Skip to main content
Log in

DNA barcoding and genetic variability of earthworms (Clitellata: Oligochaeta) with new records from Mizoram, India

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

This article has been updated

Abstract

Earthworms are an important part of terrestrial ecosystems that are often acknowledged for their diverse ecological functions. Mizoram, one of the northeastern regions (NER) of India, was assessed for earthworm diversity and genetic variability based on integrated taxonomical procedures using morpho-anatomical features and sequencing of the COI gene. For species delimitation, three barcoding approaches, i.e., ABGD, BIN, and barcode gap analysis (BGA), were employed, and the K2P intraspecific, as well as interspecific distances, were evaluated in MEGA X. Also, for phylogenetic studies, maximum parsimony (MP) and Bayesian interference (BI) trees were generated. The genetic variability and haplotype analysis were assessed using DnaSP and Network. The morpho-anatomical features revealed 20 species that belonged to 3 families (Moniligastridae, Megascolecidae, and Rhinodrilidae) across 5 genera: Drawida, Amynthas, Metaphire, Perionyx, and Pontoscolex. Furthermore, we reported 12 new earthworm records from Mizoram that includes Amynthas carinensis carinensis, Metaphire anomala, Perionyx rufulus, P. depressus, Pontoscolex corethrurus, Drawida bullata, D. victoriana, D. vulgaris, D. papillifer papillifer, D. nagana, D. periodosa, and D. assamensis species. The mean K2P intraspecific and minimum interspecific genetic distances were 9.59% and 13.97%. Moreover, the species P. depressus and M. houlleti showed deep intraspecific divergence and are composed of several cryptic species. ABGD proposed a barcode gap of 10–12%, whereas BGA suggested around 13%. All the species were strongly supported in MP and BI trees; however, P. depressus appeared polyphyletic and the paraphyly or polyphyly of genera Amynthas and Metaphire were supported. Furthermore, the network revealed 43 haplotypes, and the genetic diversity was highest in P. depressus and M. houlleti.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available on Barcode life data system under the project “Diversity studies of Earthworms of India using DNA” (https://www.boldsystems.org/index.php/MAS_Management_DataConsole?codes=IEW).

Change history

  • 17 October 2021

    The citation of the author name Shweta Yadav has been updated.

References

  • Bandelt, H. J., Forster, P., & Röhl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16, 37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036

    Article  CAS  PubMed  Google Scholar 

  • Bickford, D., Lohman, D. J., Sodhi, N. S., Ng, P. K., Meier, R., Winker, K., et al. (2007). Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution, 22, 148–155. https://doi.org/10.1016/j.tree.2006.11.004

    Article  Google Scholar 

  • Blakemore R. J. (2010). Cosmopolitan earthworms - an eco-taxonomic guide to the peregrine species of the world. 4th Edition. Verm Ecology, Yokohama, 839 pp.

  • Brown, W. M., George, M., & Wilson, A. C. (1979). Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sciences, 76(4), 1967–1971. https://doi.org/10.1073/pnas.76.4.1967

    Article  CAS  Google Scholar 

  • Cameron, E. K., Bayne, E. M., & Clapperton, M. J. (2007). Human-facilitated invasion of exotic earthworms into northern boreal forests. Ecoscience, 14(4), 482–490. https://www.jstor.org/stable/42902585

    Article  Google Scholar 

  • Chang, C. H., Chuang, S. C., Chen, Y. R., & Chen, J. H. (2005). NADH dehydrogenase subunit 1 gene of the earthworm Amynthas gracilis (Kinberg, 1867)(Oligochaeta: Megascolecidae), with the discussion on inferring the Megascolecid phylogeny using DNA sequences. Taiwania, 50(2), 71–79. https://doi.org/10.6165/tai.2005.50(2).71

    Article  Google Scholar 

  • Chang, C. H., Rougerie, R., & Chen, J. H. (2009). Identifying earthworms through DNA barcodes: Pitfalls and promise. Pedobiologia, 52, 171–180. https://doi.org/10.1016/j.pedobi.2008.08.002

    Article  CAS  Google Scholar 

  • Csuzdi, C. S. (2012). Earthworm species, a searchable database. Opuscula Zoologica Budapest, 43(1), 97–99.

    Google Scholar 

  • Darriba, D., Taboada, G. L, Doallo, R., Posada, D. (2012). jModelTest 2: More models, new heuristics and parallel computing. Nature Methods, 9, 772. https://doi.org/10.1038/nmeth.2109

  • Edgar, R. C. (2004). MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics, 5, 1–19. https://doi.org/10.1186/1471-2105-5-113

    Article  CAS  Google Scholar 

  • Fragoso, C., Brown, G. G., Patron, J. C., Blanchart, E., Lavelle, P., Pashanasi, B., et al. (2007). Agricultural intensification, soil biodiversity and ecosystem function in the tropics: The role of earthworms. Applied Soil Ecology, 6, 17–35. https://doi.org/10.1016/S0929-1393(96)00149-7

    Article  Google Scholar 

  • Ganin, G. N., & Atopkin, D. M. (2018). Molecular differentiation of epigeic and anceic forms of Drawida ghilarovi Gates, 1969 (Moniligastridae, Clitellata) in the Russian Far East: Sequence data of two mitochondrial genes. European Journal of Soil Biology, 86, 1–7. https://doi.org/10.1016/j.ejsobi.2018.02.004

    Article  CAS  Google Scholar 

  • Gates, G. E. (1972). Burmese earthworms.An introduction to the systematics of megadrile Oligochaetas with special references to southeast Asia. Transactions of American Philosophical Society, 62(7), 1–326. https://doi.org/10.2307/1006214

  • Ghosh, P. K., Das, A., Saha, R., Kharkrang, E., Tripathi, A. K., Munda, G. C., & Ngachan, S. V. (2010). Conservation agriculture towards achieving food security in North East India. Current Science, 10, 915–921.

    Google Scholar 

  • Giska, I., Sechi, P., & Babik, W. (2015). Deeply divergent sympatric mitochondrial lineages of the earthworm Lumbricus rubellus are not reproductively isolated. BMC Evolutionary Biology, 15(1), 1–13. https://doi.org/10.1186/s12862-015-0488-9

    Article  CAS  Google Scholar 

  • Gouy, M., Guindon, S., & Gascuel, O. (2010). SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution, 27(2), 221–224. https://doi.org/10.1093/molbev/msp259

    Article  CAS  PubMed  Google Scholar 

  • Halder, K. R., Dhani, S., & Mandal, C. K. (2007). On some earthworms present in unnamed collections of Zoological Survey of India. Records of the Zoological Survey of India, 107, 79–93.

    Google Scholar 

  • Hebert, P. D, Ratnasingham, S., De Waard, J. R. (2003). Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270, 96–99. https://doi.org/10.1098/rsbl.2003.0025

  • Huang, J., Qin, X., Zhen, J. S., Gui, L. T., & Zi, Y. S. (2007). Identifying earthworms through DNA barcodes. Pedobiologia, 51, 301–309. https://doi.org/10.1016/j.pedobi.2007.05.003

    Article  CAS  Google Scholar 

  • India State Forest Report. (2019). Ministry of environment forest and climate change, Government of India. pp 1–222. http://www.indiaenvironmentportal.org.in

  • Ivanova, N. V., deWaard, J. R., & Hebert, P. D. N. (2006). An inexpensive, automation-friendly protocol for recovering high-quality DNA. Molecular Ecology Notes, 6, 998–1002. https://doi.org/10.1111/j.1471-8286.2006.01428.x

    Article  CAS  Google Scholar 

  • Ivanova, N. V., & Grainger, C. (2007). Sequencing protocol for DNA barcoding. Universal primer cocktails for fish DNA barcoding. Molecular Ecology Notes, 7, 544–548. https://doi.org/10.1111/j.1471-8286.2007.01748.x

    Article  CAS  Google Scholar 

  • James S. W. (2005). Preliminary molecular phylogeny in the Pheretima group of genera (Crassiclitellata: Megascolecidae) using Bayesian analysis, in: V.V. Pop,A.A. Pop (Eds.), Advances in Earthworm Taxonomy II (Annelida: Oligochaeta), Cluj University Press, Cluj-Napoca, Romania pp. 129–142.

  • James, S. W., Porco, D., Decaens, T., Richard, B., Rougerie, R., Erseus, C. (2010). DNA barcoding reveals cryptic diversity in Lumbricus terrestris L., 1758 (Clitellata): resurrection of L. herculeus (Savigny, 1826). PLoS One, 5, e15629. https://doi.org/10.1371/journal.pone.0015629

  • Jamieson, B. G, Tillier, S., Tillier, A., Justine, J.L., Ling, E., James, S., McDonald, K., Hugall, A. F. (2002). Phylogeny of the Megascolecidae and Crassiclitellata (Annelida, Oligochaeta): combined versus partitioned analysis using nuclear (28S) and mitochondrial (12S, 16S) rDNA. Zoosystema, 24(4), 707–734.

  • Jeratthitikul, E., Bantaowong, U., & Panha, S. (2017). DNA barcoding of the Thai species of terrestrial earthworms in the genera Amynthas and Metaphire (Haplotaxida: Megascolecidae). European Journal of Soil Biology, 81, 39–47. https://doi.org/10.1016/j.ejsobi.2017.06.004

    Article  CAS  Google Scholar 

  • Julka, J. M. (1976). Studies on the earthworms collected during the Daphabum expedition in Arunachal Pradesh, India. Records of Zoological Survey of India, 69, 229–239.

    Google Scholar 

  • Julka, J. M. (1981). Taxonomic studies on the earthworms collected during the susbansiri expedition in Arunachal Pradesh, India. Records of Zoological Survey of India, 26, 1–37.

    Google Scholar 

  • Julka, J. M. (1988). Fauna of India (p. 400). Zoological Survey of India.

    Google Scholar 

  • Julka, J. M. (2014). Diversity and distribution of exotic earthworms (Annelida, Oligochaeta)in India a review. In : Biology and Ecology of tropical Earthworms (Eds. Chaudhuri P & Singh S.M.), Discovery Publishing House Pvt. Ltd., New Delhi pp. 73–83.

  • Julka, J. M., Paliwal, R. (2005). Distribution of earthworms in different agroclimatic region of India. In: Soil biodiversity, ecological processes and land scape (Eds. Ramakrishnan PS, Saxena KG, Swift MJ, Raoks Maikhuri RK), Oxford and ABH Publications Co. Pvt. Ltd., New Delhi pp. 3–13.

  • Julka, J. M., Ramanujam, S. N., & Lalthanzara, H. (2005). On a new species of earthworm genus Eutyphoeus (Octochaetidae: Oligochaeta) from Mizoram. India. Megadrilogica, 10(9), 70–72.

    Google Scholar 

  • King, R. A., Tibble, A. L., & Symondson, W. O. (2008). Opening a can of worms: Unprecedented sympatric cryptic diversity within British lumbricid earthworms. Molecular Ecology, 17(21), 4684–4698. https://doi.org/10.1111/j.1365-294X.2008.03931.x

    Article  PubMed  Google Scholar 

  • Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35, 1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumari, S., Kumari, C., Narayanan, S. P., Dev, K., & Julka, J. M. (2021). Phylogenetic relatedness of Drawida japonica (Michaelsen, 1892) and Drawida nepalensis Michaelsen, 1907 (Clitellata: Moniligastridae) from the Western Himalaya. India. Annals of Biology, 37(1), 36–41.

    Google Scholar 

  • Lalthanzara, H., Ramanujam, S. N., & Jha, L. K. (2011). Population dynamics of earthworms in relation to soil physico-chemical parameters in agroforestry systems of Mizoram, India. Journal of Environmental Biology, 32, 599–605.

    CAS  PubMed  Google Scholar 

  • Lalthanzara, H., & Ramanujam, S. N. (2014). Earthworm cast production and physico-chemical properties in two agroforestry systems of Mizoram (India). Tropical Ecology, 55, 77–86.

    Google Scholar 

  • Lalthanzara, H., Zothansanga, C., Lalchhanhima, M., Kumar, N. S., Ngukir, J., Kimsing, A., & Vabeiryureilai, M. (2020). Diversity and new records of earthworms in Arunachal Pradesh, Northeast India. Journal of Environmental Biology, 41(4), 874–883.

    Article  Google Scholar 

  • Lavelle, P., Decaëns, T., Aubert, M., Barot, S., Blouin, M., Bureau, F., et al. (2006). Soil invertebrates and ecosystem services. European Journal of Soil Biology, 42, 3–15. https://doi.org/10.1016/j.ejsobi.2006.10.002

    Article  Google Scholar 

  • Lee, K. E. (1985). Earthworms: Their ecology and relationships with soils and land use (p. 411). Academic Press Inc.

    Google Scholar 

  • Lone, A. R., Tiwari, N., Thakur, S. S, Pearlson, O., Pavlicek, T., Yadav, S. (2020) Exploration of four new Kanchuria sp. of earthworms (Oligochaeta: Megascolecidae) from the North Eastern Region of India using DNA bar-coding approach. Journal of Asia-Pacific Biodiversity, 13(2), 268–281. https://doi.org/10.1016/j.japb.2020.02.004

  • Marchán, D. F., Hedde, M., Lapied, E., Maggia, M. E., Novo, M., Domínguez, J., & Decaëns, T. (2020). Contrasting phylogeographic patterns of earthworms (Crassiclitellata, Lumbricidae) on near-shore mediterranean islands. European Journal of Soil Biology, 101, 103242. https://doi.org/10.1016/j.ejsobi.2020.103242

    Article  Google Scholar 

  • Martin, P., Kaygorodova, I., Sherbakov, D. Y., & Verheyen, E. (2000). Rapidly evolving lineages impede the resolution of phylogenetic relationships among Clitellata (Annelida). Molecular Phylogenetics and Evolution, 15(3), 355–368. https://doi.org/10.1006/mpev.1999.0764

    Article  CAS  PubMed  Google Scholar 

  • Mindell, D. P. (1997). Phylogentic relationships among and within select avian orders based on mitochondrial DNA. Avian Molecular Evolution and Systematics, 213–247. https://doi.org/10.1016/B978-012498315-1/50014-5

  • Moore, W. S. (1995). Inferring phylogenies from mtDNA variation: Mitochondrial gene trees versus nuclear-gene trees. Evolution, 49, 718–726.

    PubMed  Google Scholar 

  • Narayanan, S. P., Sathrumithra, S., Christopher, G., Thomas, A. P., & Julka, J. M. (2016). Current distribution of the invasive earthworm Pontoscolex corethrurus (Müller, 1857) after a century of its first report from Kerala state. India. Opuscula Zoologica (budapest), 47(1), 101–107.

    Google Scholar 

  • Narayanan, S. P., Sathrumithra, S., Anuja, R., Christopher, G., Thomas, A. P., Julka, J. M. (2021). Three new species and four new species records of earthworms of the genus Moniligaster Perrier, 1872 (Clitellata: Moniligastridae) from Kerala region of the Western Ghats Biodiversity Hotspot, India. Zootaxa, 4949(2), 381–397. https://doi.org/10.11646/zootaxa.4949.2.11

  • Novo, M., Almodóvar, A., Fernández, R., Trigo, D., & Cosín, D. J. (2010). Cryptic speciation of hormogastrid earthworms revealed by mitochondrial and nuclear data. Molecular Phylogenetics and Evolution, 56(1), 507–512. https://doi.org/10.1016/j.ympev.2010.04.010

    Article  PubMed  Google Scholar 

  • Pandit, M. K., Manish, K., & Koh, L. P. (2014). Dancing on the roof of the world: Ecological transformation of the Himalayan landscape. BioScience, 64(11), 980–992.

    Article  Google Scholar 

  • Pop, A. A., Wink, M., & Pop, V. V. (2003). Use of 18S, 16S rDNA and cytochrome c oxidase sequences in earthworm taxonomy (Oligochaeta, Lumbricidae): The 7th international symposium on earthworm ecology· Cardiff· Wales· 2002. Pedobiologia, 47(5–6), 428–433. https://doi.org/10.1078/0031-4056-00208

    Article  CAS  Google Scholar 

  • Puillandre, N., Lambert, A., Brouillet, S., & Achaz, G. (2012). ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology, 21(8), 1864–1877. https://doi.org/10.1111/j.1365-294X.2011.05239.x

    Article  CAS  PubMed  Google Scholar 

  • Ratnasingham, S., Hebert, P. D. (2013). A DNA-based registry for all animal species: The Barcode Index Number (BIN) system. PloS One, 8(7), e66213. https://doi.org/10.1371/journal.pone.0066213

  • Ramanujam, S. N., Lalthanzara, H., & Jha, L. K. (2004). Biodiversity of earthworms in Mizoram. Journal of Natural Conservation, 16, 129–134.

    Google Scholar 

  • Rambaut A. (2014). Fig Tree v1.4.2: Tree figure drawing tool. http://tree.bio.ed.ac.uk

  • Rambaut, A, Drummond, A. J. (2009). Tree Annotator v1. 5.3: MCMC output analysis. https://beast.community/treeannotator

  • Rambaut, A., Drummond. A. J., Xie, D., Baele, G., Suchard M. A. (2018). Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 7(5), 901–904. https://doi.org/10.1093/sysbio/syy032

  • Reynolds J. W. (1995). Status of exotic earthworm systematic and biogeography in North America In: Earthworm Ecology and Biogeography in North America (Ed. Hendrix PF). Boca Raton: Lewis Publishers. p. 1-27.

  • Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos Onsins, S. E., Sánchez-Gracia, A. (2017). DnaSP 6: DNA sequence polymorphism analysis of large datasets. Molecular Biology & Evolution, 34(12), 3299–3302. https://doi.org/10.1093/molbev/msx248

  • Shen, H. P., Tsai, C. F., & Tsai, S. C. (2003). Six new earthworms of the genus Amynthas (Oligochaeta: Megascolecidae) from central Taiwan. Zoological Studies, 42(4), 479–490.

    Google Scholar 

  • Sims, R. W., Easton, E. G. (1972). A numerical revision of the earthworm genus Pheretima auct.(Megascolecidae: Oligochaeta) with the recognition of new genera and an appendix on the earthworms collected by the Royal Society North Borneo Expedition. Biological Journal of the Linnean Society, 4(3), 169–268. https://doi.org/10.1111/j.1095-8312.1972.tb00694.x

  • Stephenson, J. (1914). Zoological results of the Abor Expedition, 1911–1912. Oligochaeta. Records of the Indian Museum, 8, 365–410. https://doi.org/10.5962/bhl.part.1193

    Article  Google Scholar 

  • Stephenson, J. (1923). Oligochaeta In "The fauna of British India" by Shipley A.E. (ed.), Taylor & Francis, London, XXIV, 518 pp.

  • Suchard, M. A., Lemey, P., Baele, G., Ayres, D. L., Drummond, A. J., Rambaut, A. (2018). Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution, 4(1), vey016. https://doi.org/10.1093/ve/vey016

  • Thakur, S. S., Lone, A. R., Tiwari, N., Yadav, S. (2020). Exploring new records of Eutyphoeus sp.(haplotaxida: Octochaetidae) from garo hills, Meghalaya, North Eastern state of India with use of DNA barcodes. Mitochondrial DNA, 31(7), 265–272. https://doi.org/10.1080/24701394.2020.1781834

  • Tiwari, N., Paliwal, R., Rashid, A., & Yadav, S. (2020). Checklist of earthworm species (Oligochaeta) of the North Eastern Region of India. Zootaxa, 4772(2), 277–305. https://doi.org/10.11646/zootaxa.4772.2.3

    Article  Google Scholar 

  • Tiwari, N., Lone, A. R., Thakur S. S., James, S. W., Yadav, S. (2021). Three uncharted endemic earthworm species of the genus Eutyphoeus (Oligochaeta: Octochaetidae) from Mizoram, India. Zootaxa, 5005(1): 41–61. https://doi.org/10.11646/ZOOTAXA.5005.1.3

  • Torres-Leguizamon, M., Mathieu, J., Decaens T, Dupont, L. (2014). Genetic structure of earthworm populations at a regional scale: Inferences from mitochondrial and microsatellite molecular markers in Aporrectodea icterica (Savigny 1826). PLoS One, 9(7), e101597. https://doi.org/10.1371/journal.pone.0101597

  • Tsai, C. F., Tsai, S. C., & Liaw, G. J. (2000). Two new species of protandric pheretimoid earthworms belonging to the genus Metaphire (Megascolecidae: Oligochaeta) from Taiwan. Journal of Natural History, 34(9), 1731–1741. https://doi.org/10.1080/00222930050122156

    Article  Google Scholar 

  • Vabeiryureilai, M., Zothansanga, C., Lalchhanhima, M., Kumar, N. S., & Lalthanzara, H. (2020). Study on the Amynthas (Kinberg, 1867) earthworm (Megascolecidae: Oligochaeta) diversity through DNA barcoding from Northeast India. Journal of Environmental Biology, 41(4), 867–873.

    Article  CAS  Google Scholar 

  • Zhang, Y. F., Ganin, G. N., Atopkin, D. M., & Wu, D. H. (2020). Earthworm Drawida (Moniligastridae) Molecular phylogeny and diversity in Far East Russia and Northeast China. The European Zoological Journal, 87(1), 180–191. https://doi.org/10.1080/24750263.2020.1741705

    Article  Google Scholar 

  • Zhao, Q., Cluzeau, D., Jiang, J., Petit, E. J., Briard, C., Sun, J., et al. (2015). Molecular phylogeny of pheretimoid earthworms (Haplotaxina: Megascolecidae) based on mitochondrial DNA in Hainan Island, China. Molecular Biology, 4, 1–6. https://doi.org/10.4172/2168-9547.1000138

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Principal Chief Conservator Forest (PCCF), Mizoram, and Divisional Forest Officers of Murlin National Park, Tawi Wildlife Sanctuary, Phawngpui National Park, and Dampa Tiger Reserve, Mizoram, for providing facility for sampling at reserved forests and Department of Biotechnology, Ministry of Science, and Technology, Govt. of India, New Delhi, for the financial support to carry out the study.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing interests.

Barcodes and accession numbers of the data used in the study are mentioned in the manuscript and provided in supplementary data which can be used by readers for further study and analysis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lone, A.R., Thakur, S.S., Tiwari, N. et al. DNA barcoding and genetic variability of earthworms (Clitellata: Oligochaeta) with new records from Mizoram, India. Org Divers Evol 21, 737–751 (2021). https://doi.org/10.1007/s13127-021-00520-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-021-00520-0

Keywords

Navigation