccore/151936163

  • Reilly A, Kaeferstein F. 1999. Food safety and products from aquaculture. J Appl Microbiol, 85: 249–257

    Article  Google Scholar 

  • Ross C, Van Alstyne K L. 2007. Intraspecific variation in stress-induced hydrogen peroxide scavenging by the Ulvoid Macroalga Ulva lactuca. J Phycol, 43: 466–474

    Article  Google Scholar 

  • Sagi M, Fluhr R. 2006. Production of Reactive Oxygen Species by Plant NADPH Oxidases. Plant Physiol, 141: 336–340

    Article  Google Scholar 

  • Simon-Colin C, Kervarec N, Pichon R, et al. 2002. Characterization of N-methyl-L-methionine sulfoxide and isethionic acid from the red alga Grateloupia doryphora. Phycol Res, 50: 125–128

    Article  Google Scholar 

  • Spira W M, Huq A, Ahmad Q S, et al. 1981. Uptake of Vibrio cholerae biotype El Tor from contaminated water by water hyacinth (Eichornia crassipis). Appl Environ Microbiol, 42: 550–553

    Google Scholar 

  • Vugia D J, Shefer A M, Douglas J, et al. 1997. Cholera from raw seaweed transported from the Philippines to California. J Clin Microbiol, 35: 284–285

    Google Scholar 

  • Weinberger F. 2007. Pathogen-induced defense and innate immunity in macroalgae. Biol Bull, 213: 290–302

    Article  Google Scholar 

  • Weinberger F, Friedlander M, Gunkel W. 1994. A bacterial facultative parasite of Gracilaria conferta. Dis Aquat Org, 18: 135–141

    Article  Google Scholar 

  • Weinberger F, Friedlander M, Hoppe H G. 1999. Agar oligosaccharides elicit a physiological response in Gracilaria conferta (Rhodophyta). J Phycol, 35:747–755

    Article  Google Scholar 

  • Weinberger F, Leonardi P, Miravalles A, et al. 2005. Dissection of two distinct defense-related responses to agar oligosaccharides in Gracilaria chilensis (Rhodophyta) and Gracilaria conferta (Rhodophyta). J Phycol, 41: 863–873

    Article  Google Scholar 

  • Whitesides M D, Oliver J D. 1997. Resuscitation of Vibrio vulnificus from the viable but nonculturable state. Appl Environ Microbiol, 63: 1002–1005

    Google Scholar 

  • Wikipedia contributors. Vibrio. Wikipedia, The Free Encyclopedia. Available at: http://en.wikipedia.org/w/index.php?title = Vibrio&oldid=280027022. Accessed March 27, 2009

  • Wong H C, Chung Y C, Yu J A. 2002. Attachment and inactivation of Vibrio parahaemolyticus on stainless steel and glass surface. Food Microbiol, 19: 341–350

    Article  Google Scholar 

  • Yamamoto H. 2000. Viable but nonculturable state as a general phenomenon of non-spore-forming bacteria, and its modeling. J Infect Chemother, 6: 112–114

    Article  Google Scholar 

  • Zeidler D, Zähringer U, Gerber I, et al. 2004. Innate immunity in Arabidopsis thaliana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proc Natl Acad Sci U S A, 101: 15811–15816

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaojun Pang.

Additional information

Foundation item: The National Natural Science Foundation of China under contract No. 30671596.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, F., Pang, S. Nonculturability of the pathogenic Vibrio parahaemolyticus in live culture of Grateloupia turuturu is associated with bacterial attachment to the algal thalli. Acta Oceanol. Sin. 29, 92–103 (2010). https://doi.org/10.1007/s13131-010-0080-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-010-0080-5

Key words

Navigation