Two evolutionary units on the South American razor clam Ensis macha (Bivalvia: Pharidae): genetic and morphometric evidence

Abstract

The patterns of genetic and phenotypic diversity in marine life are the result of different geological and ecological processes. We analyzed the pattern of genetic and morphometric variation of the razor clam Ensis macha along its entire geographic distribution. This species is one of the most important shellfish resources of South America. To uncover the genetic variation across this species, we used sequences of the COI mitochondrial gene and of 856 nuclear orthologs. To describe morphological variation in the shape of the shell, we used elliptic Fourier analysis followed by multivariate statistics. Two main genetic lineages were found, designated as Northern and Southern clades. This genetic distinction is concordant with a biogeographic transition along the Pacific coast of Southern South America, which is also known for other taxa. Based on the genetic distance between the two lineages, each lineage can be considered an incipient species. Morphological approaches revealed similar results, though there was no strict concordance between the morphometric and the genetic results. Geological history and ecological processes could both be responsible for the variation across the range of E. macha. In particular, fragmentation and isolation between populations may have favored genetic diversification, while the environment may have molded the variation shell shape. Lastly, our results have important implications for fisheries management, to preserve biological diversity of the world’s southernmost razor clam species.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

The molecular genetic datasets generated during and/or analyzed during the current study are available in the GenBank repository, [https://www.ncbi.nlm.nih.gov/genbank/]. Geometric morphometrics data generated during and analyzed during the current study are available from the corresponding author on request.

References

  1. Allen, J. M., Huang, D. I., Cronk, Q. C., & Johnson, K. P. (2015). aTRAM-automated target restricted assembly method: a fast method for assembling loci across divergent taxa from next-generation sequencing data. BMC Bioinformatics, 16(1), 98. https://doi.org/10.1186/s12859-015-0515-2.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Allen, J. M., Boyd, B., Nguyen, N. P., Vachaspati, P., Warnow, T., Huang, D. I., Grady, P. G. S., Bell, K. C., Cronk, Q. C. B., Mugisha, L., Pittendrigh, B. R., Leonardi, M. S., Reed, D. L., & Johnson, K. P. (2017). Phylogenomics from whole genome sequences using aTRAM. Systematic Biology, 66(5), 786–798. https://doi.org/10.1093/sysbio/syw105.

    CAS  Article  PubMed  Google Scholar 

  3. Allen, J. M., LaFrance, R., Folk, R. A., Johnson, K. P., & Guralnick, R. P. (2018). aTRAM 2.0: an improved, flexible locus assembler for NGS data. Evolutionary Bioinformatics, 14, 1176934318774546. https://doi.org/10.1177/1176934318774546.

    Article  Google Scholar 

  4. Bandelt, H. J., Forster, P. I., & Röhl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16, 37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036.

    CAS  Article  PubMed  Google Scholar 

  5. Borowiec, M. L. (2016). AMAS: a fast tool for alignment manipulation and computing of summary statistics. PeerJ, 4, e1660. https://doi.org/10.7717/peerj.1660.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Borowiec, M. (2019). Spruceup: fast and flexible identification, visualization, and removal of outliers from large multiple sequence alignments. Journal of Open Source Software, 4, 1635. https://doi.org/10.21105/joss.01635.

    Article  Google Scholar 

  7. Brante, A., Fernandez, M., & Viard, F. (2012). Phylogeography and biogeography concordance in the marine gastropod Crepipatella dilatata (Calyptraeidae) along the southeastern Pacific coast. The Journal of Heredity, 103, 630–637. https://doi.org/10.1093/jhered/ess030.

    Article  PubMed  Google Scholar 

  8. Brown, S. D., Collins, R. A., Boyer, S., Lefort, M. C., Malumbres-Olarte, J. A. G. O. B. A., Vink, C. J., & Cruickshank, R. H. (2012). Spider: an R package for the analysis of species identity and evolution, with particular reference to DNA barcoding. Molecular Ecology Resources, 12(3), 562–565. https://doi.org/10.1111/j.1755-0998.2011.03108.x.

    Article  PubMed  Google Scholar 

  9. Camus, P. A. (2001). Biogeografía marina de Chile continental. Revista Chilena de Historia Natural, 74, 587–617. https://doi.org/10.4067/S0716-078X2001000300008.

    Article  Google Scholar 

  10. Capella-Gutiérrez, S., Silla-Martínez, J. M., & Gabaldón, T. (2009). trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics, 25(15), 1972–1973. https://doi.org/10.1093/bioinformatics/btp348.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Cárdenas, L., Castilla, J. C., & Viard, F. (2009). A phylogeographical analysis across three biogeographical provinces of the southeastern Pacific: the case of the marine gastropod Concholepas concholepas. Journal of Biogeography, 36, 969–981. https://doi.org/10.1111/j.1365-2699.2008.02056.x.

    Article  Google Scholar 

  12. Carranza, A., Defeo, O., Beck, M., & Castilla, J. C. (2009). Linking fisheries management and conservation in bioengineering species: the case of south American mussels (Mytilidae). Fish Biol Fisher, 19, 349–366.

    Article  Google Scholar 

  13. Ceballos, S. G., Lessa, E. P., Victorio, M. F., & Fernández, D. A. (2012). Phylogeography of the sub-Antarctic notothenioid fish Eleginops maclovinus: evidence of population expansion. Marine Biology, 159, 99–505. https://doi.org/10.1007/s00227-011-1830-4.

    Article  Google Scholar 

  14. Clapperton, C. M. (1993). Nature of environmental changes in South America at the Last Glacial Maximum. Palaeogeography Palaeoclimatology Palaeoecology, 101, 189–208. https://doi.org/10.1016/0031-0182(93)90012-8.

    Article  Google Scholar 

  15. Crame, J. A. (1996). Evolution of high-latitude molluscan faunas. In J. D. Taylor (Ed.), Origin and evolutionary radiation of the Mollusca (pp. 119–131). Oxford: Oxford University Press.

    Google Scholar 

  16. Crampton, J. S. (1995). Elliptic Fourier shape analysis of fossil bivalves: some practical considerations. Lethaia, 28, 179–186. https://doi.org/10.1111/j.1502-3931.1995.tb01611.x.

    Article  Google Scholar 

  17. Cubillo, A. M., Peteiro, L. G., Fernández-Reiriz, M. J., & Labarta, U. (2012). Influence of stocking density on growth of mussels (Mytilus galloprovincialis) in suspended culture. Aquaculture, 342, 103–111. https://doi.org/10.1016/j.aquaculture.2012.02.017.

    Article  Google Scholar 

  18. de Aranzamendi, M. C., Bastida, R., & Gardenal, C. N. (2011). Different evolutionary histories in two sympatric limpets of the genus Nacella (Patellogastropoda) in the South-western Atlantic coast. Marine Biology, 158, 2405–2418. https://doi.org/10.1007/s00227-011-1742-3.

    Article  Google Scholar 

  19. De Maesschalck, R., Estienne, F., Verdú Andrés, J., Candolfi, A., Centner, V., Despagne, F., Jouan-Rimbaud, D., Walczak, B., Massart, D., De Jong, S., De Noord, O. E., Puel, C., & BMG, V. (1999). The development of calibration models for spectroscopic data using principal component regression. Internet Journal of Chemistry, 2, 1–19.

    Google Scholar 

  20. Espinoza, R., Tarazona, J., & Laudien, J. (2010). Overfishing population characteristics of razor clam, Ensis macha, from Independencia Bay, Peru, in 2004 year. Revista Peruana de Biología, 17, 285–292.

    Google Scholar 

  21. Excoffier, L., & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10, 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x.

    Article  PubMed  Google Scholar 

  22. Excoffier, L., Smouse, P. E., & Quattro, J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics, 131, 45479–45491.

    Google Scholar 

  23. Fernández Iriarte, P. J., González-Wevar, C. A., Segovia, N. I., Rosenfeld, S., Hüne, M., Fainburg, L., Nuñez, J. D., Haye, P. A., & Poulin, E. (2020). Quaternary ice sheets and sea level regression drove divergence in a marine gastropod along Eastern and Western coasts of South America. Scientific Reports, 10, 844. https://doi.org/10.1038/s41598-020-57543-4.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Folmer, O., Black, M., Hoeh, W., Lutz, R., & Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294–299.

    CAS  PubMed  Google Scholar 

  25. Fraser, C. I., Hay, C. H., Spencer, H. G., & Waters, J. M. (2009). Genetic and morphological analyses of the southern bull kelp Durvillaea antarctica (Phaeophyceae: Durvillaeales) in New Zealand reveal cryptic species. Journal of Phycology, 45, 436–443.

    CAS  Article  Google Scholar 

  26. Fraser, C. I., Thiel, M., Spencer, H. G., & Waters, J. M. (2010). Contemporary habitat discontinuity and historic glacial ice drive genetic divergence in Chilean kelp. BMC Evolutionary Biology, 10(1), 203. https://doi.org/10.1186/1471-2148-10-203.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Fraser, C. I., Nikula, R., Ruzzante, D. E., & Waters, J. M. (2012). Poleward bound: biological impacts of Southern Hemisphere glaciation. Trends in Ecology & Evolution, 27, 462–471. https://doi.org/10.1016/j.tree.2012.04.011.

    Article  Google Scholar 

  28. Fu, Y. (1997). Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 147, 915–925.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gardner, J. P. A., & Palmer, N. L. (1998). Size-dependent, spatial and temporal genetic variation at a leucine aminopeptidase (LAP) locus among blue mussel (Mytilus galloprovincialis) populations along a salinity gradient. Marine Biology, 132, 275–281. https://doi.org/10.1007/s002270050393.

    CAS  Article  Google Scholar 

  30. Gordillo, S., Coronato, A., & Rabassa, J. (2005). Late Quaternary micromollusc assemblages from the southernmost tip of South America: a paleoenvironmental history after the Last Glacial Maximum. Rep Pol Mar Res, 507, 58–62.

    Google Scholar 

  31. Gordillo, S., Rabassa, J., & Coronato, A. (2008). Paleoecology and paleobiogeographic patterns of Mid-Holocene mollusks from the Beagle Channel (southern Tierra del Fuego, Argentina). Revista Geologica de Chile, 35, 1–13.

    Google Scholar 

  32. Hebert, P. D., Ratnasingham, S., & De Waard, J. R. (2003). Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London B, 270(suppl_1), S96–S99. https://doi.org/10.1098/rsbl.2003.0025.

    CAS  Article  Google Scholar 

  33. Hebert, P. D., Stoeckle, M. Y., Zemlak, T. S., & Francis, C. M. (2004). Identification of birds through DNA barcodes. PLoS boil, 2(10), e312. https://doi.org/10.1371/journal.pbio.0020312.

    CAS  Article  Google Scholar 

  34. Heibl C (2008) PHYLOCH: R language tree plotting tools and interfaces to diverse phylogenetic software packages. http://www.christophheibl.de/Rpackages.html.

  35. Herm, D. (1969). Marines Pliozän und Pleistozän in Nord- und Mittel-Chile unter besonderer Berücksichtigung der Entwicklung der Mollusken-Faunen. Zitteliana, 2, 1–159.

    Google Scholar 

  36. Hewitt, G. M. (1996). Some genetic consequences of ice ages, and their role, in divergence and speciation. Biological Journal of the Linnean Society, 58, 247–276.

    Article  Google Scholar 

  37. Ivanova, N. V., Dewaard, J. R., & Hebert, P. D. N. (2006). An inexpensive, automation friendly protocol for recovering high-quality DNA. Molecular Ecology Notes, 6, 998–1002. https://doi.org/10.1111/j.1471-8286.2006.01428.x.

    CAS  Article  Google Scholar 

  38. Iwata, H., & Ukai, Y. (2002). SHAPE: a computer program package for quantitative evaluation of biological shapes based on elliptical Fourier descriptors. The Journal of Heredity, 93, 384–385. https://doi.org/10.1093/jhered/93.5.384.

    CAS  Article  PubMed  Google Scholar 

  39. Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K., von Haeseler, A., & Jermiin, L. S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods, 14(6), 587–589. https://doi.org/10.1038/nmeth.4285.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30(4), 772–780. https://doi.org/10.1093/molbev/mst010.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., & Drummond, A. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12), 1647–1649. https://doi.org/10.1093/bioinformatics/bts199.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kimura, M. (1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120. https://doi.org/10.1007/BF01731581.

    CAS  Article  PubMed  Google Scholar 

  43. Klimov, P. B., Skoracki, M., & Bochkov, A. V. (2019). Cox 1 barcoding versus multilocus species delimitation: validation of two mite species with contrasting effective population sizes. Parasites & Vectors, 12(1), 8. https://doi.org/10.1186/s13071-018-3242-5.

    Article  Google Scholar 

  44. Krapivka, S., Toro, J. E., Alcapán, A. C., Astorga, M., Presa, P., Pérez, M., & Guiñez, R. (2007). Shell–shape variation along the latitudinal range of the Chilean blue mussel Mytilus chilensis (Hupe 1854). Aquaculture Research, 38, 1770–1777. https://doi.org/10.1111/j.1365-2109.2007.01839.x.

    Article  Google Scholar 

  45. Kriventseva, E. V., Kuznetsov, D., Tegenfeldt, F., Manni, M., Dias, R., Simão, F. A., & Zdobnov, E. M. (2018). OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic Acids Research, 47(D1), D807–D811. https://doi.org/10.1093/nar/gky1053.

    CAS  Article  PubMed Central  Google Scholar 

  46. Langerhans, R. B., Chapman, L. J., & Dewitt, T. J. (2007). Complex phenotype–environment associations revealed in an East African cyprinid. Journal of Evolutionary Biology, 20, 1171–1181. https://doi.org/10.1111/j.1420-9101.2007.01282.x.

    CAS  Article  PubMed  Google Scholar 

  47. Lasta ML, Ciocco N, Bremec CS, Roux AM (1998) Moluscos bivalvos y gasterópodos. In: Boschi EE (Ed.) El Mar Argentino y sus recursos pesqueros. Mar del Plata: INIDEP, pp 115-142.

  48. Lépez García, I., Arriagada Obregón, D., & Véjar Durán, F. (2011). The state of the razor clam (Ensis macha) in Chile. In A. Guerra, C. Lodeiros, M. Gaspar, & F. da Costa (Eds.), Razor clams: biology, aquaculture and fisheries (pp. 393–404). Galicia: Xunta de Galicia.

    Google Scholar 

  49. Librado, P., & Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25, 1451–1452. https://doi.org/10.1093/bioinformatics/btp187.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Macaya, E. C., & Zuccarello, G. C. (2010). Genetic structure of the giant kelp Macrocystis pyrifera along the southeastern Pacific. Marine Ecology Progress Series, 420, 103–112. https://doi.org/10.3354/meps08893.

    Article  Google Scholar 

  51. Mahalanobis, P. C. (1948). Historical note on the D3-statistic. Sankhya, 9, 237–240.

    Google Scholar 

  52. Márquez, F., & Van Der Molen, S. (2011). Intraspecific shell-shape variation in the razor clam Ensis macha along the Patagonian coast. Journal of Molluscan Studies, 77, 123–128. https://doi.org/10.1093/mollus/eyq044.

    Article  Google Scholar 

  53. Márquez, F., Robledo, J., Escati Peñaloza, G., & Van der Molen, S. (2010). Use of different geometric morphometrics tools for the discrimination of phenotypic stocks of the striped clam Ameghinomya antiqua (Veneridae) in north Patagonia, Argentina. Fisheries Research, 101, 127–131. https://doi.org/10.1016/j.fishres.2009.09.018.

    Article  Google Scholar 

  54. Márquez, F., Adami, ML., Trovant, B., Nieto-Vilela, RA., & González-José, R. (2018). Allometric differences on the shell shape of two scorched mussel species along the Atlantic South American Coast. Evol Ecol, 32, 43–56. https://doi.org/10.1007/s10682-018-9928-5.

  55. Masters, B. C., Fan, V., & Ross, H. A. (2011). Species delimitation–a geneious plugin for the exploration of species boundaries. Molecular Ecology Resources, 11(1), 154–157. https://doi.org/10.1111/j.1755-0998.2010.02896.x.

    Article  PubMed  Google Scholar 

  56. Meier, R., Shiyang, K., Vaidya, G., & Ng, P. K. (2006). DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success. Systematic Biology, 55, 715–728. https://doi.org/10.1080/10635150600969864.

    Article  PubMed  Google Scholar 

  57. Mendo, J., & Espinoza, R. (2011). Fishery and some biological aspects of razor clam (Ensis macha) in Peru. In A. Guerra, C. Lodeiros, M. Gaspar, & F. da Costa (Eds.), Razor clams: biology, aquaculture and fisheries (pp. 381–392). Galicia: Xunta de Galicia.

    Google Scholar 

  58. Montecinos, A., Broitman, B. R., Faugeron, S., Haye, P. A., Tellier, F., & Guillemin, M. L. (2012). Species replacement along a linear coastal habitat: phylogeography and speciation in the red alga Mazzaella laminarioides along the south east pacific. BMC Evolutionary Biology, 12, 97. https://doi.org/10.1186/1471-2148-12-97.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Morsán, E., & Ciocco, N. F. (2011). Razor clam fishing in Patagonia, Argentina. In A. Guerra, C. Lodeiros, M. Gaspar, & F. da Costa (Eds.), Razor clams: biology, aquaculture and fisheries (pp. 405–416). Galicia: Xunta de Galicia.

    Google Scholar 

  60. Nguyen, L. T., Schmidt, H. A., von Haeseler, A., & Minh, B. Q. (2014). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32, 268–274. https://doi.org/10.1093/molbev/msu300.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. Nielsen, S. N. (2013). A new Pliocene mollusk fauna from Mejillones, northern Chile. Paläontologische Zeitschrift, 87, 33–66. https://doi.org/10.1007/s12542-012-0146-0.

    Article  Google Scholar 

  62. Osorio C (2002) Moluscos marinos en Chile: especies de importancia económica, guía para su identificación. Facultad de Ciencias, Universidad de Chile.

  63. Paradis, E., & Schliep, K. (2018). ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35, 526–528. https://doi.org/10.1093/bioinformatics/bty633.

    CAS  Article  Google Scholar 

  64. Piersma, T., & Van Gils, J. A. (2011). The flexible phenotype: a body-centred integration of ecology, physiology, and behaviour. New York: Oxford University Press.

    Google Scholar 

  65. Polzin, T., & Daneschmand, S. V. (2003). On Steiner trees and minimum spanning trees in hypergraphs. Operations Research Letters, 31, 12–20. https://doi.org/10.1016/S0167-6377(02)00185-2.

    Article  Google Scholar 

  66. Ponce, J. F., Rabassa, J., Coronato, A., & Borromei, A. M. (2011). Palaeogeographical evolution of the Atlantic coast of Pampa and Patagonia from the last glacial maximum to the Middle Holocene. Biological Journal of the Linnean Society, 103, 363–379. https://doi.org/10.1111/j.1095-8312.2011.01653.x.

    Article  Google Scholar 

  67. Rabassa J, Serrat D, Marti C, Coronato A (1990) El Tardiglacial en el Canal Beagle, Tierra del Fuego, Argentina y Chile. Actas XI Congr Geol Arg 1: 290-293. San Juan, Argentina.

  68. Rabassa, J. O., Coronato, A., Bujalesky, G., Salemme, M., Roig, C., Meglioli, A., Heusser, C., Gordillo, S., Roig, F., Borromei, A., & Quattrochio, M. (2000). Quaternary of Tierra del Fuego, Southermost South America: an updated review. Quaternary International, 68-71, 217–240. https://doi.org/10.1016/S1040-6182(00)00046-X.

    Article  Google Scholar 

  69. Ragionieri, L., Fratini, S., Vannini, M., & Schubart, C. D. (2009). Phylogenetic and morphometric differentiation reveal geographic radiation and pseudo–cryptic speciation in a mangrove crab from the Indo–West Pacific. Molecular Phylogenetics and Evolution, 52, 825–834. https://doi.org/10.1016/j.ympev.2009.04.008.

    CAS  Article  PubMed  Google Scholar 

  70. Ramos-Onsins, S. E., & Rozas, J. (2006). Statistical properties of new neutrality tests against population growth. Molecular Biology and Evolution, 19, 2092–2100. https://doi.org/10.1093/molbev/msl052.

    Article  Google Scholar 

  71. R–Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3–900051–07–0, Available at: http://www.R-project.org

  72. Revell, L. J. (2012). phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3, 217–223. https://doi.org/10.1111/j.2041-210X.2011.00169.x.

    Article  Google Scholar 

  73. Riginos, C., & Cunningham, C. W. (2005). Local adaptation and species segregation in two mussel (Mytilus edulis × Mytilus trossulus) hybrid zones. Molecular Ecology, 14, 381–400. https://doi.org/10.1111/j.1365-294X.2004.02379.x.

    CAS  Article  PubMed  Google Scholar 

  74. Rohlf, F. J., & Archie, J. W. (1984). A comparison of Fourier methods for description of wing shape in mosquitos (Diptera: Culicidae). Systematic Zoology, 33, 302–317. https://doi.org/10.2307/2413076.

    Article  Google Scholar 

  75. Rosenberg, N. A. (2007). Statistical tests for taxonomic distinctiveness from observations of monophyly. Evolution, 61(2), 317–323. https://doi.org/10.1111/j.1558-5646.2007.00023.x.

    Article  PubMed  Google Scholar 

  76. Rostami, K., Peltier, W. R., & Mangini, A. (2000). Quaternary marine terraces, sea-level changes and uplift history of Patagonia, Argentina: comparisons with predictions of the ICE-4G (VM2) model of the global process of glacial isostatic adjustment. Quaternary Science Reviews, 19, 1495–1525. https://doi.org/10.1016/S0277-3791(00)00075-5.

    Article  Google Scholar 

  77. Ruzzante, D. E., Walde, S. J., Macchi, P. J., Alonso, M., & Barriga, J. P. (2011). Phylogeography and phenotypic diversification in the Patagonian fish Percichthys trucha: the roles of Quaternary glacial cycles and natural selection. Biological Journal of the Linnean Society, 103, 514–529. https://doi.org/10.1111/j.1095-8312.2011.01682.x.

    Article  Google Scholar 

  78. Sánchez, R., Sepúlveda, R. D., Brante, A., & Cárdenas, L. (2011). Spatial pattern of genetic and morphological diversity in the direct developer Acanthina monodon (Gastropoda: Mollusca). Marine Ecology Progress Series, 434, 121–131. https://doi.org/10.3354/meps09184.

    Article  Google Scholar 

  79. Sanford, E., Roth, M. S., Johns, G. C., Wares, J. P., & Somero, G. N. (2003). Local selection and latitudinal variation in a marine predator–prey interaction. Science, 300, 1135–1137. https://doi.org/10.1126/science.1083437.

    CAS  Article  PubMed  Google Scholar 

  80. Sarver, S. K., & Foltz, D. W. (1993). Genetic population structure of a species complex of blue mussels (Mytilus spp.). Marine Biology, 117, 105–112. https://doi.org/10.1007/BF00346431.

    Article  Google Scholar 

  81. Schluter, D. (2000). The ecology of adaptive radiation. Oxford: Oxford University Press.

    Google Scholar 

  82. Sepúlveda, R. D., Camus, P. A., & Moreno, C. A. (2016). Diversity of faunal assemblages associated with ribbed mussel beds along the South American coast: relative roles of biogeography and bioengineering. Marine Ecology, 37, 943–956. https://doi.org/10.1111/maec.12301.

    Article  Google Scholar 

  83. Solas, M. R., Hughes, R. N., Márquez, F., & Brante, A. (2015). Early plastic responses in the shell morphology of Acanthina monodon (Mollusca, Gastropoda) under predation risk and water turbulence. Marine Ecology Progress Series, 527, 133–142. https://doi.org/10.3354/meps11221.

    Article  Google Scholar 

  84. Sousa, R., Freire, R., Rufino, M., Méndez, J., Gaspar, M., Antunes, C., & Guilhermino, L. (2007). Genetic and shell morphological variability of the invasive bivalve Corbicula fluminea (Müller, 1774) in two Portuguese estuaries. Estuarine, Coastal and Shelf Science, 74(1–2), 166–174. https://doi.org/10.1016/j.ecss.2007.04.011.

    Article  Google Scholar 

  85. Sugden, D. E., Bentley, M. J., Fogwill, C., Hulton, N., McCulloch, R., & Purves, R. (2005). Late glacial glacier events in southernmost South America: a blend of northern and southern hemispheric climatic signals? Geografiska Annaler. Series A, Physical Geography, 87, 273–288. https://doi.org/10.1111/j.0435-3676.2005.00259.x.

    Article  Google Scholar 

  86. Tajima, F. (1989). Statistical methods to test for nucleotide mutation hypothesis by DNA polymorphism. Genetics, 123, 585–595.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739. https://doi.org/10.1093/molbev/msr121.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. Tellier, F., Meynard, A. P., Correa, J. A., Faugeron, S., & Valero, M. (2009). Phylogeographic analyses of the 30°S south-east Pacific biogeographic transition zone establish the occurrence of a sharp genetic discontinuity in the kelp Lessonia nigrescens: vicariance or parapatry? Molecular Phylogenetics and Evolution, 53, 679–693. https://doi.org/10.1016/j.ympev.2009.07.030.

    CAS  Article  PubMed  Google Scholar 

  89. Thatje, S., & Brown, A. (2009). The macrobenthic ecology of the Straits of Magellan and the Beagle Channel. Anales Instituto Patagonia (Chile), 37, 17–27. https://doi.org/10.4067/S0718-686X2009000200002.

    Article  Google Scholar 

  90. Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680. https://doi.org/10.1093/nar/22.22.4673.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  91. Trivellini, M. M., Van der Molen, S., & Márquez, F. (2018). Fluctuating asymmetry in the shell shape of the Atlantic Patagonian mussel, Mytilus platensis, generated by habitat-specific constraints. Hydrobiologia, 822, 189–201. https://doi.org/10.1007/s10750-018-3679-8.

    Article  Google Scholar 

  92. Trovant, B., Orensanz, J. M., Ruzzante, D. E., Stotz, W., & Basso, N. G. (2015). Scorched mussels (Bivalvia: Mytilidae: Brachidontinae) from the temperate coasts of South America: phylogenetic relationships, trans-Pacific connections and the footprints of Quaternary glaciations. Molecular Phylogenetics and Evolution, 82, 60–74. https://doi.org/10.1016/j.ympev.2014.10.002.

    Article  PubMed  Google Scholar 

  93. Valdano SG, Di Rienzo J (2007) Discovering meaningful groups in hierarchical cluster analysis. An extension to the multivariate case of a multiple comparison method based on cluster analysis. InterStat. Available at http://interstat.statjournals.net/YEAR/2007/abstracts/0704002.php?Name=704002

  94. Valdovinos, C. (1996). Evolutive stasis of a benthic community during the retraction of the Magellan Province: analysis of an assemblage of organisms with hard skeletons from the Plio-Pleistocene and recent limits. Rep Pol Mar Res, 180, 82–84.

    Google Scholar 

  95. Valdovinos, C., Navarrete, S. A., & Marquet, P. (2003). Mollusk species diversity in the Southeastern Pacific: why are there more species towards the pole? Ecography, 26, 139–144. https://doi.org/10.1034/j.1600-0587.2003.03349.x.

    Article  Google Scholar 

  96. Vierna, J., Jensen, K. T., González-Tizón, A. M., & Martínez-Lage, A. (2012). Population genetic analysis of Ensis directus unveils high genetic variation in the introduced range and reveals a new species from the NW Atlantic. Marine Biology, 159(10), 2209–2227. https://doi.org/10.1007/s00227-012-2006-6.

    Article  Google Scholar 

  97. Vierna, J., Cuperus, J., Martínez-Lage, A., Jansen, J. M., Perina, A., Van Pelt, H., & González-Tizón, A. M. (2014). Species delimitation and DNA barcoding of Atlantic Ensis (Bivalvia, Pharidae). Zoologica Scripta, 43, 161–171. https://doi.org/10.1111/zsc.12038.

    Article  Google Scholar 

  98. Wickham, H. (2016). ggplot2: elegant graphics for data analysis. Springer.

  99. Xia, X. (2013). DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution. Molecular Biology and Evolution, 30, 1720–1728. https://doi.org/10.1093/molbev/mst064.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  100. Xia, X., & Lemey, P. (2009). Assessing substitution saturation with DAMBE. In P. Lemey, M. Salemi, & A. M. Vandamme (Eds.), The phylogenetic handbook: a practical approach to DNA and protein phylogeny (2nd ed., pp. 615–630). New York: Cambridge University Press.

    Google Scholar 

  101. Zakas, C., Binford, J., Navarrete, S. A., & Wares, J. P. (2009). Restricted gene flow in Chilean barnacles reflects an oceanographic and biogeographic transition zone. Marine Ecology Progress Series, 394, 165–177. https://doi.org/10.3354/meps08265.

    Article  Google Scholar 

  102. Zelaya, D. G. (2009). Bivalvia. In V. Häussermann & G. Försterra (Eds.), Marine benthic fauna of Chilean Patagonia (pp. 426–454). Puerto Montt: Nature in Focus.

    Google Scholar 

  103. Zelditch, M. L., Swiderski, D. L., Sheets, H. D., & Fink, W. L. (2004). Geometric morphometrics for biologist: a primer. New York: Elsevier.

    Google Scholar 

  104. Zieritz, A., & Aldridge, D. C. (2009). Identification of ecophenotypic trends within three European freshwater mussel species (Bivalvia: Unionoida) using traditional and modern morphometric techniques. Biological Journal of the Linnean Society, 98, 814–825. https://doi.org/10.1111/j.1095-8312.2009.01329.x.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Miguel Angel Díaz, Ricardo Vera, Fabián Quiroga, Nestor Ortiz, and Jorgelina Robledo for their help during field activities and Erik Daza (IFOP) for supporting Chile’s sampling. We sincerely thank Thomas A. Neubauer who improved the manuscript with his criticism during the revision. We also thank one more anonymous reviewer for their valuable comments. This study was partially funded by ANPCyT-FONCyT (PICT 1398 to SV and PICT-2018-03197 to FM). International Barcode of Life Project 2011 - INVSV: Aplicación del código de barras genético al estudio de los invertebrados bentónicos submareales del golfo San José (Chubut). This is publication #129 of the Laboratorio de Reproducción y Biología Integrativa de Invertebrados Marinos (LARBIM).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Federico Márquez.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 76 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Márquez, F., Trovant, B., Van der Molen, S. et al. Two evolutionary units on the South American razor clam Ensis macha (Bivalvia: Pharidae): genetic and morphometric evidence. Org Divers Evol 20, 331–344 (2020). https://doi.org/10.1007/s13127-020-00441-4

Download citation

Keywords

  • Genetic analysis
  • Elliptic Fourier analysis
  • Patagonia
  • Phylogeography
  • Phenotypic plasticity
  • Local adaptation