Skip to main content
Log in

A new species rises from beneath Florida: molecular phylogenetic analyses reveal cryptic diversity among the metapopulation of Crangonyx hobbsi Shoemaker, 1941 (Amphipoda: Crangonyctidae)

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

The phylogenetic structure of 23 populations of Crangonyx hobbsi, a stygobitic amphipod species endemic to the Floridan aquifer, is detailed. Molecular genetic analyses (based on three genes the nuclear 18S rDNA, 28S rDNA, and mitochondrial 16S rDNA) point to the presence of at least two phylogenetic clades within the aquifer. These clades align into two major zoogeographic regions, the Northern Suwannee River Basin and the Coastal and Central Lowlands in the Florida peninsula. Three species delimitation models indicate that the Northern Suwannee River Basin Clade represents a species level differentiation from C. hobbsi sensu stricto. Morphological analyses support the molecular analyses, revealing the presence of several taxonomically significant differences between the two species, including presence/absence of calceoli on the second antennae of males and differences in telson shape in both sexes. Additionally, the molecular diversity of C. hobbsi sensu stricto was shown to be surprisingly variable, suggesting the potential presence of additional diversity within the taxon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abràmoff, M. D., Magalhães, P. J., & Ram, S. J. (2004). Image processing with ImageJ. Biophotonics International, 11, 36–42.

    Google Scholar 

  • Borutzky, E. W. (1928). Materialien über die Fauna der unterirdischen Gewässer: Crangonyx chlebnikovi sp. n. (Amphipoda) aus den Höhlen des mittleren Urals. Zoologischer Anzeiger, 77, 253–259.

    Google Scholar 

  • Bouckaert, R., & Drummond, A. J. (2017). bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evolutionary Biology, 17, 42.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.-H., Xie, D., Suchard, M. A., Ramabut, A., & Drummond, A. J. (2014). BEAST 2: A Software Platform for Bayesian Evolutionary Analysis. PLos Computational Biology, 10, e1003537.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bousfield, E. L. (1958). Freshwater amphipod crustaceans of glaciated North America. Canadian Field Naturalist, 72, 55–113.

    Google Scholar 

  • Bousfield, E. L. (1963). New freshwater amphipod crustaceans from Florida. Natural History Papers, National Museum of Canada, 18, 1–9.

    Google Scholar 

  • Bousfield, E. L. (1973). Shallow-water gammaridean Amphipoda of New England. New York: Cornell University Press.

    Google Scholar 

  • Cannizzaro, A. G., & Sawicki, T. R. (2019). Two new species of the genus Crangonyx Bate, 1859 (Amphipoda: Crangonyctidae) from the St. Marks River Basin with notes on the “Crangonyx floridanus complex”. Zootaxa, 4691, 301–332.

    Article  Google Scholar 

  • Cannizzaro, A. G., Balding, D., Lazo-Wasem, E. A., & Sawicki, T. R. (2018). A redescription of the stygobitic amphipod Crangonyx grandimanus (Amphipoda: Crangonyctidae) including phylogenetically significant sequence data for mitochondrial and nuclear genes. Bulletin of the Peabody Museum of Natural History, 59, 109–126.

    Article  Google Scholar 

  • Cannizzaro, A. G., Balding, D., Lazo-Wasem, E. A., & Sawicki, T. R. (2019a). Morphological and molecular analyses reveal a new species of stygobitic amphipod in the genus Crangonyx (Crustacea: Crangonyctidae) from Jackson County, Florida, with a redescription of Crangonyx floridanus and notes on its taxonomy and biogeography. Journal of Natural History, 53, 425–473.

    Article  Google Scholar 

  • Cannizzaro, A. G., Balding, D., Stine, M., & Sawicki, T. R. (2019b). A new syntopic species of Stygobromus Cope, 1872 (Amphipoda: Crangonyctidae) from groundwaters in Georgia and Florida, USA, with notes on S. floridanus Holsinger & Sawicki, 2016. Journal of Crustacean Biology, 40, 407–418.

    Article  Google Scholar 

  • Cannizzaro, A. G., Balding, D., Lazo-Wasem, E. A., & Sawicki, T. R. (2019c). A redescription of Hobb’s cave amphipod Crangonyx hobbsi Shoemaker, 1941 (Amphipoda: Senticaudata: Crangonyctidae) including genetic sequence data for mitochondrial and nuclear genes and notes on its ecology. Proceedings of the Biological Society of Washington, 132, 73–95.

    Article  Google Scholar 

  • Carstens, B. C., Pelletier, T. A., Reid, N. M., & Salter, J. D. (2013). How to fail at species delimitation. Molecular ecology, 22, 4369–4383.

    Article  PubMed  Google Scholar 

  • Chevaldonné, P., Boris, S., Marschal, C., Lejeusne, C., & Calado, R. (2008). Improvements to the “Sket Bottle”: A simple manual device for sampling small crustaceans from marine caves and other cryptic habitats. Journal of Crustacean Biology, 28, 185–188.

    Article  Google Scholar 

  • Cole, G. A. (1980). The mandibular palps of North American freshwater species of Gammarus. Crustaceana Supplement, 6, 68–83.

    Google Scholar 

  • Copilaş-Ciocianu, D., Sidorov, D., & Gontcharov, A. (2019). Adrift across tectonic plates: molecular phylogenetics supports the ancient Laurasian origin of old limnic crangonyctid amphipods. Organisms Diversity & Evolution, 19, 1–17.

    Article  Google Scholar 

  • Danielopol, D. L., Pospisil, P., & Rouch, R. (2000). Biodiversity in groundwater: a largescale view. Trends in Ecology & Evolution, 15, 223–224.

    Article  CAS  Google Scholar 

  • Dinno, A. (2012). Paran: Horn’s Test of Principal Components/Factors. https://CRAN.R-project.org/package=paran.

  • Drummond, A. J., Ashton, B., Buxton, S., Cheung, M., & Cooper, A. (2017). Geneious v10.2.3. Available from http://www.geneious.com/ (Last accessed on 2017 May 30).

  • Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792–1797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • English, U., & Koenemann, S. (2001). Preliminary phylogenetic analysis of selected subterranean amphipod crustaceans, using small subunit rDNA gene sequences. Organisms Diversity & Evolution, 1, 139–145.

    Article  Google Scholar 

  • Ezard, T., Fujisawa, T., & Barraclough, T. (2013). Splits: Species’ Limits by Threshold Statistics. http://r-forge.r-project.org/projects/splits/.

  • Fišer, C. E., Sket, B., & Trontelj, P. (2008). A phylogenetic perspective on 160 years of troubled taxonomy of Niphargus (Crustacea: Amphipoda). Zoologica Scripta, 37, 665–680.

    Article  Google Scholar 

  • Fišer, C. E., Trontelj, P., Luštrik, R., & Sket, B. (2009). Toward a unified taxonomy of Niphargus (Crustacea: Amphipoda): a review of morphological variability. Zootaxa, 2061, 1–22.

    Article  Google Scholar 

  • Flot, J. F., Wörheide, G., & Dattagupta, S. (2010). Unsuspected diversity of Niphargus amphipods in the chemoautotrophic cave ecosystem of Frasassi, central Italy. BMC Evolutionary Biology, 10, 171.

    Article  PubMed  PubMed Central  Google Scholar 

  • Franz, R., Bauer, J., & Morris, T. (1994). Review of biologically significant caves and their faunas in Florida and South Georgia. Brimleyana, 20, 1–109.

    Google Scholar 

  • Garman, K. M., Rubelmann, H., Karlen, D. J., Wu, T., & Garey, J. R. (2011). Comparison of an inactive submarine spring with an active nearshore anchialine spring in Florida. Hydrobiologia, 667, 65–67.

    Article  CAS  Google Scholar 

  • Guindon, S., Dufavard, J. F., & Lefort, V. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic biology, 59, 307–321.

    Article  CAS  PubMed  Google Scholar 

  • Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Paleontologica Electronica, 4.

  • Holsinger, J. R. (1974). Systematics of the Subterranean Amphipod genus Stygobromus (Gammaridae), Part I: Species of the Western United States. Smithsonian Contributions to Zoology, 160, 1–63.

    Article  Google Scholar 

  • Holsinger, J. R. (1977). A review of the systematics of the Holarctic amphipod family Crangonyctidae. Crustaceana Supplement, 4, 244–281.

    Google Scholar 

  • Holsinger, J. R. (1978). Systematics of the Subterranean Amphipod Genus Stygobromus (Crangonyctidae), Part II: Species of the Eastern United States. Smithsonian Contributions to Zoology, 266, 1–144.

    Article  Google Scholar 

  • Holsinger, J. R. (1992). Four new species of subterranean amphipod crustaceans (Artesiidae, Hadziidae, Sebidae) from Texas, with comments on their phylogenetic and biogeographic relationships. Texas Memorial Museum, Speleological Monographs, 3, 1–22.

    Google Scholar 

  • Holsinger, J. R., & Longley, G. (1980). The subterranean amphipod crustacean fauna of an artesian well in Texas. Smithsonian Contributions to Zoology, 308, 1–62.

    Article  Google Scholar 

  • Holsinger, J. R., & Sawicki, T. R. (2016). A new species of the subterranean genus Stygobromus (Amphipoda: Crangonyctidae) from a cave spring in northern Florida, USA. Zootaxa, 4067, 88–94.

    Article  PubMed  Google Scholar 

  • Holsinger, J. R., Shafer, J., Fong, D. W., & Culver, D. C. (2008). Gammarus cohabitus, a new species of subterranean amphipod crustacean (Gammaridae) from groundwater habitats in central Pennsylvania, USA. Subterranean Biology, 6, 31–41.

    Google Scholar 

  • Hou, Z., Fu, J., & Li, S. (2007). A molecular phylogeny of the genus Gammarus (Crustacea: Amphipoda) based on mitochondrial and nuclear gene sequences. Molecular Phylogenetics and Evolution, 45, 596–611.

    Article  CAS  PubMed  Google Scholar 

  • Hou, Z., Sket, B., & Li, S. (2014). Phylogenetic analyses of Gammaridae crustacean reveal different diversification patterns among sister lineages in the Tethyan region. Cladistics, 30, 353–365.

    Article  Google Scholar 

  • Katoh, K., & Standley, D. M. (2013). MAAFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kornobis, E., Pálsson, S., Sidorov, D. A., Holsinger, J. R., & Kristjánsson, B. K. (2011). Molecular taxonomy and phylogenetic affinities of two groundwater amphipods, Crangonyx islandicus and Crymostygius thingvallensis, endemic to Iceland. Molecular Phylogenetics and Evolution, 58, 527–539.

    Article  PubMed  Google Scholar 

  • Kristjánsson, B. K., & Svavarsson, J. (2004). Crymostygidae, a new family of subterranean freshwater gammaridean amphipods (Crustacea) recorded from subarctic Europe. Journal of Natural History, 38, 1881–1894.

    Article  Google Scholar 

  • Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanfear, R., Calcott, N., & Ho, S. Y. (2012). PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29, 1695–1701.

    Article  CAS  PubMed  Google Scholar 

  • Lanfear, R., Fradsen, P. B., & Wright, A. M. (2016). PartitionFinder 2: new methods for selected partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution, 34, 772–773.

    Google Scholar 

  • Leaché, A. D., & Fugita, M. K. (2010). Bayesian species delimitation in West African forest geckos (Hemidactylus fasciatus). Proceedings of the Royal Society B: Biological Sciences, 277, 3071–3077.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lefébure, T., Douady, C. J., Gouy, M., Trontelj, P., Briolay, J., & Gilbert, J. (2006). Phylogeography of a subterranean amphipod reveals cryptic diversity and dynamic evolution in extreme environments. Molecular Ecology, 15, 1797–1806.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, J. J., & Sawicki, T. R. (2016). Mexistenasellus floridensis sp. n., the first stenasellid isopod discovered from the Floridan aquifer (Crustacea, Isopoda, Asellota). Subterranean Biology, 17, 121–132.

    Article  Google Scholar 

  • MacDonald III, K. S., Yampolsky, L., & Duffy, J. E. (2005). Molecular and morphological evaluation of the amphipod radiation of Lake Baikal. Molecular Phylogenetics and Evolution, 35, 323–343.

    Article  CAS  PubMed  Google Scholar 

  • Maurice, L., & Bloomfield, J. (2012). Stygobitic invertebrates in groundwater—a review from a hydrogeological perspective. Freshwater Reviews, 5, 51–71.

    Article  Google Scholar 

  • Meleg, I. N., Zaksek, V., Fiser, C., Kelemen, B. S., & Moldovan, O. T. (2013). Can environment predict cryptic diversity? The case of Niphargus inhabiting Western Carpathian groundwater. PLoS One, 8, e.76760.

    Article  CAS  Google Scholar 

  • Michonneau, F., Bolker, B., Holder, M., Lewis, P., & O’Meara, B. (2016). rncl: An Interface to the Nexus Class Library. https://CRAN.R-project.org/package=rncl.

  • Miller, J. A. (2002). Ground water atlas of the United States: Segment 6, Alabama, Florida, Georgia, and South Carolina. Virginia: US Geological Survey.

    Google Scholar 

  • Palumbi, S., Martin, A., Romano, S., & McMillan, W. O. (1991). The Simple Fool’s Guide to PCR, Version 2.0. Hawaii: University of Hawaii.

    Google Scholar 

  • Paradis, E., Claude, J., & Strimmer, K. (2004). APE: Analyses of phylogenetics and evolution in R language. Bioinformatics, 20, 289–290.

    Article  CAS  PubMed  Google Scholar 

  • Pfenniger, M., & Schwenk, K. (2007). Cryptic animal species are homogenously distributed among taxa and biogeographical regions. BMC Evolutionary Biology, 7, 121.

    Article  Google Scholar 

  • Puillandre, N., Lambert, A., Brouillet, S., & Achaz, G. (2012). ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology, 21, 1864–1877.

    Article  CAS  PubMed  Google Scholar 

  • Ramabaut, A., Suchard, M., Xie, W., & Drummond, A. (2014). Tracer v 1.6. Institute of Evolutionary Biology, University of Edinburgh.

  • Ronquist, F., & Huelsenbeck, J. P. (2003). MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574.

    Article  CAS  PubMed  Google Scholar 

  • Saiki, R., Gelfland, D. H., Stofell, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, B., & Elrich, H. A. (1988). Primer directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science, 239, 487–491.

    Article  CAS  PubMed  Google Scholar 

  • Sawicki, T. R., Holsinger, J. R., Lazo-Wasem, E. A., & Long, R. A. (2017). A new species of subterranean amphipod (Amphipoda: Gammaridae: Crangonyctidae) from Florida, with a genetic analysis of associated microbial mats. Journal of Crustacean Biology, 37, 285–295.

    Article  Google Scholar 

  • Seidel, R. A., Lang, B. K., & Berg, D. J. (2009). Phylogeographic analysis reveals multiple cryptic species of amphipods (Crustacea: Amphipoda) in Chihuahuan Desert springs. Biological Conservation, 142, 2303–2313.

    Article  Google Scholar 

  • Shoemaker, C. R. (1941). A new subterranean amphipod of the genus Crangonyx from Florida. Charleston Museum Leaflet, 16, 9–14.

    Google Scholar 

  • Sket, B. (1999). The nature of biodiversity in hypogean waters and how it is endangered. Biodiversity & Conservation, 8, 1319–1338.

    Article  Google Scholar 

  • Steele, D. H., & Steele, V. J. (1991). The structure and organization of the gills of gammaridean Amphipoda. Journal of Natural History, 25, 1247–1258.

    Article  Google Scholar 

  • Stock, J. H. (1974). The systematics of certain Ponto-Caspian Gammaridae (Crustacea, Amphipoda). Mitteilungen Hamburg Zoologischen Museum und Institut, 70, 75–95.

    Google Scholar 

  • Svavarsson, J., & Kristjánsson, B. K. (2006). Crangonyx islandicus sp. nov., a subterranean freshwater amphipod (Crustacea, Amphipoda, Crangonyctidae) from springs in lava fields in Iceland. Zootaxa, 1365, 1–17.

    Article  Google Scholar 

  • Trontelj, P., Douady, C. J., Fišer, C., Gibert, J., Goricki, Š., Lefébure, T., Sket, B., & Zakšek, V. (2009). A molecular test for cryptic diversity in groundwater: how large are the ranges of macro-stygobionts? Freshwater Biology, 54, 727–744.

    Article  CAS  Google Scholar 

  • Väinölä, R., Witt, J. D. S., Grabowski, M., Bradbury, J. H., Jazdzewski, K., & Sket, B. (2007). Global diversity of amphipods (Amphipoda: Crustacea) in freshwater. In E. V. Balian, C. Leveque, H. Segers, & K. Marten (Eds.), Freshwater Animal Diversity Assessment (pp. 241–255). Dordrecht: Springer.

    Google Scholar 

  • Wang, D., & Holsinger, J. R. (2001). Systematics of the subterranean amphipod genus Stygobromus (Crangonyctidae) in western North America, with emphasis on species of the hubbsi group. Amphipacifica, 3, 39–147.

    Google Scholar 

  • White, K. N. (2011). Nuclear 18S rDNA as a species-level molecular marker for Leucothoidae (Amphipoda). Journal of Crustacean Biology, 31, 710–716.

    Article  Google Scholar 

  • Yang, Z. (2015). The BPP program for species tree estimation and species delimitation. Current Zoology, 61, 854–865.

    Article  Google Scholar 

  • Yang, Z., & Rannala, B. (2014). Unguided species delimitation using DNA sequence data from multiple loci. Molecular Biology and Evolution, 31, 3125–3135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, J., & Holsinger, J. R. (2003). Systematics of the freshwater amphipod genus Crangonyx (Crangonyctidae) in North America. Martinsville: Virginia Museum of Natural History.

    Google Scholar 

  • Zhang, J., Kapli, P., Pavlidis, P., & Stamatakis, A. (2012). A general species delimitation method with applications to phylogenetic placements. Bioinformatics, 29, 2869–2976.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We sincerely thank Paul Moler, Deanne Moler, Michael Stine, Bonnie Stine, Bobby Scharping, Jim Garey, A.J. Gonzalles, Jared Defoe, Eric Deister and the members of Karst Underwater Research (KUR), and Casey McKinlay and the members of the Woodville Karst Plain Project (WKPP) for their assistance with collection efforts throughout the state. We also thank the Florida Department of Environmental Protection and state park rangers and staff for their courtesy and professionalism. We are grateful to Dr. Richard Long for his advice on the molecular aspects of this study. We thank two anonymous reviewers for their constructive feedback.

Funding

Funding for this project was by the State of Florida, Fish and Wildlife Conservation Commission, State Wildlife Grants No.15044, U.S. Fish and Wildlife Service Federal Award no. FL-T-F15AF00394.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas R. Sawicki.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Table S1

(XLSX 10.6 kb)

Table S2

(XLSX 15.3 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cannizzaro, A.G., Balding, D., Lazo-Wasem, E.A. et al. A new species rises from beneath Florida: molecular phylogenetic analyses reveal cryptic diversity among the metapopulation of Crangonyx hobbsi Shoemaker, 1941 (Amphipoda: Crangonyctidae). Org Divers Evol 20, 387–404 (2020). https://doi.org/10.1007/s13127-020-00433-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-020-00433-4

Keywords

Navigation