Skip to main content
Log in

High congruence of karyotypic and molecular data on Hypostomus species from Brazilian southeast

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

The Hypostomini tribe comprises a single genus, Hypostomus, which possibly contains several monophyletic groups because of significant morphological variation and a variety of diploid numbers and karyotype formulas. The objective of this study was to infer evolutionary relationships among 21 species of Hypostomus found in Brazilian southeast and subsequently to identify chromosomal synapomorphies in the groupings formed. Two nuclear genes, rag1 and rag2, and two mitochondrial genes, mt-co1 and mt-cyb, were used to establish evolutionary relationships. Phylogenetic trees were inferred using the maximum likelihood (ML) method for mt-co1 and Bayesian analysis (BA) for all genes concatenated. Both phylogenetic trees showed two large monophyletic clades within Hypostomus. These clades are based on chromosome number, where haplogroup I contains individuals with 66–68 chromosomes and haplogroup II contains species with 72–80 chromosomes. A third monophyletic haplogroup was also observed using ML, formed by H. faveolus and H. cochliodon, which present 2n = 64, reinforcing the separation of groups in Hypostomus by diploid number. Robertsonian rearrangements were responsible for forming the different diploid numbers and for the diversity of karyotype formulas. Ag-NORs are predominantly multiple and located on st/a chromosomes, along with 18S rDNA sites; 5S rDNA sites are often seen in an interstitial position, following the trend already described for vertebrates. The groups based on traditional morphological taxonomy are considered artificial in this study; proposed colored patterns recognizing two large groups are supported by little chromosomal evidence, and it was considered based on homoplastic characters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request. Molecular sequence data will be deposited in GenBank after acceptance of the manuscript, as well as phylogenetic data in an appropriate database.

References

  • Agrawal, A. A. (2001). Phenotypic plasticity in the interactions and evolution of species. Science, 294(5541), 321–326.

    Article  CAS  Google Scholar 

  • Alves, A. L., Oliveira, C., & Foresti, F. (2005). Comparative cytogenetic analysis of eleven species of subfamilies Neoplecostominae and Hypostominae (Siluriformes: Loricariidae). Genetica, 124, 127–136. https://doi.org/10.1007/s10709-004-7561-4.

    Article  PubMed  Google Scholar 

  • Alves, A. L., Oliveira, C., Nirchio, M., Granado, Á., & Foresti, F. (2006). Karyotypic relationships among the tribes of Hypostominae (Siluriformes: Loricariidae) with description of XO sex chromosome system in a Neotropical fish species. Genetica, 128, 1–9. https://doi.org/10.1007/s10709-005-0715-1.

    Article  PubMed  Google Scholar 

  • Andreata, A. A., Almeida-Toledo, L. F., Oliveira, C., & Almeida-Toledo Filho, S. (1993). Chromosome studies in Hypoptopomatinae (Pisces, Siluriformes, Loricariidae). II. ZZ/ZW sex-chromosome system, B chromosomes, and constitutive heterochromatin differentiation in Microlepidogaster leucofrenatus. Cytogenetics and Cell Genetics, 63(4), 215–220.

    Article  CAS  Google Scholar 

  • Andreata, A. A., Almeida-Toledo, L. F., Oliveira, C., & Almeida-Toledo Filho, S. (1994). Cytogenetic studies on the subfamily Hypoptopomatinae (Pisces, Siluriformes, Loricariidae). III. Analysis of seven species. Caryologia, 47, 27–37. https://doi.org/10.1080/00087114.1994.10797279.

    Article  Google Scholar 

  • Armbruster, J. W. (2004). Phylogenetic relationships of the suckermouth armoured catfishes (Loricariidae) with emphasis on the Hypostominae and the Ancistrinae. Zoological Journal of the Linnean Society, 141, 1–80. https://doi.org/10.1111/j.1096-3642.2004.00109.x.

    Article  Google Scholar 

  • Artoni, R. F., & Bertollo, L. A. C. (1996). Cytogenetic studies on Hypostominae (Pisces, Siluriformes, Loricariidae). Considerations on karyotype evolution in the genus Hypostomus. Caryologia, 49, 81–90. https://doi.org/10.1080/00087114.1996.10797353.

    Article  Google Scholar 

  • Artoni, R. F., & Bertollo, L. A. C. (1999). Nature and distribution of constitutive heterochromatin in fishes, genus Hypostomus (Loricariidae). Genetica, 106, 209–214. https://doi.org/10.1023/A:1003957719178.

    Article  CAS  PubMed  Google Scholar 

  • Artoni, R. F., & Bertollo, L. A. C. (2001). Trends in the karyotype evolution of Loricariidae fish (Siluriformes). Hereditas, 134, 201–210. https://doi.org/10.1111/j.1601-5223.2001.00201.x.

    Article  CAS  PubMed  Google Scholar 

  • Avise, J. C., Arnold, J., Ball, R. M., Bermingham, E., Lamb, T., Neigel, J. E., Reeb, C. A., & Saunders, N. C. (1987). Intraspecific phylogeography: The mitochondrial DNA bridge between population genetics and systematics. Annual Review of Ecology, Evolution and Systematics, 18, 489–522. https://doi.org/10.1146/annurev.es.18.110187.002421.

    Article  Google Scholar 

  • Baird, F. S., & Girard, C. (1854). Descriptions of new species of Fishes collected in Texas, New Mexico and Sonora, by Mr. John H. Clark, on the U.S. and Mexican Boundary Survey, and in Texas by Capt. Stewart Van Vliet, U.S.A. Proceedings of the Academy Natural Sciences, Philadelphia, (pp. 24–29).

  • Baumgärtner, L., Paiz, L. M., Zawadzki, C. H., Margarido, V. P., & Portela Castro, A. L. B. (2014). Heterochromatin polymorphism and physical mapping of 5S and 18S ribosomal DNA in four populations of Hypostomus strigaticeps (Regan, 1907) from the Paraná River basin, Brazil: evolutionary and environmental correlation. Zebrafish, 11, 479–487. https://doi.org/10.1089/zeb.2014.1028.

    Article  CAS  PubMed  Google Scholar 

  • Bickford, D., Lohman, D. J., Sodhi, N. S., Ng, P. K. L., Meier, R., Winker, K., Ingram, K. K., & Das, I. (2007). Cryptic species as a window on diversity and conservation. Trends in Ecology and Evolution, 22, 148–155. https://doi.org/10.1016/j.tree.2006.11.004.

    Article  PubMed  Google Scholar 

  • Bueno, V., Zawadzki, C. H., & Margarido, V. P. (2012). Trends in chromosome evolution in the genus Hypostomus Lacépède, 1803 (Osteichthyes, Loricariidae): A new perspective about the correlation between diploid number and chromosomes types. Reviews in Fish Biology and Fisheries, 22, 241–250. https://doi.org/10.1007/s11160-011-9215-9.

    Article  Google Scholar 

  • Bueno, V., Venere, P. C., Zawadzki, C. H., & Margarido, V. P. (2013). Karyotypic diversification in Hypostomus Lacépède, 1803 (Siluriformes, Loricariidae): Biogeographical and phylogenetic perspectives. Reviews in Fish Biology and Fisheries, 23, 103–112. https://doi.org/10.1007/s11160-012-9280-8.

    Article  Google Scholar 

  • Bueno, V., Venere, P. C., Konerat, J. T., Zawadzki, C. H., Vicari, M. R., & Margarido, V. P. (2014). Physical mapping of the 5S and 18S rDNA in ten species of Hypostomus Lacépède 1803 (Siluriformes: Loricariidae): Evolutionary tendencies in the genus. The Scientific World Journal. https://doi.org/10.1155/2014/943825.

  • Chernomor, O., Von Haeseler, A., & Minh, B. Q. (2016). Terrace aware data structure for phylogenomic inference from supermatrices. Systematic Biology, 65, 997–1008. https://doi.org/10.1093/sysbio/syw037.

    Article  PubMed  PubMed Central  Google Scholar 

  • Endo, K. S., Martinez, E. R. M., Zawadzki, C. H., Paiva, L. R. D. S., & Júlio Júnior, H. F. (2012). Karyotype description of possible new species of the Hypostomus ancistroides complex (Teleostei: Loricariidae) and other Hypostominae. Acta Scientiarum Biological Sciences, 34. https://doi.org/10.4025/actascibiolsci.v34i2.9318.

  • Favarato, R. M., da Silva, M., de Oliveira, R. R., Artoni, R. F., Feldberg, E., & Matoso, D. A. (2016). Cytogenetic diversity and the evolutionary dynamics of rDNA genes and telomeric sequences in the Ancistrus genus (Loricariidae: Ancistrini). Zebrafish, 13, 103–111. https://doi.org/10.1089/zeb.2015.1140.

    Article  PubMed  Google Scholar 

  • Fricke, R., Eschmeyer, W. N., & Fong, J. D. (2020). Eschmeyer’s catalog of fishes: Species by family/subfamily. http://researcharchive.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.asp. Accessed 20 November 2020.

  • Kavalco, K. F., Pazza, R., Bertollo, L. A. C., & Moreira-Filho, O. (2004). Gene mapping of 5S rDNA sites in eight fish species from the Paraíba do Sul river basin, Brazil. Cytogenetic and Genome Research, 106, 107–110. https://doi.org/10.1159/000078567.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger data sets. Molecular Biology and Evolution, 33(7), 1870–1874.

    Article  CAS  Google Scholar 

  • Lanfear, R., Calcott, B., Ho, S. Y. W., & Guindon, S. (2012). PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29, 1695–1701. https://doi.org/10.1093/molbev/mss020.

    Article  CAS  PubMed  Google Scholar 

  • Lima, N. R. W., & Galetti Jr., P. M. (1990). Chromosome characterization of the fish Trichogenes longipinnis. A possible basic karyotype of Trichomycteridae. Revista Brasileira de Genética, 13, 239–245.

    Google Scholar 

  • Lujan, N. K., Armbruster, J. W., Lovejoy, N. R., & López-Fernández, H. (2015). Multilocus molecular phylogeny of the suckermouth armored catfishes (Siluriformes: Loricariidae) with a focus on subfamily Hypostominae. Molecular Phylogenetics and Evolution, 82, 269–288. https://doi.org/10.1016/j.ympev.2014.08.020.

    Article  PubMed  Google Scholar 

  • Mariotto, S., Centofante, L., Vicari, M. R., Artoni, R. F., & Moreira-Filho, O. (2011). Chromosomal diversification in ribosomal DNA sites in Ancistrus Kner, 1854 (Loricariidae, Ancistrini) from three hydrographic basins of Mato Grosso. Brazil. Comparative Cytogenetics, 5, 289–300. https://doi.org/10.3897/CompCytogen.v5i4.1757.

    Article  PubMed  Google Scholar 

  • Martins, C., & Galetti, P. M. (2000). Conservative distribution of 5S rDNA loci in Schizodon (Pisces, Anostomidae) chromosomes. Chromosome Research, 8, 353–355. https://doi.org/10.1023/A:1009243815280.

    Article  CAS  Google Scholar 

  • Mendes-Neto, E. d. O., Vicari, M. R., Artoni, R. F., & Moreira-Filho, O. (2011). Description of karyotype in Hypostomus regani (Ihering, 1905) (Teleostei, Loricariidae) from the Piumhi river in Brazil with comments on karyotype variation found in Hypostomus. Comparative Cytogenetics, 5, 133–142. https://doi.org/10.3897/compcytogen.v5i2.964.

    Article  PubMed Central  Google Scholar 

  • Montoya-Burgos, J. I., Muller, S., Weber, C., & Pawlowski, J. (1997). Phylogenetic relationships between Hypostominae and Ancistrinae (Siluroidei: Loricariidae): First results from mitochondrial 12S and 16S rRNA gene sequences. Revue Suisse de Zoologie, 104, 185–198. https://doi.org/10.5962/bhl.part.79995.

    Article  Google Scholar 

  • Montoya-Burgos, J. I., Muller, S., Weber, C., & Pawlowski, J. (1998). Phylogenetic relationships of the Loricariidae (Siluriformes) based on mitochondrial rRNA gene sequences. In L. R. Malabarba, R. E. Reis, R. P. Vari, Z. M. S. Lucena, & C. A. S. Lucena (Eds.), Phylogeny and classification of neotropical fishes (pp. 363–374). Porto Alegre: Edipucrs.

    Google Scholar 

  • Montoya-Burgos, J. I., Weber, C., & Le Bail, P. Y. (2002). Phylogenetic relationships within Hypostomus (Siluriformes: Loricariidae) and related genera based on mitochondrial D-loop sequences. Revue Suisse de Zoologie, 109, 369–382. https://doi.org/10.5962/bhl.part.79596.

    Article  Google Scholar 

  • Moreira-Filho, O., Bertollo, L. A. C., & Galetti Jr., P. M. (1984). Structure and variability of nucleolar organizer regions in Parodontidae fish. Canadian Journal of Genetics and Cytology, 26(5), 564–568.

    Article  Google Scholar 

  • Muller, S., & Weber, C. (1992). Les dents des sous-familles Hypostominae et Ancistrinae (Pisces, Loricariidae) et leur valeur taxonomique. Revue Suisse de Zoologie, 99(4), 747–754.

    Article  Google Scholar 

  • Muramoto, J., Ohno, S., & Atkin, N. B. (1968). On the diploid state of the fish order Ostariophysi. Chromosoma, 24, 59–66. https://doi.org/10.1007/BF00329607.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, L. T., Schmidt, H. A., Von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32, 268–274. https://doi.org/10.1093/molbev/msu300.

    Article  CAS  PubMed  Google Scholar 

  • Oliveira, C., & Gosztonyi, A. E. (2000). A cytogenetic study of Diplotnystes mesembrinus (Teleostei, Siluriformes, Diplomystidae) with a discussion of chromosome evolution in siluriforms. Caryologia, 53, 31–37. https://doi.org/10.1080/00087114.2000.10589178.

    Article  Google Scholar 

  • Oyakawa, O. T., Akama, A., & Zanata, A. M. (2005). Review of the genus Hypostomus Lacépède, 1803 from rio Ribeira de Iguape basin, with description of a new species (Pisces, Siluriformes, Loricariidae). Zootaxa. https://doi.org/10.11646/zootaxa.921.1.1.

  • Pansonato-Alves, J. C., Serrano, É. A., Utsunomia, R., Scacchetti, P. C., Oliveira, C., & Foresti, F. (2013). Mapping five repetitive DNA classes in sympatric species of Hypostomus (Teleostei: Siluriformes: Loricariidae): Analysis of chromosomal variability. Reviews in Fish Biology and Fisheries, 23, 477–489. https://doi.org/10.1007/s11160-013-9303-0.

    Article  Google Scholar 

  • Pazza, R., Dergam, J. A., & Kavalco, K. F. (2018). Trends in karyotype evolution in Astyanax (Teleostei, Characiformes, Characidae): Insights from molecular data. Frontiers in Genetics, 9. https://doi.org/10.3389/fgene.2018.00131.

  • Pereira, S. L. (2000). Mitochondrial genome organization and vertebrate phylogenetics. Genetics and Molecular Biology, 23(4), 745–752.

    Article  CAS  Google Scholar 

  • Rambaut, A. (2012). FigTree, version 1.4.2. Available: http://tree.bio.ed.ac.uk/software/figtree/.

  • Rambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A. (2018). Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67(5), 901–904.

    Article  CAS  Google Scholar 

  • Ronquist, F., Teslenko, M., Van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., et al. (2012). MrBayes 3.2: Efficient Bayesian phylogenetic inference and model selection across a large model space. Systematic Biology, 61(3), 539–542.

    Article  Google Scholar 

  • Rubert, M., Zawadzki, C. H., & Giuliano-Caetano, L. (2008). Cytogenetic characterization of Hypostomus nigromaculatus (Siluriformes: Loricariidae). Neotropical Ichthyology, 6, 101–108. https://doi.org/10.1590/S1679-62252008000100012.

    Article  Google Scholar 

  • Scavone, M. D. P., & Júlio Jr., H. F. (1995). Cytogenetics analysis and heterochromatin distribution in ZZ/ZW sex chromosomes of the mailed catfish Loricariichthys platymetopon (Loricariidae: Siluriformes). Brazilian Journal of Genetics, 18, 31–35.

    Google Scholar 

  • Silva, V. B. (2014). Análise citogenética em espécies de Hypostominae Lacépède, 1803 (Osteichthyes, Loricariidae) da bacia dos rios Uruguai e Paraná: enfoque biogeográfico e filogenético. Doctoral Thesis. Universidade Estadual de Maringá, Maringá, PR.

  • Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673–4680.

    Article  CAS  Google Scholar 

  • Traldi, J. B., Blanco, D. R., Vicari, M. R., Martinez, J. F., Lui, R. L., Barros, A. V., Artoni, R. F., & Moreira-Filho, O. (2013). Chromosomal diversity in Hypostomus (Siluriformes, Loricariidae) with emphasis on physical mapping of 18S and 5S rDNA sites. Genetic and Molecular Research, 12, 463–471. https://doi.org/10.4238/2013.February.8.11.

    Article  CAS  Google Scholar 

  • Vicari, M. R., Artoni, R. F., Moreira-Filho, O., & Bertollo, L. A. C. (2008). Colocalization of repetitive DNAs and silencing of major rRNA genes. A case report of the fish Astyanax janeiroensis. Cytogenetic and Genome Research, 122, 67–72. https://doi.org/10.1159/000151318.

    Article  CAS  PubMed  Google Scholar 

  • Weber, C. (2003). Subfamily Hypostominae. In R. E. Reis, S. O. Kullander, & C. J. Ferraris (Eds.), Check list of the freshwater fishes of South and Central America (pp. 351–372). Porto Alegre: Edipucrs.

    Google Scholar 

  • Zawadzki, C. H., Renesto, E., De Paiva, S., & Lara-Kamei, M. C. S. (2004). Allozyme differentiation of four populations of Hypostomus (Teleostei: Loricariidae) from Ribeirão Keller, a small stream in the upper Rio Paraná basin, Brazil. Genetica, 121, 251–257. https://doi.org/10.1023/B:GENE.0000039852.65610.4f.

    Article  CAS  PubMed  Google Scholar 

  • Zawadzki, C. H., Renesto, E., & Mateus, R. P. (2008). Allozyme analysis of Hypostomus (Teleostei: Loricariidae) from the Rio Corumbá, Upper Rio Paraná basin, Brazil. Biochemical Genetics, 46, 755–769. https://doi.org/10.1007/s10528-008-9191-5.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES - Fellowship for M.Sc. degree, www.capes.gov.br) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, 484626/2013-2, www.cnpq.br).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Dinaíza Abadia Rocha-Reis, Rubens Pasa, and Karine Frehner Kavalco

Methodology: Dinaíza Abadia Rocha-Reis

Formal analysis and investigation: Dinaíza Abadia Rocha-Reis, Rubens Pasa, and Karine Frehner Kavalco

Writing (original draft preparation): Dinaíza Abadia Rocha-Reis

Writing (review and editing): Dinaíza Abadia Rocha-Reis, Rubens Pasa, and Karine Frehner Kavalco

Funding acquisition: Karine Frehner Kavalco

Supervision: Rubens Pasa and Karine Frehner Kavalco

Corresponding author

Correspondence to Dinaíza Abadia Rocha-Reis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Online Resource A

Cytogenetic data available for Hypostomus species. (XLSX 24 kb)

Online Resource B

Details of the specimens collected and used in the study. (PDF 140 kb)

Online Resource C

Sequences of Hypostomus and Pterygoplichthys (outgroup) species used in the analyzes. Available on GenBank. (PDF 98 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rocha-Reis, D.A., Pasa, R. & Kavalco, K.F. High congruence of karyotypic and molecular data on Hypostomus species from Brazilian southeast. Org Divers Evol 21, 135–143 (2021). https://doi.org/10.1007/s13127-021-00478-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-021-00478-z

Keywords

Navigation