Skip to main content

A new cryptic species of the Darevskia parvula group from NE Anatolia (Squamata, Lacertidae)

Abstract

In this study, we re-examine the Darevskia parvula group comprehensively using morphology, osteology and mitochondrial phylogeny, and describe a new endemic species from Turkey: Darevskia tuniyevi sp. nov. A total of 257 adult specimens were evaluated for external morphology (scalation and biometry) with univariate (descriptive statistics and ANOVA with post-hoc tests) and multivariate (Discriminant Analysis and ANOSIM) analyses. In parallel, osteological data and molecular analyses using three DNA markers (mitochondrial 16S rRNA and Cyt-b, nuclear Rag-1) were used to complete the description of the new taxon. The molecular phylogenetic analyses indicated that the D. parvula group is composed of three taxa as D. parvula, D. adjarica and D. tuniyevi sp. nov., and showed that D. adjarica and D. tuniyevi sp. nov. are reciprocal sister taxa. On the other hand, D. adjarica is morphologically very different from other two forms, while D. parvula is hardly distinguishable externally from D. tuniyevi sp. nov. Therefore, we can consider that D. parvula and D. tuniyevi sp. nov. are cryptic species. These two cryptic species retain their primitive morphology within the group, while D. adjarica has changed, perhaps due to different bioclimatic conditions in its Pleistocene refuge and current area.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

The molecular genetic datasets generated and/or analysed in the present study are available from the GenBank repository (https://www.ncbi.nlm.nih.gov/genbank/).

References

  • Ahmadzadeh, F., Flecks, M., Carretero, M. A., Mozaffari, O., Böhme, W., Harris, D. J., et al. (2013). Cryptic speciation patterns in Iranian Rock Lizards uncovered by integrative taxonomy. PLoS one, 8(12), e80563–e80617. https://doi.org/10.1371/journal.pone.0080563.

  • Arnold, E. N. (1973). Relationships of the Palaearctic lizards assigned to the genera Lacerta, Algyroides and Psammodromus (Reptilia: Lacertidae). Bulletin of the British Museum (Natural History) Zoology, London, 25(8), 289–366.

  • Arnold, E. N., Arribas, O. J., & Carranza, S. (2007). Systematics of the Palaearctic and Oriental lizard tribe Lacertini (Squamata: Lacertidae: Lacertinae), with descriptions of eight new genera. Zootaxa, 1430, 1–86. https://doi.org/10.11646/zootaxa.1430.1.1

  • Arribas, O., Ilgaz, Ç., & KumlutaÅŸ, Y. (2018). Reevaluation of the intraspecific variability in Darevskia parvula (Lantz and Cyrén, 1913): an integrated approach using morphology, osteology and genetics (Squamata: Lacertidae). Zootaxa, 4472, 71–099. https://doi.org/10.11646/zootaxa.4472.1.3

  • Arribas, O. J. (2010). Intraspecific variability of the Carpetane Lizard (Iberolacerta cyreni [Müller & Hellmich, 1937]) (Squamata: Lacertidae), with special reference to the unstudied peripheral populations from the Sierras de Avila (Paramera, Serrota and Villafranca). Bonn Zoological Bulletin, 57(2), 197–210.

    Google Scholar 

  • Blackiht, R. E., & Reyment, R. A. (1971). Multivariate morphometrics (p. 412). Academic Press.

    Google Scholar 

  • Bodenheimer, F. S. (1944). Introduction into the knowledge of the Amphibia and Reptilia of Turkey. Revue de la Faculté des Sciences de l’Universite d’Istanbul. Ser. b., 9, 1–78.

    Google Scholar 

  • Candan, K., Kornilios, P., Ayaz, D., KumlutaÅŸ, Y., Gül, S., Yıldırım-Caynak, E., & Ilgaz, Ç. (2021). Cryptic genetic structure within Valentin’s Lizard, Darevskia valentini (Boettger, 1892) (Squamata, Lacertidae), with implications for systematics and origins of parthenogenesis. Systematics and Biodiversity. https://doi.org/10.1080/14772000.2021.1909171

    Article  Google Scholar 

  • Carranza, S., & Arnold, E. N. (2012). A review of the geckos of the genus Hemidactylus (Squamata: Gekkonidae) from Oman based on morphology, mitochondrial and nuclear data, with descriptions of eight new species. Zootaxa, 3378, 1–95. https://doi.org/10.11646/zootaxa.3378.1.1

  • Carstens, B. C., Pelletier, T. A., Reid, N. M., & Satler, J. D. (2013). How to fail at species delimitation. Molecular Ecology, 22(17), 4369–4383. https://doi.org/10.1111/mec.12413

    Article  PubMed  Google Scholar 

  • Chernomor, O., von Haeseler, A., & Minh, B. Q. (2016). Terrace aware data structure for phylogenomic inference from supermatrices. Systematic Biology, 65(6), 997–1008. https://doi.org/10.1093/sysbio/syw037

    Article  PubMed  PubMed Central  Google Scholar 

  • Clark, R. J., & Clark, E. D. (1973). Collection of Amphibians and Reptiles from Turkey. Occasional Papers of the California Academy of Sciences, 104, 1–62.

    Google Scholar 

  • Clarke, K. R. (1988). Detecting change in benthic community structure.In: Oger, R (ed), Proceedings of invited papers, 14th international biometric conference, Namour, Belgium, 131–142.

  • Clarke, K. R. (1993). Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology, 18, 117–143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x

    Article  Google Scholar 

  • Clement, M., Posada, D., & Crandall, K. A. (2000). TCS: A computer program to estimate gene genealogies. Molecular Ecology, 9(10), 1657–1660. https://doi.org/10.1046/j.1365-294x.2000.01020.x

    Article  CAS  PubMed  Google Scholar 

  • Darevsky, I. S. (1967). Rock lizards of the Caucasus (Systematics, Ecology and Phylogenesis of the polymorphic groups of Rock lizards of the Subgenus Archaeolacerta). Nauka press. Leningrad. 216 pp [Translation: New Delhi: Indian National Scientific Documentation Centre, 276 pp].

  • Darevsky, I. S., & Eiselt, J. (1980). Neue Felseneidechsen (Reptilia: Lacertidae) aus dem Kaukasus und aus der Türkei. Amphibia-Reptilia, 1(1), 29–40.

    Article  Google Scholar 

  • Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution; International Journal of Organic Evolution, 39(4), 783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x

    Article  PubMed  Google Scholar 

  • Freitas, S., Rocha, S., Campos, J., Ahmadzadeh, F., Corti, C., Sillero, N., Ilgaz, Ç., KumlutaÅŸ, Y., Arakelyan, M., Harris, D. J., & Carretero, M. A. (2016a). Parthenogenesis through the ice ages: A biogeographic analysis of Caucasian rock lizards (genus Darevskia). Molecular Phylogenetics and Evolution, 102, 117–127. https://doi.org/10.1016/j.ympev.2016.05.035

    Article  PubMed  Google Scholar 

  • Freitas, S., Vavakou, A., Arakelyan, M., Drovetski, S. V., Crnobrnja-Isailovic, J., Kidov, A. A., Cogalniceanu, D., Corti, C., Lymberakis, P., Harris, D. J., & Carretero, M. A. (2016b). Cryptic diversity and unexpected evolutionary patterns in the meadow lizard, Darevskia praticola (Eversmann, 1834). Systematics and Biodiversity, 14(2), 184–197. https://doi.org/10.1080/14772000.2015.1111267

    Article  Google Scholar 

  • Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biology, 59(3), 307–321. https://doi.org/10.1093/sysbio/syq010

  • Gündüz, I., Jaarola, M., Tez, C., Yeniyurt, C., Polly, P. D., & Searle, J. B. (2007). Multigenic and morphometric differentiation of ground squirrels (Spermophilus, Sciuridae, Rodentia) in Turkey, with a description of a new species. Molecular Phylogenetics and Evolution, 43, 916–935. https://doi.org/10.1016/j.ympev.2007.02.021

    Article  CAS  PubMed  Google Scholar 

  • Gür, H. (2016). The Anatolian diagonal revisited: Testing the ecological basis of a biogeographic boundary. Zoology in the Middle East, 62(3), 189–199. https://doi.org/10.1080/09397140.2016.1226544

    Article  Google Scholar 

  • Hall, T. A. (1999). BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.

    CAS  Google Scholar 

  • Hintze, J. (2007). NCSS, PASS and GESS.Number Cruncher Statistical Systems. Kaysville, Utah. (Available from www.NCSS.com)

  • Ilgaz, Ç. (2009). Comparative morphology of Darevskia parvula (Lantz-Cyren 1936) (Sauria: Lacertidae) subspecies in Northeastern Anatolia. Turkey. North-West Journal of Zoology, 5(2), 263–280.

    Google Scholar 

  • Jablonski, D., Kukushkin, O. V., Avcı, A., Bunyatova, S., KumlutaÅŸ, Y., Ilgaz, Ç., Polyakova, E., Shiryaev, K., Tuniyev, B., & Jandzik, D. (2019). The biogeography of Elaphe sauromates (Pallas, 1814), with a description of a new rat snake species. PeerJ, 7, e6944. https://doi.org/10.7717/peerj.6944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A., & Jermiin, L. S. (2017). ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods, 14(6), 587–589. https://doi.org/10.1038/nmeth.4285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapli, P., Botoni, D., Ilgaz, Ç., KumlutaÅŸ, Y., Avcı, A., Rastegar-Pouyani, N., Fathinia, B., Lymberakis, P., Ahmadzadeh, F., & Poulakakis, N. (2013). Molecular phylogeny and historical biogeography of the Anatolian lizard Apathya (Squamata, Lacertidae). Molecular Phylogenetics and Evolution, 66(3), 992–1001. https://doi.org/10.1016/j.ympev.2012.12.002

    Article  PubMed  Google Scholar 

  • Kapli, P., Lutteropp, S., Zhang, J., Kobert, K., Pavlidis, P., Stamatakis, A., & Flouri, T. (2017). Multi-rate Poisson tree processes for singlelocus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics, 33(11), 1630–1638. https://doi.org/10.1093/bioinformatics/btx025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karakasi, D., Ilgaz, Ç., KumlutaÅŸ, Y., Candan, K., Güçlü, Ö., Kankılıç, T., BeÅŸer, N., Sindaco, R., Lymberakis, P., & Poulakakis, N. (2021). More evidence of cryptic diversity in Anatololacerta species complex Arnold, Arribas and Carranza, 2007 (Squamata: Lacertidae) and re-evaluation of its current taxonomy. Amphibia-Reptilia, 42(2), 201–216. https://doi.org/10.1163/15685381-bja10045

    Article  Google Scholar 

  • Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability, outlines version 7. Molecular Biology and Evolution, 30(4), 772–780. https://doi.org/10.1093/molbev/mst010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Köhler, G. (2012). Color Catalogue for Field Biologists. Herpeton ed., Offenbach. 49 pp.

  • Korkmaz, E. M., Lunt, D. H., Çıplak, B., DeÄŸerli, N., & Başıbüyük, H. H. (2014). The contribution of Anatolia to European phylogeography: The centre of origin of the meadow grasshopper, Chorthippus parallelus. Journal of Biogeography, 41, 1793–1805. https://doi.org/10.1111/JBI.12332

    Article  Google Scholar 

  • Kornilios, P., Jablonski, D., Sadek, R. A., KumlutaÅŸ, Y., Olgun, K., Avci, A., & Ilgaz, Ç. (2020). Multilocus species-delimitation in the Xerotyphlops vermicularis (Reptilia: Typhlopidae) species complex. Molecular Phylogenetics and Evolution, 152, 106922. https://doi.org/10.1016/j.ympev.2020.106922

    Article  CAS  PubMed  Google Scholar 

  • Kornilios, P., KumlutaÅŸ, Y., Lymberakis, P., & Ilgaz, Ç. (2018). Cryptic diversity and molecular systematics of the Aegean Ophiomorus skinks (Reptilia: Squamata), with the description of a new species. Journal of Zoological Systematics and Evolutionary Research, 56(3), 364–381. https://doi.org/10.1111/jzs.12205

    Article  Google Scholar 

  • Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution, 35, 1547–1549. https://doi.org/10.1093/molbev/msy096

  • Kurnaz, M., Kutrup, B., Hosseinian Yousefkhani, S. S., Koc, H., Bülbül, U., & EroÄŸlu, A. İ. (2019). Phylogeography of the red-bellied lizard, Darevskia parvula in Turkey. Mitochondrial DNA Part A, 30(3), 556–566. https://doi.org/10.1080/24701394.2019.1580270

    Article  CAS  Google Scholar 

  • Lantz, L. A., & Cyrén, O. (1913). Eine neue Varietät der Felseneidechse Lacerta saxicola Eversmann parvula nov. var. Mitteilungen Kaukasus Museum, 7(2), 163–168.

  • Legendre, P., & Legendre, L. (1998). Numerical Ecology (p. 853). Elsevier Science B. V.

    Google Scholar 

  • Leigh, J. W., & Bryant, D. (2015). PopART: Full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6(9), 1110–1116. https://doi.org/10.1111/2041-210X.12410

    Article  Google Scholar 

  • Lemey, P., Salemi, M., & Vandamme, A. N. (2009). The Phylogenetic Handbook (Second edition).

    Book  Google Scholar 

  • Manvelidze, Z., Eminagaoglu, O., Memiadze, N. V., & Charazishvili, DSh. (2009). Diversity of endemic plant species of adjara-shavsat florist region. Annals of Agrarian Science., 7, 150–152.

    Google Scholar 

  • Minh, B. Q., Nguyen, M. A., & von Haeseler, A. (2013). Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution, 30(5), 1188–1195. https://doi.org/10.1093/molbev/mst024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittermeier, R. A., Gil, P. R., Hoffmann, M., Pilgrim, J., Brooks, T., Mittermeier, C. G., Lamoreux, J., & Fonseca, G. A. B. (2004). Hotspots revisited: Earth’s biologically richest and most endangered terrestrial ecoregions. CEMEX.

  • Murtskhvaladze, M., Tarkhnishvili, D., Anderson, C. L., & Kotorashvili, A. (2020). Phylogeny of caucasian rock lizards (Darevskia) and other true lizards based on mitogenome analysis: Optimisation of the algorithms and gene selection. PLoS one, 15(6).

  • Mutun, S. (2010). Intraspecific genetic variation and phylogeography of the oak gallwasp Andricus caputmedusae (Hymenoptera: Cynipidae): Effects of the Anatolian diagonal. Acta Zoologica Academiae Scientiarum Hungaricae, 56, 153–172.

    Google Scholar 

  • Psonis, N., Antoniou, A., Kukushkin, O., Jablonski, D., Petrov, B., Crnobrnja-Isailović, J., Sotiropoulos, K., Gherghel, I., Lymberakis, P., & Poulakakis, N. (2017). Hidden diversity in the Podarcis tauricus (Sauria, Lacertidae) species subgroup in the light of multilocus phylogeny and species delimitation. Molecular Phylogenetics and Evolution, 106, 6–17. https://doi.org/10.1016/j.ympev.2016.09.007

    Article  PubMed  Google Scholar 

  • Rambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A. (2018). Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67(5), 901–904. https://doi.org/10.1093/sysbio/syy032

  • Rawat, U. S., & Agarwall, N. K. (2015). Biodiversity: Concept, threats and conservation. Environment Conservation Journal, 16(3), 19–28.

    Article  Google Scholar 

  • Rokas, A., Atkinson, R. J., Webster, L., Csóka, G., & Stone, G. N. (2003). Out of Anatolia: Longitudinal gradients in genetic diversity support an eastern origin for a circum-Mediterranean oak gallwasp Andricus quercustozae. Molecular Ecology, 12, 2153–2174. https://doi.org/10.1046/j.1365-294X.2003.01894.x

    Article  CAS  PubMed  Google Scholar 

  • Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D. I., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M. A., & Huelsenbeck, J. P. (2012). MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across alarge model space. Systematic Biology, 61(3), 539–542. https://doi.org/10.1093/sysbio/sys029

  • Rozas, J., Ferrer-Mata, A., Sanchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E., & Sanchez-Gracia, A. (2017). DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution, 34(12), 3299–3302. https://doi.org/10.1093/molbev/msx248

    Article  CAS  PubMed  Google Scholar 

  • Seaby, R. M. H., & Henderson, P. A. (2019). Community Analysis Package 6.0. Pisces Conservation Ltd, Lymington, UK. 164 pp. (Available from www.pisces-conservation.com)

  • ÅžekercioÄŸlu, Ç. H., Anderson, S., Akçay, E., Bilgin, R., Can, Ö. E., Semiz, G., TavÅŸanoÄŸlu, Ç., YokeÅŸ, M. B., Soyumert, A., SaÄŸlam, İK., Yücel, M., & Dalfes, H. N. (2011). Turkey’s globally important biodiversity in crisis. Biological Conservation, 144, 2752–2769. https://doi.org/10.1016/j.biocon.2011.06.025

    Article  Google Scholar 

  • Simó-Riudalbas, M., Metallinou, M., de Pous, P., Els, J., Jayasinghe, S., Péntek-Zakar, E., et al. (2017). Cryptic diversity in Ptyodactylus (Reptilia: Gekkonidae) from the northern Hajar Mountains of Oman and the United Arab Emirates uncovered by an integrative taxonomic approach. PLoS one, 12.

  • Sindaco, R., Kornilios, P., Sacchi, R., & Lymberakis, P. (2014). Taxonomic reassessment of Blanus strauchi (Bedriaga, 1884) (Squamata: Amphisbaenia: Blanidae), with the description of a new species from southeast Anatolia (Turkey). Zootaxa, 3795(3), 311–326. https://doi.org/10.11646/zootaxa.3795.3.6

  • Sokal, R. R., & Rohlf, J. (1969). Biometry. The principles and practice of statistics in Biological research. W.F. Freeman and C., New York, 776 pp.

  • Stephens, M., & Scheet, P. (2005). Accounting for decay of linkage disequilibrium in haplotype inference and missingdata imputation. American Journal of Human Genetics, 76(3), 449–462. https://doi.org/10.1086/428594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephens, M., Smith, N. J., & Donnelly, P. (2001). A new statistical method for haplotype reconstruction from population data. American Journal of Human Genetics, 68(4), 978–989. https://doi.org/10.1086/319501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suchard, M. A., Lemey, P., Baele, G., Ayres, D. L., Drummond, A. J., & Rambaut, A. (2018). Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution, 4(1), vey016. https://doi.org/10.1093/ve/vey016

  • Tamar, K., Carranza, S., In den Bosch, H., Sindaco, R., Moravec, J., & Meiri, S. (2015). Hidden relationships and genetic diversity: Molecular phylogeny and phylogeography of the Levantine lizards of the genus Phoenicolacerta (Squamata: Lacertidae). Molecular Phylogenetics and Evolution, 91, 86–97. https://doi.org/10.1016/j.ympev.2015.05.002

    Article  PubMed  Google Scholar 

  • Tamar, K., Mitsi, P., & Carranza, S. (2019). Cryptic diversity revealed in the leaf-toed gecko Asaccus montanus (Phyllodactylidae) from the Hajar Mountains of Arabia. Journal of Zoological Systematics and Evolutionary Research, 57(2), 369–382. https://doi.org/10.1111/jzs.12258

    Article  Google Scholar 

  • Tarkhnishvili, D., Murtskhvaladze, M., & Gavashelishvili, A. (2013). Speciation in Caucasian lizards: Climatic dissimilarity of the habitats is more important than isolation time. Biological Journal of the Linnean Society, 109(4), 876–892. https://doi.org/10.1111/bij.12092

  • Tarkhnishvili, D., Yanchukov, A., Åžahin, M. K., Gabelaia, M., Murtskhvaladze, M., Candan, K., Galoyan, E., Arakelyan, M., Iankoshvili, G., KumlutaÅŸ, Y., Ilgaz, Ç., Matur, F., Çolak, F., Erdolu, M., Kurdadze, S., Barateli, N., & Anderson, C. (2020). Genotypic similarities among the parthenogenetic rock lizards Darevskia with presumed different hybrid origins. BMC Evolutionary Biology, 20, 122. https://doi.org/10.1186/s12862-020-01690-9

  • TavÅŸanoÄŸlu, Ç. (2016). Anadolu’nun yüksek biyoçeÅŸitliliÄŸi: evrim bunun neresinde? Akış, I. ve Altınışık, N.E. (Editörler) Yazılama Yayınevi, İstanbul, s. 207–225.

  • Trifinopoulos, J., Nguyen, L. T., Von Haeseler, A., & Minh, B. Q. (2016). W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research, 44(W1), 232–235. https://doi.org/10.1093/nar/gkw256

    Article  CAS  Google Scholar 

  • Vamberger, M., Stuckas, H., Ayaz, D., Gracia, E., Aloufi, A. A., Els, J., Mazanaeva, L. F., Kami, H. G., & Fritz, U. (2013). Conservation genetics and phylogeography of the poorly known Middle Eastern terrapin Mauremys caspica (Testudines: Geoemydidae). Organisms Diversity and Evolution, 13, 77–85. https://doi.org/10.1007/s13127-012-0102-6

    Article  Google Scholar 

  • Zhang, J., Kapli, P., Pavlidis, P., & Stamatakis, A. (2013). A General Species Delimitation Method with Applications to Phylogenetic Placements. Bioinformatics, 29(22), 2869–2876. https://doi.org/10.1093/bioinformatics/btt499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. David Tarkhnishvili for valuable comments on an earlier version of the manuscript and for providing us with Darevskia adjarica samples from Georgia. We also thank Catherine YiÄŸit for linguistic help with the text, and the reviewers for their many precious comments and suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamil Candan.

Ethics declarations

Consent to participate

All authors declare that they agree to participate in this research study.

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arribas, O., Candan, K., Kurnaz, M. et al. A new cryptic species of the Darevskia parvula group from NE Anatolia (Squamata, Lacertidae). Org Divers Evol 22, 475–490 (2022). https://doi.org/10.1007/s13127-022-00540-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-022-00540-4

Keywords