Abstract
The process of molecular identification of species known as DNA barcoding consists on discriminating taxa based on cumulative differences of their DNA sequences and is widely used within animals, including birds. Finding the best genomic tools, such as primers, to reach most of the species within the studied groups and evaluating the coverage breadth and physicochemical properties of primers before testing in the laboratory, can save time and financial resources. Therefore, this work aimed to retrieve the available primers for the COI gene currently used on the molecular identification of birds and evaluate them for its coverage range, physicochemical properties, and performance on in silico PCR. Afterwards, we provide the best primer subsets to cover the highest number of avian sequences and the best individual primers for each bird order in terms of coverage breadth. Thirty-one bird orders had at least one COI sequence to serve as template, 152 primers available for assessing the COI gene were evaluated, and 118 could bind to at least one template sequence. No primer subset alone could cover all template sequences; however, when combining two subsets, the complete coverage of avian COI sequences analyzed was achieved. We were able to find optimal primer subsets for more specific taxonomic groups or for analysis involving the complete avian group, in order to guide researchers in the process of choosing the best primer set for each individual barcoding goal.





Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Data availability
The primers’ sequences analyzed in this current study were retrieved from previously published papers indexed in the Web of Science Database available at https://clarivate.com/webofsciencegroup/solutions/web-of-science/ (see Supplementary Table 1 for further reference information). The mitochondrial genome sequences datasets analyzed in this study were retrieved from the Nucleotide database from the GenBank sequence archive of the National Center for Biotechnology Information (NCBI), available at https://www.ncbi.nlm.nih.gov/ (see Supplementary Table 3 for GenBank Accession numbers).
References
Allio, R., Donega, S., Galtier, N., & Nabholz, B. (2017). Large variation in the ratio of mitochondrial to nuclear mutation rate across animals: Implications for genetic diversity and the use of mitochondrial DNA as a molecular marker. Molecular Biology and Evolution, 34(11), 2762–2772. https://doi.org/10.1093/molbev/msx197
Ansorg, N. (2014). Wars without borders: Conditions for the development of regional conflict systems in sub-Saharan Africa. International Area Studies Review, 17(3), 295–312. https://doi.org/10.1177/2233865914546502
Arenas, M., Pereira, F., Oliveira, M., Pinto, N., Lopes, A. M., Gomes, V. et al. (2017). Forensic genetics and genomics : Much more than just a human affair. PLoS Genetics, 13(9), 1–28. https://doi.org/10.1371/journal.pgen.1006960
Augustine, A. (2018). The crisis of underdevelopment in Sub-Saharan Africa: Multi-dimensional perspectives. Journal of Political Sciences & Public Affairs, 06(04). https://doi.org/10.4172/2332-0761.1000338
Baker, A. J., Pereira, S. L., & Paton, T. A. (2007). Phylogenetic relationships and divergence times of Charadriiformes genera: Multigene evidence for the Cretaceous origin of at least 14 clades of shorebirds. Biology Letters, (3), 205–209. https://doi.org/10.1098/rsbl.2006.0606
Bernt, M., Braband, A., Schierwater, B., & Stadler, P. F. (2013). Genetic aspects of mitochondrial genome evolution. Molecular Phylogenetics and Evolution, 69(2), 328–338. https://doi.org/10.1016/j.ympev.2012.10.020
Berry, T. E., Osterrieder, S. K., Murray, D. C., Coghlan, M. L., Richardson, A. J., Grealy, A. K. et al. (2017). DNA metabarcoding for diet analysis and biodiversity: A case study using the endangered Australian sea lion (Neophoca cinerea). Ecology and Evolution, 7(14), 5435–5453. https://doi.org/10.1002/ece3.3123
Billerman, S. M., & Walsh, J. (2019). Historical DNA as a tool to address key questions in avian biology and evolution: A review of methods, challenges, applications, and future directions. Molecular Ecology Resources, 19(5), 1115–1130. https://doi.org/10.1111/1755-0998.13066
BirdLife-International. (2019). Handbook of the Birds of the World and BirdLife International digital checklist of the birds of the world. http://datazone.birdlife.org/userfiles/file/Species/Taxonomy/HBW-BirdLife_Checklist_v3_Nov18.zip [.xls zipped 1 MB]. Accessed 20 October 2019.
Bitanyi, S., Bjørnstad, G., Ernest, E. M., Nesje, M., Kusiluka, L. J., Keyyu, J. D. et al. (2011). Species identification of Tanzanian antelopes using DNA barcoding. Molecular Ecology Resources, 11(3), 442–449. https://doi.org/10.1111/j.1755-0998.2011.02980.x
Borstein, S. R., & O’Meara, B. C. (2018). AnnotationBustR: An R package to extract subsequences from GenBank annotations. PeerJ, 6(e5179). https://doi.org/10.7717/peerj.5179
Breman, F. C., Jordaens, K., Sonet, G., Nagy, Z. T., Van Houdt, J., & Louette, M. (2013). DNA-Barcoding und evolutionary relationships in <i>Accipiter<i/> Brisson, 1760 (Aves, Falconiformes: Accipitridae) with a focus on African and Eurasian representatives. Journal of Ornithology, 154(1), 265–287. https://doi.org/10.1007/s10336-012-0892-5
Brown, W. M., George, M., Jr., & Wilson, A. C. (1979). Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sciences, 76(4), 1967–1971. https://doi.org/10.1073/pnas.76.4.1967
Bush, E. R., Baker, S. E., & Macdonald, D. W. (2014). Global trade in exotic pets 2006–2012. Conservation Biology, 28(3), 663–676. https://doi.org/10.1111/cobi.12240
Bylemans, J., Gleeson, D. M., Hardy, C. M., & Furlan, E. (2018). Toward an ecoregion scale evaluation of eDNA metabarcoding primers: A case study for the freshwater fish biodiversity of the Murray-Darling Basin (Australia). Ecology and Evolution, 8(17), 8697–8712. https://doi.org/10.1002/ece3.4387
Campagna, L., Lijtmaer, D. A., Kerr, K. C. R., Barreira, A. S., Hebert, P. D. N., Lougheed, S. C., & Tubaro, P. L. (2010). DNA barcodes provide new evidence of a recent radiation in the genus Sporophila (Aves: Passeriformes). Molecular Ecology Resources, 10(3), 449–458. https://doi.org/10.1111/j.1755-0998.2009.02799.x
Coghlan, M. L., White, N. E., Parkinson, L., Haile, J., Spencer, P. B. S., & Bunce, M. (2012). Egg forensics: An appraisal of DNA sequencing to assist in species identification of illegally smuggled eggs. Forensic Science International: Genetics, 6(2), 268–273. https://doi.org/10.1016/j.fsigen.2011.06.006
DeFilippis, V. R., & Moore, W. S. (2000). Resolution of phylogenetic relationships among recently evolved species as a function of amount of DNA sequence: An empirical study based on woodpeckers (Aves: Picidae). Molecular Phylogenetics and Evolution, 16(1), 143–160. https://doi.org/10.1006/mpev.2000.0780
DeSalle, R., & Goldstein, P. (2019). Review and interpretation of trends in DNA barcoding. Frontiers in Ecology and Evolution, 7(September), 1–11. https://doi.org/10.3389/fevo.2019.00302
Dieffenbach, C. W., Lowe, T. M. J., & Dveksler, G. S. (1993). General concepts for PCR primer design. Genome Research, 3(3). https://doi.org/10.1101/gr.3.3.S30
Dove, C. J., Rotzel, N. C., Heacker, M., & Weigt, L. A. (2008). Using DNA barcodes to identify bird spicies Involved in birdstrikes. Journal of Wildlife Management, 72(5), 1231–1236. https://doi.org/10.2193/2007-272
Ducatez, S., & Lefebvre, L. (2014). Patterns of research effort in birds. PLoS One, 9(2). https://doi.org/10.1371/journal.pone.0089955
Elbrecht, V., & Leese, F. (2017). PrimerMiner: An r package for development and in silico validation of DNA metabarcoding primers. Methods in Ecology and Evolution, 8(5), 622–626. https://doi.org/10.1111/2041-210X.12687
Epp, L. S., Boessenkool, S., Bellemain, E. P., Haile, J., Esposito, A., Riaz, T. et al. (2012). New environmental metabarcodes for analysing soil DNA: Potential for studying past and present ecosystems. Molecular Ecology, 21(8), 1821–1833. https://doi.org/10.1111/j.1365-294X.2012.05537.x
Fernandes-Ferreira, H., Mendonça, S. V., Albano, C., Ferreira, F. S., & Alves, R. R. N. (2012). Hunting, use and conservation of birds in Northeast Brazil. Biodiversity and Conservation, 21(1), 221–244. https://doi.org/10.1007/s10531-011-0179-9
Fleishcer, R.C., Kirchman, J.J., Dumbacher, J.P., Bevier, L., Dove, C., Rotzel, N.C., Edwards, S.V., Lammertink, M., Miglia, K.J. & Moore, W.S. (2006). Biology Letters, 2(3), 466-469. https://doi.org/10.1098/rsbl.2006.0490
Fuller, R., & Garson, P. (2000). Pheasants: status survey and conservation action plan.
Gonçalves, P. F. M., Oliveira-Marques, A. R., Matsumoto, T. E., & Miyaki, C. Y. (2015). DNA Barcoding identifies illegal parrot trade. Journal of Heredity, 106(S1), 560–564. https://doi.org/10.1093/jhered/esv035
Hawlitschek, O., Porch, N., Hendrich, L., & Balke, M. (2011). Ecological niche modelling and ndna sequencing support a new, morphologically cryptic beetle species unveiled by DNA barcoding. PLoS One, 6(2). https://doi.org/10.1371/journal.pone.0016662
Hebert, P. D. N., Cywinska, A., Ball, S. L., & DeWaard, J. R. (2003a). Biological identifications through DNA barcodes. Proceedings of the Royal Society b: Biological Sciences, 270(1512), 313–321. https://doi.org/10.1098/rspb.2002.2218
Hebert, P. D. N., Ratnasingham, S., & DeWaard, J. R. (2003b). Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society b: Biological Sciences, 270(SUPPL. 1), 96–99. https://doi.org/10.1098/rsbl.2003.0025
Hebert, P. D. N., Stoeckle, M. Y., Zemlak, T. S., & Francis, C. M. (2004). Identification of birds through DNA barcodes. PLoS Biology, 2(10). https://doi.org/10.1371/journal.pbio.0020312
Hillier, L. W., Miller, W., Birney, E., Warren, W., Hardison, R. C., Ponting, C. P. et al. (2004). Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature, 432(7018), 695–716. https://doi.org/10.1038/nature03154
Huang, Z., Yang, C., & Ke, D. (2016). DNA barcoding and phylogenetic relationships in anatidae. Mitochondrial DNA, 27(2), 1042–1044. https://doi.org/10.3109/19401736.2014.926545
Ivanova, N. V., Dewaard, J. R., & Hebert, P. D. N. (2006). An inexpensive, automation-friendly protocol for recovering high-quality DNA. Molecular Ecology Notes, 6(4), 998–1002. https://doi.org/10.1111/j.1471-8286.2006.01428.x
Ivanova, N.V., Zemlak, T.S., Hanner, R.H. & Hebert, P.D.N. (2007). Universal primer cocktails for fish DNA barcoding. Molecular Ecology Notes, 7(4), 544-548. https://doi.org/10.1111/j.1471-8286.2007.01748.x
Joo, S., & Park, S. (2012). Identification of bird species and their prey using DNA barcode on feces from Korean traditional village groves and forests (maeulsoop). Animal Cells and Systems, 16(6), 488–497. https://doi.org/10.1080/19768354.2012.720939
Kalendar, R., Lee, D., & Schulman, A. H. (2011). Java web tools for PCR, in silico PCR, and oligonucleotide assembly and analysis. Genomics, 98, 137–144. https://doi.org/10.1016/j.ygeno.2011.04.009
Kerr, K. C. R. (2010). A cryptic, intergeneric cytochrome c oxidase i pseudogene in tyrant flycatchers (family: Tyrannidae). Genome, 53(12), 1103–1109. https://doi.org/10.1139/G10-085
Kerr, K. C. R., Lijtmaer, D. A., Barreira, A. S., Hebert, P. D. N., & Tubaro, P. L. (2009). Probing evolutionary patterns in neotropical birds through DNA barcodes. PLoS One, 4(2). https://doi.org/10.1371/journal.pone.0004379
Kerr, K. C. R., Stoeckle, M. Y., Dove, C. J., Weigt, L. A., Francis, C. M., & Hebert, P. D. N. (2007). Comprehensive DNA barcode coverage of North American birds. Molecular Ecology Notes, 7(4), 535–543. https://doi.org/10.1111/j.1471-8286.2007.01670.x
Kleven, O., Brøseth, H., Jonassen, K., & Pedersen, H. C. (2020). Backcrossing of a capercaillie × black grouse hybrid male in the wild revealed with molecular markers. European Journal of Wildlife Research, 66(2), 1–4. https://doi.org/10.1007/s10344-020-01377-y
Kreer, C., Döring, M., Lehnen, N., Ercanoglu, M. S., Gieselmann, L., Luca, D. et al. (2020). openPrimeR for multiplex amplification of highly diverse templates. Journal of Immunological Methods, 480 (November 2019), 112752. https://doi.org/10.1016/j.jim.2020.112752
Kumar, A., & Chordia, N. (2015). In silico PCR primer designing and validation. (C. Basu, Ed.)PRC Primer design (Vol. 1275). New York, NY: Springer New York. https://doi.org/10.1007/978-1-4939-2365-6
Kwok, S., Kellogg, D. E., Mckinney, N., Spasic, D., Goda, L., Levenson, C., & Sninsky, J. J. (1990). Effects of primer-template mismatches on the polymerase chain reaction: Human immunodeficiency virus type 1 model studies. Nucleic Acids Research, 18(4), 999–1005. https://doi.org/10.1093/nar/18.4.999
Lambert, D. M., Baker, A., Huynen, L., Haddrath, O., Hebert, N., & P. D., Millar, C. D., & Wilson, A. (2005). Is a large-scale DNA-based inventory of ancient life possible? Journal of Heredity, 3, 279–284. https://doi.org/10.1093/jhered/esi035
Lavinia, P. D., Kerr, K. C. R., Tubaro, P. L., Hebert, P. D. N., & Lijtmaer, D. A. (2016). Calibrating the molecular clock beyond cytochrome b: Assessing the evolutionary rate of COI in birds. Journal of Avian Biology, 47(1), 84–91. https://doi.org/10.1111/jav.00766
Lee, D. H., Lee, H. J., Lee, Y. J., Kang, H. M., Jeong, O. M., Kim, M. C. et al. (2010). DNA barcoding techniques for avian influenza virus surveillance in migratory bird habitats. Journal of Wildlife Diseases, 46(1), 649–654. https://doi.org/10.7589/0090-3558-46.2.649
Lewin, H., Kress, J., & Robinson, G. (2020). Earth Biogenome Project. https://www.earthbiogenome.org/. Accessed 4 December 2020.
Lohman, D.J., Prawiradilaga, D.M. & Meier, R. (2009). Improved COI barcoding primers for Southeast Asian perching birds (Aves: Passeriformes). Molecular Ecology Resources, 9(1), 37-40. https://doi.org/10.1111/j.1755-0998.2008.02221.x
Malanski, E., Sarmento-Soares, L. M., Silva-Malanski, A. C. G., Lopes, M. M., da Ingenito, L. F., & S., & Buckup, P. A. (2019). A new species of Characidium (Characiformes: Crenuchidae) from coastal basins in the Atlantic Rainforest of eastern Brazil, with phylogenetic and phylogeographic insights into the Characidium alipioi species group. Neotropical Ichthyology, 17(2), 1–13. https://doi.org/10.1590/1982-0224-20180121
Nikulina, E. A., & Schmölcke, U. (2015). First archaeogenetic results verify the mid-Holocene occurrence of Dalmatian pelican Pelecanus crispus far out of present range. Journal of Avian Biology, 46(4), 344–351. https://doi.org/10.1111/jav.00652
Ogawa, L. M., Pulgarin, P. C., Vance, D. A., Fjeldså, J., & Van Tuinen, M. (2015). Opposing demographic histories reveal rapid evolution in grebes (Aves: Podicipedidae). Ornithological Advances, 132, 771–786. https://doi.org/10.1642/AUK-14-259.1
Onuma, M., Kakogawa, M., Yanagisawa, M., Haga, A., Okano, T., Neagari, Y., Okano, T., Goka, K. & Asakawa, M. (2017). Characterizing the temporal patterns of avian influenza virus introduction into Japan by migratory birds. The Journal of Veterinary Medical Science, 79(5), 943-951. https://doi.org/10.1292/jvms.16-0604
Päckert, M., Hering, J., Fuchs, E., Barthel, P., & Heim, W. (2014). Genetic barcoding confirms first breeding record of the Yellow Bittern, Ixobrychus sinensis, (Aves: Pelecaniformes, Ardeidae) in the Western Palearctic. Vertebrate Zoology, 154, 265–287.
Park, H. Y., Yoo, H. S., Jung, G., & Kim, C. B. (2011). New DNA barcodes for identification of Korean birds. Genes and Genomics, 33(2), 91–95. https://doi.org/10.1007/s13258-010-0089-3
Patel, S., Waugh, J., Millar, C. D., & Lambert, D. M. (2010). Conserved primers for DNA barcoding historical and modern samples from New Zealand and Antarctic birds. Molecular Ecology Resources, 10(3), 431–438. https://doi.org/10.1111/j.1755-0998.2009.02793.x
Pereira, F., Carneiro, J., Amorim, A., & Pereira, F. (2008). Identification of species with DNA-based technology: Current progress and challenges. Recent Patents on DNA and Gene Sequences, 2(3), 187–200. https://doi.org/10.2174/187221508786241738
Peters, J. (2014). Chicken: Domestication. In C. Smith (Ed.), Encyclopedia of global archaeology. New York, NY: Springer New York. https://doi.org/10.1007/978-1-4419-0465-2_2202
Rodríguez-Castro, K. G., Ciocheti, G., Ribeiro, J. W., Ribeiro, M. C., & Galetti, P. M. (2017). Using DNA barcode to relate landscape attributes to small vertebrate roadkill. Biodiversity and Conservation, 26(5), 1161–1178. https://doi.org/10.1007/s10531-017-1291-2
Rychlik, W. (1993). Selection of primers for polymerase chain reaction. In PCR Protocols (Vol. 15, pp. 31–40). https://doi.org/10.1385/0-89603-244-2:31
Saccone, C., De Giorgi, C., Gissi, C., Pesole, G., & Reyes, A. (1999). Evolutionary genomics in Metazoa: The mitochondrial DNA as a model system. Gene, 238(1), 195–209. https://doi.org/10.1016/S0378-1119(99)00270-X
Saitoh, T., Sugita, N., Someya, S., Iwami, Y., Kobayashi, S., Kamigaichi, H., Higuchi, A., Asai, S., Yamamoto, Y. & Nishiumi, I. (2015). DNA barcoding reveals 24 distinct lineages as cryptic bird species candidates in and around the Japanese Archipelago. Molecular Ecology Resources, 15(1), 177-186. https://doi.org/10.1111/1755-0998.12282
Scholf, G. (2016). reutils: Talk to the NCBI EUtils. https://github.com/gschofl/reutils
Schütz, R., & Tollrian, R., & Schweinsberg, M. (2020). A novel environmental DNA detection approach for the wading birds Platalea leucorodia, Recurvirostra avosetta and Tringa totanus. Conservation Genetics Resources, 12, 529–531. https://doi.org/10.1007/s12686-020-01143-x
Serebrovsky, A., & Petrov, S. (1930). On the composition of the plan of the chromosomes of the domestic hen. Zhurnal Experimental’noy Biologii, 6, 157–180.
Sonet, G., Breman, F. C., Lenglet, G., Louette, M., Montanés, G., Nagy, Z. T. et al. (2011). Applicability of DNA barcoding to museum specimens of birds from the Democratic Republic of the Congo. Bonner Zoologische Monographien, 57, 117–131. https://www.researchgate.net/publication/224936468_Applicability_of_DNA_barcoding_to_museum_specimens_of_birds_from_the_Democratic_Republic_of_the_Congo. Accessed 9 June 2021.
Sorenson, M. D. (2003). Avian mtDNA primers. http://people.bu.edu/msoren/Bird.mt.Primers.pdf. Accessed 10 June 2021.
Sorenson, M. D., Ast, J. C., Dimcheff, D. E., Yuri, T., & Mindell, D. P. (1999). Primers for a PCR-based approach to mitochondrial genome sequencing in birds and other vertebrates. Molecular Phylogenetics and Evolution, 12(2), 105–114. https://doi.org/10.1006/mpev.1998.0602
Stadhouders, R., Pas, S. D., Anber, J., Voermans, J., Mes, T. H. M., & Schutten, M. (2010). The effect of primer-template mismatches on the detection and quantification of nucleic acids using the 5′ nuclease assay. Journal of Molecular Diagnostics, 12(1), 109–117. https://doi.org/10.2353/jmoldx.2010.090035
Stern, C. D. (2005). The chick: A great model system becomes even greater. Developmental Cell, 8, 9–17. https://doi.org/10.1016/j.devcel.2004.11.018
Stoeckle, M. (2003). Taxonomy, DNA, and the Bar Code of Life. BioScience, 53(9), 2–3.
Tavares, E. S., & Baker, A. J. (2008). Single mitochondrial gene barcodes reliably identify sister-species in diverse clades of birds. BMC Evolutionary Biology, 8(1), 1–14. https://doi.org/10.1186/1471-2148-8-81
Tavares, E. S., Gonçalves, P. F. M., Miyaki, C. Y., & Baker, A. J. (2011). DNA barcode detects high genetic structure within neotropical bird species. PLoS One, 6(12). https://doi.org/10.1371/journal.pone.0028543
Tritsch, C., Martens, J., Sun, Y. H., Heim, W., Strutzenberger, P., & Päckert, M. (2017). Improved sampling at the subspecies level solves a taxonomic dilemma – A case study of two enigmatic Chinese tit species (Aves, Passeriformes, Paridae, Poecile). Molecular Phylogenetics and Evolution, 107, 538–550. https://doi.org/10.1016/j.ympev.2016.12.014
Vamos, E., Elbrecht, V., & Leese, F. (2017). Short COI markers for freshwater macroinvertebrate metabarcoding. Metabarcoding and Metagenomics, 1, e14625. https://doi.org/10.3897/mbmg.1.14625
van Pelt-Verkuil, E., van Belkum, A., & Hays, J. P. (2008). PCR Primers. In Principles and Technical Aspects of PCR Amplification (pp. 63–90). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-1-4020-6241-4_5
Weigt, L. A., Baldwin, C. C., Driskell, A., Smith, D. G., Ormos, A., & Reyier, E. A. (2012). Using DNA barcoding to assess Caribbean reef fish biodiversity: Expanding taxonomic and geographic coverage. PLoS One, 7(7). https://doi.org/10.1371/journal.pone.0041059
Whiley, D. M., & Sloots, T. P. (2005). Sequence variation in primer targets affects the accuracy of viral quantitative PCR. Journal of Clinical Virology, 34(2), 104–107. https://doi.org/10.1016/j.jcv.2005.02.010
Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. New York: Springer-Verlag. https://ggplot2.tidyverse.org. Accessed 6 October 2020.
Yu, B., & Zhang, C. (2011). In silico tools for gene discovery. In B. Yu & M. Hinchcliffe (Eds.), Methods in Molecular Biology (Vol. 760, pp. 175–187). Springer. https://doi.org/10.1007/978-1-61779-176-5
Zeale, M. R. K., Butlin, R. K., Barker, G. L. A., Lees, D. C., & Jones, G. (2011). Taxon-specific PCR for DNA barcoding arthropod prey in bat faeces. Molecular Ecology Resources, 11(2), 236–244. https://doi.org/10.1111/j.1755-0998.2010.02920.x
Acknowledgements
We would like to thank the developer Marcelo Amoretti for all the technical support granted on the setup and operation of the data processing tools used on this work. And finally, we thank the “openPrimeR” developer, Matt Doering, for kindly answering the operational questions regarding his software that made this work viable.
Funding
Our current research in Genetics and Genomics is developed in the context of National Institutes for Science and Technology (INCT) in Ecology, Evolution and Biodiversity Conservation, supported by MCTIC/CNPq (proc. 465610/2014–5), FAPEG (Fundação de Amparo à Pesquisa do Estado de Goiás), and PRONEX/FAPEG/CNPqN° 06/2016. Work by A.A.M was supported by a fellowship from CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior). Work by R.N. was supported by a fellowship from CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico). Work by M.P.C.T. has been continuously supported by productivity fellowships from CNPq.
Author information
Authors and Affiliations
Corresponding author
Supplementary information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
de Melo, A.A., Nunes, R. & Telles, M.P. Same information, new applications: revisiting primers for the avian COI gene and improving DNA barcoding identification. Org Divers Evol 21, 599–614 (2021). https://doi.org/10.1007/s13127-021-00507-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13127-021-00507-x
