Skip to main content
Log in

A novel high resolution model without open boundary conditions applied to the China Seas: first investigation on tides

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

We developed a Global Ocean Circulation and Tide Model (GOCTM) with coarse grids in the open deep ocean degrading ‘smoothly’ into the highly resolved China Seas (CS) of refined grids to study the tides and circulation there. GOCTM is based on the framework of the Finite Volume approach for better mass conservation through improved transports across the discrete individual control volume. It also takes a full advantage of the geometric flexibility of unstructured mesh using a realistic global topography including the Arctic Ocean. The CS are given a special focus by refining the unstructured grids, but they are embedded into global domain naturally. Furthermore, GOCTM not only successfully avoids the treatment of the open boundaries, but also optimizes the trade-off between computational cost and model accuracy. Meanwhile, GOCTM is driven by the astronomical tide-generating potential and the secondary tide-generating potential directly, together with the wind stress and heat flux. GOCTM succeeds in reproducing the global eight principal tidal harmonic constants. Particularly, the simulated tidal results in the CS are improved compared to some other regional models with the discrepancy of 3.9 cm for M2 tide. This idea of GOCTM can also be referred for other regional ocean study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bartels J, Horn W. 1952. Gezeitenkräfte, in Landolt/Börnstein, Zahlenwerte und Funktionen, vol. 3, Astronomie und Geophysik, Berlin: Springer, 27

    Google Scholar 

  • Bretagnon P, Francou G. 1988. A&A 202, 309 Chapman, D C. 1985. Numerical treatment of cross-shelf open boundaries in a barotropic coastal ocean model. J Phys Oceanogr, 15: 1060–1075

    Google Scholar 

  • Chen C, Liu H, Beardsley R C. 2003. An Unstructured Grid, Finite-Volume, Three-Dimensional, Primitive Equations Ocean Model: Application to Coastal Ocean and Estuaries. Journal of Atmospheric and Oceanic Technology, 20: 159–186

    Article  Google Scholar 

  • Chen C, Cowles G, Beardsley R C. 2006. “An unstructured grid, finite volume coastal ocean model: FVCOM User Manual, Second Edition”. SMAST/UMASSD Technical Report-06-0602, 315

  • Chen X E, Wu D X. 2006. A Preliminary Study on Numerical Simulation of the Northeast Asian Regional Seas. Qingdao: China Ocean University Press

    Google Scholar 

  • Chen Z Y, Ye A L, Zuo J C. 1995. Advances in Ocean Tide Research Over the Past 40 Years in China. Journal of Ocean University of Qingdao, 25(4): 435–442

    Google Scholar 

  • Choi B H. 1984. A three-dimensional model of the East China Sea. Ocean Hydrodynamics of the Japan and East China Seas, 209–224

  • Choi B H. 1985. Observed and computed tidal currents in the East China Sea. J Oceanogr, 20: 56–73

    Google Scholar 

  • Choi B H. 1989. A fine-grid three-dimensional M2 tidal model of the East China Sea. Modeling Marine Systems, 167–185

  • Davis A M, Hall P. 2002. Numerical problems associated with coupling hydrodynamic models in shelf edge regions: the surge event of February 1994. Applied Mathematical Modelling 26: 807–831

    Article  Google Scholar 

  • Dick. 1994. Introduction to finite-volume techniques in computational fluid dynamics. In: J F. Wendt, Editor, Computational Fluid Dynamics, Springer-Verlag (1994), 271–297

  • Duffett-Smith P. 1979. Practical Astronomy with your calculator. Cambridge Un Pr, 129

  • Duffett-Smith P. 1990. Astronomy with Your Personal Computer, 270, Cambridge University Press

  • Eanes R J, Bettadpur S V. 1994. Ocean tides from two years of TOPEX/POSEIDON altimetry (abstract). EOS Trans. AGU, 75(44), Fall Meet Suppl, 61

    Google Scholar 

  • Egbert GD, Bennett AF, Foreman GG. 1994. TOPEX/POSEIDON tides estimated using a global inverse model. J Geophys Res, 99:24821–24852

    Article  Google Scholar 

  • Egbert, G.D, Erofeeva SY. 2002. Efficient Inverse Modeling of Barotropic Ocean Tides. J Atmos Oceanic Technol, 19: 183–204

    Article  Google Scholar 

  • Ernst W S. 1980. On Charting Global Ocean Tides. Reviews of Geophysics and Space Physics 18(1): 243–268

    Article  Google Scholar 

  • Fang G H, Kwok Y K, et. al., 1999. Numerical simulation of principal tidal constituents in the South China Sea, Gulf of Tonkin and Gulf of Thailand. Continental Shelf Research 19: 845–869

    Article  Google Scholar 

  • Fang G H, Wei Z X, et al. 2003. Interbasin freshwater, heat and salt transport through the boundaries of the East and South China Seas from a variable-grid global ocean circulation model. Science in China, 46(2): 149–161

    Article  Google Scholar 

  • Fang G H, Wei Z X, et al. 2004. An extended variable-grid global ocean circulation model and its preliminary results of the equatorial Pacific circulation. Acta Oceanologica Sinica, 23: 23–30

    Google Scholar 

  • Farrell W E. 1972. Deformation of the Earth by Surface Loads. Rev Geophys, 10(3): 761–797

    Article  Google Scholar 

  • Foreman M G G. 1978. Manual for tidal analysis and prediction. Pacific Marine Science Rep. 78-6, Institute of Ocean Sciences, Patrcia Bay, Sydney, British Columbia, Canada, 70pp.

    Google Scholar 

  • Guo X Y, Yanagi T. 1998. Three-Dimensional Structure of Tidal Current in the East China Sea and the Yellow Sea. Journal of Oceanography, 54: 651–668

    Article  Google Scholar 

  • Fujio S, et al. 1992. World Ocean Circulation diagnostically derived from hydrographic and wind stress fields 1, The velocity field. J Geophys Res, 97: 11163–11176

    Article  Google Scholar 

  • Fujio S, et al. 1992. World Ocean Circulation diagnostically derived from hydrographic and wind stress fields 2, The water movement. J Geophys Res, 97: 14439–14452

    Article  Google Scholar 

  • Gary D E, Svetlana Y E. 2002. Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology, 19: 183–204

    Article  Google Scholar 

  • Greenberg D A, Dupont F, et al. 2007. Resolution issues in numerical models of oceanic and coastal circulation. Continental Shelf Research, 27(9): 1317–1343

    Article  Google Scholar 

  • Henry R F, Walters R A. 1993. Geometrically based, automatic generator for irregular networks, Numer. Methods Eng, 9: 555–566

    Google Scholar 

  • Hidaka K. 1966. Japan Sea, in the Encyclopedia of Oceanography (ed. Fairbridge, R. W.), Stroudsburg: Dowen, Hutchinson & Ross Inc, 417–424

    Google Scholar 

  • Jensen T G. 1998. Open boundary conditions in stratified ocean models. Journal of Marine System, 16: 297–322

    Article  Google Scholar 

  • Julie P, Jan B J, et al. 2002. A three-dimensional hydrostatic model for coastal and ocean modelling using a generalised topography following co-ordinate system. Ocean Modelling, 4(2): 173–205

    Article  Google Scholar 

  • Koji Masumoto, Takashi Takanezawa, Masatsugu Ooe. 2000. Ocean Tide Models Developed by Assimilating TOPEX/POSEIDON Altimeter Data into Hydrodynamical Model: A Global Model and a Regional Model around Japan. Journal of Oceanography, 56: 567–581

    Article  Google Scholar 

  • Lefevre F, Lyard F H, Provost C L. 2002. FES99: A Global Tide Finite Element Solution Assimilating Tide Gauge and Altimetric Information. Journal of Atmospheric and Oceanic Technology, 19: 1345–1356

    Article  Google Scholar 

  • Le Provost C. 1994. A new in situ reference data set for ocean tides. AVISO Altimetry News Letter, 3

  • Lefèvre F, C Le Provost, F H Lyard. 2000. How can we improve a global ocean tide model at a regional scale? A test on the Yellow Sea and the East China Sea. J Geophys Res, 105(C4): 8707–8725

    Article  Google Scholar 

  • Molines J M, C Le Provost, F Lyard R D, et al. 1994. Tidal corrections in the TOPEX/POSEIDON geophysical data records. J Geophys Res, 99(C12): 24749–24760

    Article  Google Scholar 

  • Nitani H. 1972. Beginning of the Kuroshio, in Kuroshio, Physical Aspects of the Japan Current (eds. Stommel H, Yoshida K). Seattle: University of Washington Press, 129–163

    Google Scholar 

  • Oliger J, Sundstrom A. 1978. Theoretical and practical aspects of some initial boundary value problems in fluid dynamics. SIAM J Appl Math, 35: 419–446

    Article  Google Scholar 

  • Padman L, Erofeeva S. 2004. A barotropic inverse tidal model for the Arctic Ocean. Geophysical Research Letters, 31: 1029–1032

    Article  Google Scholar 

  • Pedlosky J. 1987. Geophysical Fluid Dynamics, 2nded. New York: Springer-Verlag, chap. 5: 254–335

    Google Scholar 

  • Ponchaut F, Lyard F, Le Provost C. 2001. An Analysis of the Tidal Signal in the WOCE Sea Level Dataset. J Atmos Oceanic Technol, 18: 77–91

    Article  Google Scholar 

  • Ray R D. 1998. Ocean self-attraction and loading in numerical tidal models. Marine Geodesy, 21(3): 181–192

    Article  Google Scholar 

  • Ray R D. 1999: A global ocean tide model from TOPEX/POSEIDON altimetry: GOT99.2. NASA Tech. Memo, 209478

  • Saunders P M, Coward A C, de Cuevas B A. 1999. Circulation of the Pacific Ocean seen in a global ocean model (OCCAM). Journal of Geophysical Research 104, 18281–18299

    Article  Google Scholar 

  • Schiwiderski, Ernst W. 1980. On Charting Global Ocean Tides. Reviews of Geophysics and Space Physics, 18(1): 243–268

    Article  Google Scholar 

  • Smagorinsky J. 1963. General Circulation Experiments with the Primitive Equations. Mon Wea Rev, 91: 99–164

    Article  Google Scholar 

  • Wan Z W, Qiao F L, Yuan Y L. 1998. Three-Dimensional Numerical Modeling of Tidal Waves in the Bohai, Yellow and East China Seas. Oceanologia Et Limnologia Sinica, 29(6): 611–616

    Google Scholar 

  • Wang Y G, Fang G H, et al. 2004. Tides of the Bohai, Yellow and East China Seas by Assimilating Gauging Station Data Into A Hydrodynamic Model, Progress in Marine Science, 22(3): 253–274

    Google Scholar 

  • Wei Z X, Choi B H, Fang G H. 2000. Water, Heat and Salt transports from Diagnostic World Ocean and North Pacific Circulation Models. La Mer, 38(4): 211–218

    Google Scholar 

  • Xia C S, Qiao F L, et al. 2004. Numerical Modeling of the Quasi-Global Ocean Circulation based on POM. Journal of Hydrodynamics, 16(5): 537–543

    Google Scholar 

  • Xia C, Qiao F, et al. 2006. Three-dimensional structure of the summertime circulation in the Yellow Sea from a wave-tide-circulation coupled model. J Geophys Res, 111, C11S03, doi:10.1029/2005JC003218

    Article  Google Scholar 

  • Yang J. 2007. An Oceanic Current against the Wind: How Does Taiwan Island Steer Warm Water into the East China Sea? J Phys Oceanogr, 37: 2563–2569

    Article  Google Scholar 

  • Zu T T, Gan J P, Svetlana Y E. 2007. Numerical Study of the Tide and Tidal dynamics in the South China Sea. Deep Sea Research, 55: 137–154

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueen Chen.

Additional information

Foundation item: The Hi-tech Research and Development Program (863) of China under contract No. 2007AA09Z117; the National Key Technology R&D Program under contract No.2011BAC03B02; the National Natural Science Fund of China under contract No.40976001; the National Marine Renewable Energy Program under contract Nos GHME2010ZC08, No.GHME 2010ZC11 and No.GHME2010ZC01.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, H., Chen, X., Bao, X. et al. A novel high resolution model without open boundary conditions applied to the China Seas: first investigation on tides. Acta Oceanol. Sin. 29, 12–25 (2010). https://doi.org/10.1007/s13131-010-0072-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-010-0072-5

Key words

Navigation