Skip to main content
Log in

The colonisation of the Tyrrhenian Islands by Hydraena water beetles, with Hydraena reflexa Rey, 1884 reinstated as a valid species endemic to Corsica and Sardinia (Coleoptera, Hydraenidae)

  • ORIGINAL ARTICLE
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

The biotas of old islands formed from continental terranes usually have a more complex biogeographical history than those of young oceanic islands, including taxa which have originated by vicariance and/or colonisation, over a variety of timescales. The Tyrrhenian Islands of Corsica, Sardinia and the Tuscan Archipelago in the Mediterranean have a complex geological history, shaped by interactions between the African and Eurasian plates since the Mesozoic. Our understanding of the historical biogeography of Tyrrhenian endemics remains limited for many groups, including freshwater invertebrates. Here we use a time-calibrated phylogeny, derived from mitochondrial and nuclear DNA sequence data, to explore the evolutionary history of Tyrrhenian endemic Hydraena water beetles, an ecologically important group in the islands’ streams. Whilst no endemic Hydraena appear to date from the initial separation of Corsica-Sardinia from the European mainland in the Oligocene, we show that Tyrrhenian species stem from five colonisation events, occurring at different intervals in the last ca. 15 Ma, at least two endemic lineages apparently arising through isolation at the end of the Messinian Salinity Crisis. Hydraena reflexa Rey, 1884, long considered a geographical form or subspecies of the widespread H. pygmaea Waterhouse, 1833, is reinstated as a valid species, endemic to Corsica and Sardinia. H. reflexa can be distinguished from H. pygmaea on external and aedeagal characters, documented here in detail. Specimens of ‘H. reflexa’ from southern continental Italy are shown to differ from those on Corsica and Sardinia, having identical male genitalia to H. pygmaea from elsewhere in its range. Genetically, this Calabrian form also clusters with H. pygmaea, and may have arisen through past introgression between a reflexa-like ancestor and H. pygmaea following the connection of the Calabrian block with the nascent Apennines in the Pliocene. The degree of genetic divergence seen between H. pygmaea and H. reflexa suggests that they diverged approximately 5.5 Ma in the Miocene, following the isolation of Corsico-Sardinian and mainland populations at the end of the Messinian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

DNA sequence data are available on GenBank, new sequences being deposited under accession numbers OR533284-OR533287, OR537346 and OR543921.

References

  • Ali, J. R. (2017). Islands as biological substrates: Classification of the biological assemblage components and the physical island types. Journal of Biogeography, 44, 984–994.

    Article  Google Scholar 

  • Alvarez, W. (1972). Rotation of the Corsica-Sardinia Microplate. Nature, 235, 103–105.

    Google Scholar 

  • Andreucci, S., Pistis, M., Funedda, A., & Loi, A. (2017). Semi-isolated, flat-topped carbonate platform (Oligo-Miocene, Sardinia, Italy): Sedimentary architecture and processes. Sedimentary Geology, 361, 64–81.

    Article  Google Scholar 

  • Arragoni, S., Maggi, M., Cianfarra, P., & Salvini, F. (2016). The Cenozoic fold-and-thrust belt of Eastern Sardinia: Evidences from the integration of field data with numerically balanced geological cross section. Tectonics, 35, 1404–1422.

    Article  Google Scholar 

  • Audisio, P., & De Biase, A. (2005). Insecta Coleoptera Hydraenidae. In: Ruffo, S. & Stoch, F. (Eds.), Checklist e distribuzione della fauna italiana. Memorie del Museo Civico di Storia Naturale di Verona, 2. serie, Sezione Scienze della Vita, 16, 169–170.

  • Audisio, P., Trizzino, M., De Biase, A., Mancini, E., & Antonini, G. (2009). A new species of Hydraena (Coleoptera: Hydraenidae) of the H. evanescens complex from Sardinia. Zootaxa, 2318, 281–289.

    Article  Google Scholar 

  • Balfour-Browne, W. A. F. (1958). British water beetles (Vol. 3, pp. 1–210). Ray Society.

    Google Scholar 

  • Benson, D. A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., & Sayers, E. W. (2013). GenBank. Nucleic Acids Research, 41, D36–42.

    Article  CAS  PubMed  Google Scholar 

  • Berthélemy, C. (1964). Sur la position systématique de quelques Hydraena Européennes. Bulletin De La Société D’histoire Naturelle de Toulouse, 99, 175–185.

    Google Scholar 

  • Berthélemy, C. (1986). Remarks on the genus Hydraena and revision of the subgenus Phothydraena (Coleoptera: Hydraenidae). Annales de Limnologie, 22, 181–193.

    Article  Google Scholar 

  • Berthélemy, C., Kaddouri, A., & Richoux, P. (1991). Revision of the genus Hydraena Kugelann, 1794 from North Africa (Coleoptera: Hydraenidae). Elytron, 5, 181–213.

    Google Scholar 

  • Bilton, D. T. (2013). Hydraena lotti sp. nov., a new member of the “Haenydra” lineage from the Peloponnese (Greece), with additional records of Hydraena species in the region (Coleoptera, Hydraenidae). Zootaxa, 3637, 29–38.

    Article  PubMed  Google Scholar 

  • Binaghi, G. (1958). Materiali per lo studio delle Hydraena italiane (1° contributo). Bollettino della Società Entomologica Italiana, 88, 70–83.

    Google Scholar 

  • Borregaard, M. K., Matthews, T. J., & Whittaker, R. J. (2016). The general dynamic model: Towards a unified theory of island biogeography? Global Ecology and Biogeography, 25, 805–816.

    Article  Google Scholar 

  • Borregaard, M. K., Amorim, I. R., Borges, P. A. V., Cabral, J. S., Fernández-Palacios, J. M., Field, R., Heaney, L. R., Kreft, H., Matthews, T. J., Olesen, J. M., Price, J., Rigal, F., Steinbauer, M. J., Triantis, K. A., Valente, L., Weigelt, P., & Whittaker, R. J. (2017). Oceanic island biogeography through the lens of the general dynamic model: Assessment and prospect. Biological Reviews, 92, 830–853.

    Article  PubMed  Google Scholar 

  • Bossio, A., Cornamusini, G., Ferrandini, J., Ferrandini, M., Foresi, L. M., Mazzanti, R., Mazzei, R., Salvatorini, G., & Sandrelli, F. (2000). Dinamica dal Neogene al Quaternario della Corsica orientale e della Toscana. In: Strumia, F. (Ed.) Progetto interregII Toscana–Corsica 1997–1999, Pisa: Edizioni ETS, 87–95.

  • Caccone, A., Milinkovitch, M. C., Sbordoni, V., & Powell, J. R. (1994). Molecular biogeography: Using the Corsica-Sardinia microplate disjunction to calibrate mitochondrial rDNA evolutionary rates in mountain newts (Euproctus). Journal of Evolutionary Biology, 7, 227–245.

    Article  Google Scholar 

  • Caccone, A., & Sbordoni, V. (2001). Molecular biogeography of cave life: A study using mitochondrial DNA from Bathysciine beetles. Evolution, 55, 122–130.

    CAS  PubMed  Google Scholar 

  • Carlquist, S. (1965). Island Life. A Natural History of the Islands of the World. Natural History Press, Garden City, NY, 1–451.

  • Carranza, S., & Amat, F. (2005). Taxonomy, biogeography and evolution of Euproctus (Amphibia: Salamandridae), with the resurrection of the genus Calotriton and the description of a new endemic species from the Iberian Peninsula. Zoological Journal of the Linnean Society, 145, 555–582.

    Article  Google Scholar 

  • Carranza, S., Romano, A., Arnold, E. N., & Sotgiu, G. (2008). Biogeography and evolution of European cave salamanders, Hydromantes (Urodela: Plethodontidae), inferred from mtDNA sequences. Journal of Biogeography, 35, 724–738.

  • Clement, M., Posada, D., & Crandall, K. A. (2000). TCS: A computer program to estimate gene genealogies. Molecular Ecology, 9, 1657–1659.

    Article  CAS  PubMed  Google Scholar 

  • Cornacchia, I., Brandano, M., & Agostini, S. (2021). Miocene paleoceanographic evolution of the Mediterranean area and carnate production changes: A review. Earth-Science Reviews, 221, 103785.

    Article  Google Scholar 

  • Dapporto, L., Wolf, H., & Strumia, F. (2006). Recent geography determines the distribution of some flying Hymenoptera in the Tuscan Archipelago. Journal of Zoology, 272, 37–44.

    Article  Google Scholar 

  • Darlington, P. J., Jr. (1943). Carabidae of mountains and islands: Data on the evolution of isolated faunas, and on atrophy of wings. Ecological Monographs, 13, 37–61.

    Article  Google Scholar 

  • Dercourt, J. E. A., Zonenshain, L. P., Ricou, L. E., Kazmin, V. G., Le Pichon, X., Knipper, A. L., et al. (1986). Geological evolution of the Tethys belt from the Atlantic to the Pamirs since the Lias. Tectonophysics, 123, 241–315.

    Article  Google Scholar 

  • Diaz Pazos, J. A., & Bilton, D. T. (1995). Hydraena (Haenydra) zezerensis sp. nov. from the Iberian Peninsula (Coleoptera: Hydraenidae). Entomological Problems, 25, 49–53.

    Google Scholar 

  • Faille, A., Casale, A., Hernando, C., Moulound, S. A., & Ribera, I. (2018). Tectonic vicariance versus Messinian dispersal in western Mediterranean ground beetles. Zoologica Scripta, 47, 1–17.

    Article  Google Scholar 

  • Fattorini, S. (2009). Both recent and pleistocene geography determines animal distributional patterns in the Tuscan Archipelago. Journal of Zoology, 277, 291–301.

    Article  Google Scholar 

  • Fattorini, S., Borges, P. A. V., & Dapporto, L. (2016). What can the parameters of the species–area relationship (SAR) tell us? Insights from Mediterranean islands. Journal of Biogeography, 44, 1018–1028.

    Article  Google Scholar 

  • Fiorentino, V., Salomone, N., Manganelli, G., & Giusti, F. (2010). Historical biogeography of Tyrrhenian land snails: The Marmorana-Tyrrheniberus radiation (Pulmonata, Helicidae). Molecular Phylogenetics and Evolution, 55, 26–37.

    Article  PubMed  Google Scholar 

  • Fochetti, R., Sezzi, E., Tierno de Figueroa, J. M., Modica, M. V., & Oliverio, M. (2009). Molecular systematics and biogeography of the Western Mediterranean stonefly genus Tyrrhenoleuctra (Insecta, Plecoptera). Journal of Zoological Systematics and Evolutionary Research, 47, 328–336.

    Article  Google Scholar 

  • Foster, G. N., Bilton, D. T., Hammond, M., & Nelson, B. H. (2020). Atlas of the water beetles of Britain and Ireland – smaller families of Polyphaga. FSC Pulications, Telford, 1–296.

  • Ganglbauer, L. (1904). Die Kafer von Mitteleuropa.Vol. 4 (part 1). Karl Gerold’s Sohn, Wein, 1–286.

  • Garcia-Castellanos, D., Estrada, F., Jiménez-Munt, I., Gorini, C., Fernàndez, M., Vergés, J., & De Vicente, R. (2009). Catastrophic flood of the Mediterranean after the Messinian salinity crisis. Nature, 462, 778–781.

    Article  CAS  PubMed  Google Scholar 

  • Gillespie, R. G., & Roderick, G. K. (2002). Arthropods on islands: Colonization, speciation, and conservation. Annual Review of Entomology, 47, 595–632.

    Article  CAS  PubMed  Google Scholar 

  • Grill, A., Casula, P., Lecis, R., & Menken, S. B. J. (2007). Endemism in Sardinia. In: Weiss, S., Ferrand, N. (Eds.) Phylogeography of Southern European Refugia. Springer, Dordrecht, The Netherlands, 273–296.

  • Heaney, L. R., Balete, D. S., & Rickart, E. A. (2013). Models of oceanic island biogeography: Changing perspectives on biodiversity dynamics in archipelagoes. Frontiers in Biogeography, 5, 249–257.

    Article  Google Scholar 

  • Hebert, P. D., Ratnasingham, S., & De Waard, J. R. (2003). Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society B: Biological Sciences, 270, S96–S99.

    Article  CAS  PubMed Central  Google Scholar 

  • Husemann, M., Schmitt, T., Zachos, F. E., Ulrich, W., & Habel, J. C. (2014). Palaearctic biogeography revisited: Evidence for the existence of a North African refugium for Western Palaearctic biota. Journal of Biogeography, 41, 81–94.

    Article  Google Scholar 

  • Ieniştea, M.-A. (1978). Hydradephaga und Palpicornia. In J. Illies (Ed.), Limnofauna Europaea (2nd ed., pp. 291–314). Gustav Fischer Verlag.

  • Jäch, M. A. (1988). Updating the Hydraena Fauna of Turkey (Coleoptera, Hydraenidae). — Entomologica Basiliensia, 12, 241–258.

  • Jäch, M. A., Beutel, R. G., Díaz, J. A., & Kodada, J. (2000). Subgeneric classification, description of head structures, and world checklist of Hydraena Kugelann (Insecta: Coleoptera: Hydraenidae). Annalen des Naturhistorischen Museums in Wien, Series B, 102, 177–258.

  • Jäch, M. A., & Skale, A. (2011). Annotated checklist of the Hydraenidae of Armenia (Coleoptera: Hydraenidae). Koleopterologische Rundschau, 81, 93–111

  • Jäch, M. A., & Diaz, J. A. (2012). New and little known Palaearctic species of the genus Hydraena (s.l.) Kugelann X. Description of four new species from southern Europe, and taxonomic review of the H. subintegra species complex (Coleoptera: Hydraenidae). Koleopterologische Rundschau, 82, 95–113.

    Google Scholar 

  • Jäch, M. A., & Skale, A. (2015). Hydraenidae. In: Löbl, I & Löbl, D. (Eds.), Catalogue of Palaearctic Coleoptera Volume 2/1 Revised and Updated Edition. Brill, Leiden, 130–162.

  • Jäch, M. A., & Diaz, J. A. (2016). New and little known Palaearctic species of the genus Hydraena (s.l.) Kugelann XI. Description of three new species from the Greek island of Euboea, and taxonomic notes on the Hydraena (s.str.) dryops complex (Coleoptera: Hydraenidae). Koleopterologische Rundschau, 86, 61–81.

    Google Scholar 

  • Jäch, M. A., & Diaz, J. A. (2017). New and little known Palaearctic species of the genus Hydraena (s.l.) Kugelann XII. Description of a new species of the H. saga complex from Italy (Coleoptera: Hydraenidae). Koleopterologische Rundschau, 87, 37–50.

    Google Scholar 

  • Janssens, E. (1965). Les Hydraena de l’Ėgéide. Mémoires de l’Académie royal de Belgique, Classe des Sciences (4˚), 16, 3–126.

  • Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., & Drummond, A. (2012). Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28, 1647–1649.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ketmaier, V., Argano, R., & Caccone, A. (2003). Phylogeography and molecular rates of subterranean aquatic Stenasellid Isopod with a peri-Tyrrhenian distribution. Molecular Ecology, 12, 547–555.

    Article  CAS  PubMed  Google Scholar 

  • Ketmaier, V., Giusti, F., & Caccone, A. (2006). Molecular phylogeny and historical biogeography of the land snail genus Solatopupa (Pulmonata) in the peri-Tyrrhenian area. Molecular Phylogenetics and Evolution, 39, 439–451.

    Article  CAS  PubMed  Google Scholar 

  • Ketmaier, V., & Caccone, A. (2013). Twenty years of molecular biogeography in the west Mediterranean islands of Corsica and Sardinia: lessons learned and future prospects. In: Silva-Opps, M. (Ed.) Current Progress in Biological Research. InTech Open. https://doi.org/10.5772/55458

  • Kiesenwetter, E. A. H. von (1849). Monografische Revision der Gattung Hydraena. Linnaea entomologica, 4, 156–190, 425–427.

  • König, C., Weigelt, P., Taylor, A., Stein, A., Dawson, W., Essl, F., Pergl, J., Pyšek, P., van Kleunen, M., Winter, M., Chatelain, C., Wieringa, J. J., Krestov, P., & Kreft, H. (2020). Source pools and disharmony of the world’s island floras. Ecography, 43, 1–12.

    Google Scholar 

  • Krijgsman, W. (2002). The Mediterranean: Mare Nostrum of Earth sciences. Earth and Planetary Science Letters, 205, 1–12.

    Article  CAS  Google Scholar 

  • Kuwert, A. (1888). Generalübersicht der Hydraenen der europäischen Fauna. Deutsche Entomologische Zeitschrift, 32, 113–123.

    Google Scholar 

  • Lack, D. (1947). Darwin’s finches (pp. 1–247). Cambridge University Press.

    Google Scholar 

  • Longhitano, S. G., Telesca, D., & Pistis M. (2017). Tidal sedimentation preserved in volcaniclastic deposits filling a peripheral seaway embayment (early Miocene, Sardinian Graben). Marine and Petroleum Geology, 87, 31e46.

  • MacArthur, R. H., & Wilson, E. O. (1967). The theory of island biogeography (pp. 1–203). Princeton University Press.

    Google Scholar 

  • Maffione, M., Speranza, F., Faccenna, C., Cascella, A., Vignaroli, G., & Sagnotti, L. (2008). A synchronous Alpine and Corsica-Sardinia rotation. Journal of Geophysical Research, 113, B03104.

    Article  Google Scholar 

  • Marra, A. C. (2004). Pleistocene mammals of Mediterranean islands. Quaternary International, 129, 5–14.

    Article  Google Scholar 

  • Meulenkamp, J. E., & Sissingh, W. (2003). Tertiary palaeogeography and tectonostratigraphic evolution of the Northern and Southern Peri-Tethys platforms and the intermediate domains of the African-Eurasian convergent plate boundary zone. Palaeogeography Palaeoclimatology Palaeoecology, 196, 209–228.

    Article  Google Scholar 

  • Millán, A., Sánchez-Fernández, D., Abellán, P., Picazo, F., Carbonell, J. A., Lobo, J. M., & Ribera, I. (2014). Atlas de los Coleópteros Aquáticos de España Peninsular. Ministerio de Agricultura, Alimentacion y Medio Ambiente, Madrid, 1–820.

  • Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., Von Haeseler, A., Lanfear, R., & Teeling, E. (2020). IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution, 37, 1530–1534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Múrias dos Santos, A., Cabezas, M. P., Tavares, A. I., Xavier, R., & Branco, M. (2016). tcsBU: A tool to extend TCS network layout and visualization. Bioinformatics, 32, 627–628.

    Article  PubMed  Google Scholar 

  • Oliverio, M., Bologna, M. A., & Mariottini, P. (2000). Molecular biogeography of the Mediterranean lizard Podarcis Wagler, 1830 and Teira Gray, 1838 (Reptilia, Lacertidae). Journal of Biogeography, 27, 1403–1420.

    Article  Google Scholar 

  • Omodeo, P., & Rota, E. (2008). Earthworm diversity and land evolution in three Mediterranean districts. Proceedings of the California Academy of Sciences, Fourth Series, Supplement I, 59, 65–83.

    Google Scholar 

  • Orchymont, A. d’. (1930). A propos de la Tyrrhénide. Les Hydraena. Mémoires de la Société entomologique de Belgique, 23, 33–48.

  • Orchymont, A. d’. (1936). Au sujet de la Phylogénie du genre Hydraena (Col. Palpicornia Fam. Hydraenidae). Mémoires du Musée royal d’Histoire naturelle de Belgique, 3(2), 61–67.

  • Perkins, P. D. (1997). Life on the effective bubble: Exocrine secretion delivery systems (ESDS) and the evolution and classification of beetles in the family Hydraenidae (Insecta: Coleoptera). Annals of the Carnegie Museum, 66, 89–207.

    Article  Google Scholar 

  • Perkins, P. D. (2011a). New species (130) of the hyperdiverse aquatic beetle genus Hydraena Kugelann from Papua New Guinea, and a preliminary analysis of areas of endemism (Coleoptera: Hydraenidae). Zootaxa, 2944, 1–417.

    Article  Google Scholar 

  • Perkins, P. D. (2011b). New records and description of fifty-four new species of aquatic beetles in the genus Hydraena Kugelann from South America (Coleoptera: Hydraenidae). Zootaxa, 3074, 1–198.

    Article  Google Scholar 

  • Perkins, P. D. (2014). A revision of the water beetle genus Hydraena Kugelann for southern Africa (Coleoptera: Hydraenidae). Zootaxa, 3758, 1–92.

    Article  PubMed  Google Scholar 

  • Perkins, P. D. (2022). Thirty-three new species of water beetles in the genus Hydraena Kugelann from Cameroon (Coleoptera: Hydraenidae). Zootaxa, 5203, 1–66.

    Article  PubMed  Google Scholar 

  • Pirinisu, Q. (1981). Palpicorni (Coleoptera: Hydraenidae, Helophoridae, Spercheidae, Hydrochidae, Hydrophilidae, Sphaeridiidae). Guide per Il Riconoscimento Delle Specie Animali Delle Acque Internale Italiane, 13, 1–97.

    Google Scholar 

  • Reitter, E. (1909). Fauna Germanica. Die Käfer des Deutschen Reiches. Vol. 2. K.G. Lutz, Stuttgart, 1–392, 41–80.

  • Rey, C. (1884). Notices sur les Palpicornes et diagnoses d’espèces nouvelles ou peu connus. Revue d’Entomologie, 3, 266–271.

    Google Scholar 

  • Rey, C. (1886). Histoire naturelle des Coléoptères de France (suite). Annales de la Société Linnéenne de Lyon, 32(1–187), 1–2.

    Article  Google Scholar 

  • Ribera, I., Fresneda, J., Bucur, R., Izquierdo, A., Vogler, A. P., Salgado, J. M., & Cieslak, A. (2010). Ancient origin of a Western Mediterranean radiation of subterranean beetles. BMC Evolutionary Biology, 10, 29.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ribera, I., Castro, A., Díaz, J. A., Garrido, J., Izquierdo, A., Jäch, M. A., & Valladares, L. F. (2011). The geography of speciation in narrow range endemics of the ‘Haenydra’ lineage (Coleoptera, Hydraenidae, Hydraena). Journal of Biogeography, 38, 502–516.

  • Ribera, I., & Reboleira, A. S. P. S. (2019). The first stygobiont species of Coleoptera from Portugal, with a molecular phylogeny of the Siettitia group of genera (Dytiscidae, Hydroporinae, Hydroporini, Siettitiina). ZooKeys, 813, 21–38.

    Article  Google Scholar 

  • Riedel, A. (2005). Digital imaging of beetles (Coleoptera), and other three-dimensional insects. In: Häuser, C., Steiner, A., Holstein, J. & Scoble, M.J. (Eds.), Digital Imaging of Biological Type Specimens. A Manual of Best Practice. Results from a study of the European Network for Biodiversity Information, Stuttgart, 222–250.

  • Rosenbaum, G., Lister, G. S., & Duboz, C. (2002a). Relative motions of Africa, Iberia and Europe during Alpine orogeny. Tectonophysics, 359, 117–129.

  • Rosenbaum, G., Lister, G. S., & Duboz, C. (2002b). Reconstruction of the tectonic evolution of the western Mediterranean since the Oligocene. Journal of the Virtual Explorer, 8, 107–130.

    Article  Google Scholar 

  • Rosenhauer, W. G. (1847). Beiträge zur Insekten-Fauna Europas. Vol. 1. T. Blaseing, Erlangen, x + 160, 1 pl.

  • Rossetti, F., Glodny, J., Theye, T., & Maggi, M. (2015). Pressure temperature deformation time of the ductile Alpine shearing in Corsica: From orogenic construction to collapse. Lithos, 218–219, 99–116.

    Article  Google Scholar 

  • Roveri, M., Flecker, R., Krijgsman, W., Lofi, J., Lugli, S., Manzi, V., Sierro, F. J., Bertini, A., Camerlenghi, A., De Lange, G., Govers, R., Hilgen, F. J., Hübscher, C., Meijer, P. T. h., & Stoica, M. (2014). The Messinian Salinity Crisis: Past and future of a great challenge for marine sciences. Marine Geology, 352, 25–58.

  • Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E., & Sánchez-Gracia, A. (2017). DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution, 34, 3299–3302.

    Article  CAS  PubMed  Google Scholar 

  • Russell, J. C., & Kueffer, C. (2019). Island biodiversity in the anthropocene. Annual Review of Environment and Resources, 44, 31–60.

    Article  Google Scholar 

  • Sainte-Claire Deville, J. (1908). Catalogue crìtique des Coléoptères de la Corse. G. Poisson et C. Caen, 1–573, 1 map.

  • Schettino, A., & Turco, E. (2006). Plate kinematics of the Western Mediterranean region during the Oligocene and Early Miocene. Geophysical Journal International, 166, 1398–1423.

    Article  Google Scholar 

  • Speranza, F., Villa, I., Sagnotti, L., Florindo, F., Cosentino, D., Cipollari, P., & Mattei, M. (2002). Age of the Corsica-Sardinia rotation and Liguro-Provencal Basin spreading: New paleomagnetic and40Ar/39Ar evidence. Tectonophysics, 347, 231–251.

    Article  Google Scholar 

  • Spitzenberg, D. (2021). Die wasserbewonenden Käfer Sachsen-Anhalts. Landesamt für Umweltschutz Sachsen-Anhalt, Rangsdorf, 1–772.

  • Stephens, M., Smith, N. J., & Donnelly, P. (2001). A new statistical method for haplotype reconstruction from population data. The American Journal of Human Genetics, 68, 978–989.

    Article  CAS  PubMed  Google Scholar 

  • Suchard, M. A., Lemey, P., Baele, G., Ayres, D. L., Drummond, A. J., & Rambaut, A. (2018). Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution, 4, 1–5.

    Article  Google Scholar 

  • Telesca, D., Longhitano, S. G., Pistis, M., Pascucci, V., Trompeano, M., & Sabato, L. (2020). Sedimentology of a transgressive middle-upper Miocene succession filling a tectonically confined, current dominated seaway (the Logudoro Basin, northern Sardinia, Italy). Sedimentary Geology, 400, 105626.

    Article  Google Scholar 

  • Trizzino, M., Jäch, M. A., Audisio, P., Alonso, R., & Ribera, I. (2013a). A molecular phylogeny of the cosmopolitan hyperdiverse genus Hydraena Kugelann (Coleoptera, Hydraenidae). Systematic Entomology, 38, 192–208.

    Article  Google Scholar 

  • Trizzino, M., Carnevali, L., De Felici, S., & Audition, P. (2013b). A revision of Hydraena species of the “Haenydra” lineage (Coleoptera, Hydraenidae). Zootaxa, 3607, 1–173.

    Article  PubMed  Google Scholar 

  • Valladares, L. F., Benetti, C. J., & Garrido, J. (2022). Los coleópteros acuáticos y semiacuáticos de la comarca de El Bierzo (León, NO de España) (Coleoptera: Gyrinidae, Haliplidae, Noteridae, Hygrobiidae, Dytiscidae, Helophoridae, Georissidae, Hydrochidae, Hydrophilidae, Hydraenidae, Scirtidae, Dryopidae, Elmidae, Heteroceridae) - Reunión del Balfour~-Club, B. (2015). 25–30 junio. Suplementos Del Boletín De La Asociación Española De Entomología, 4, 84–99.

  • Valladares, L. F., Díaz, J. Á., Garrido, J., Sáinz-Cantero, C. E., & Delgado, J. A. (2018). Coleoptera Hydraenidae. Fauna Iberica, 44(CSIC Madrid), 1–516.

  • Wallace, A. R. (1880). Island life (pp. 1–527). MacMillan & Co.

  • Waterhouse, G. R. (1833). Monographia Hydraenarum Angliae. Entomological Magazine, 1, 292–296.

    Google Scholar 

  • Whittaker, R. J., Fernández-Palacios, J. M., Matthews, T. J., Borregaard, M. K., & Triantis, K. A. (2017). Island biogeography: Taking the long view of nature’s laboratories. Science, 357, eaam8326.

  • Zaitzev, F. A. (1908). Catalogue des Coléoptères aquatiques des familles Dryopidae, Georysside, Cyanoceridae, Heteroceridae et Hydrophilidae. Horae Societatis Entomologicae Rossicae, 38, 283–420.

    Google Scholar 

  • Zangari, F., Cimmaruta, R., & Nascetti, G. (2006). Genetic relationships of the western Mediterranean painted frogs based on allozymes and mitochondrial markers: Evolutionary and taxonomic inferences (Amphibia, Anura, Discoglossidae). Biological Journal of the Linnean Society, 87, 515–536.

    Article  Google Scholar 

Download references

Acknowledgements

DTB and AV are grateful to Alexandra Cieslak for supplying unpublished sequence data for H. pygmaea and H. reflexa following the sad death of Ignacio Ribera in April 2020. We are grateful to Manfred Jäch (NMW), Antoine Mantilleri (MNHN) and Roberto Poggi (MSNG) for allowing us to study material in their care, and to Beatriz Álvarez Dorda and Mercedes París, Museo Nacional de Ciencias Naturales, Madrid for locating the Calabrian specimen of H. pygmaea sequenced by IR. Max Barclay and Robert Angus kindly searched the Natural History Museum, London collections for Waterhouse’s material of H. pygmaea. Diana Arzuza Buelvas (Manchester Museum) and Tony Hunter (National Museums, Liverpool) looked for historical H. pygmaea specimens in their respective institutions. Fieldwork on Corsica by DTB in 2006 was partly supported by a grant from the Leverhulme Trust, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David T. Bilton.

Ethics declarations

Competing interests

The authors declare there are none. The authors did not receive support from any organization for the submitted work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ignacio Ribera passed away in 2020, before this work was completed.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilton, D., Ribera, I. & Villastrigo, A. The colonisation of the Tyrrhenian Islands by Hydraena water beetles, with Hydraena reflexa Rey, 1884 reinstated as a valid species endemic to Corsica and Sardinia (Coleoptera, Hydraenidae). Org Divers Evol 23, 881–900 (2023). https://doi.org/10.1007/s13127-023-00620-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-023-00620-z

Keywords

Navigation