Advertisement

Comparative analysis of peripheral blood reveals transcriptomic adaptations to extreme environments on the Qinghai-Tibetan Plateau in the gray wolf (Canis lupus chanco)

  • Guangshuai Liu
  • Chao Zhao
  • Xiufeng Yang
  • Junliang Shang
  • Xiaodong Gao
  • Guolei Sun
  • Huashan Dou
  • Honghai ZhangEmail author
Original Article

Abstract

Molecular adaptations to life on the Qinghai-Tibetan Plateau (QTP) have been detected in the genomes of many native animals, but the contribution of variations in gene expression to high-altitude adaptation remains to be determined. Here, we sequenced the peripheral blood transcriptomes of the lowland wolf and the Tibetan wolf (Canis lupus chanco), an endemic top predator on the QTP, and analyzed how the gene expression pattern has become modified to cope with the extreme plateau environments. Comparisons of the transcriptomes of Tibetan wolves and their lowland counterparts revealed 90 differentially expressed genes (DEGs), including 6 genes (ATP6, ATP8, COX3, CYTB, ND2, and ND4) located in the mitochondrial respiratory chain. Several DEGs are functionally involved in DNA repair (RAD52 and NUPR1), reactive oxygen species (ROS) regulation (GSTP1 and RETSAT), and cardiovascular homeostasis (ACTA2, CD151, DDX6, HPSE, and YOD1). Further functional enrichment analyses demonstrated that the identified DEGs were significantly enriched in specific functional categories related to energy metabolism, hypoxic response, and cardiovascular homeostasis, indicating that the gene expression variation in Tibetan wolves may contribute to their adaptation to life on the QTP. The phylogenetic topology of worldwide populations based on 12 mitochondrial protein-coding genes (MPGs) is inconsistent with the patterns revealed by a previous genome-wide study, implying that adaptive evolution may have occurred in the MPGs of Tibetan wolves. Wolf ATP8 was shown to have a higher dN/dS (ω) ratio (ω = 0.712) than the other 11 genes (ω ≤ 0.272). Overall, our study provides new insights into the mechanisms underlying high-altitude adaptations in a wild carnivore with not only mitochondrial gene adaptation but also fine-tuned gene expression responses.

Keywords

Tibetan wolf Transcriptome High-altitude adaptation Mitochondrial DNA 

Notes

Acknowledgments

We thank the Luobulingka Zoo (Lhasa, Tibet), Xining Zoo (Xining, Qinhai), and Dailake National Nature Reserve (Hailar, Inner Mongolia) for their help in collecting the samples for this study. At last, the most sincere wishes to those persons who love me and hurt me, both of them made me stronger.

Funding information

This work was supported by Special Fund for Forest Scientific Research in the Public Welfare (201404420) and National Natural Science Fund of China (31872242, 31672313, 31372220).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

13127_2019_405_MOESM1_ESM.docx (3.9 mb)
ESM 1 (DOCX 3999 kb)
13127_2019_405_MOESM2_ESM.xlsx (763 kb)
ESM 2 (XLSX 762 kb)
13127_2019_405_MOESM3_ESM.xlsx (36 kb)
ESM 3 (XLSX 35 kb)

References

  1. Anders, S., Pyl, P. T., & Huber, W. (2015). HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics, 31(2), 166–169.Google Scholar
  2. Beall, C. M. (2007). Two routes to functional adaptation: Tibetan and Andean high-altitude natives. Proceedings of the National Academy of Sciences of the United States of America, 104(Suppl 1), 8655–8660.Google Scholar
  3. Beall, C. M., Cavalleri, G. L., Deng, L., Elston, R. C., Gao, Y., Knight, J., Li, C., Li, J. C., Liang, Y., McCormack, M., Montgomery, H. E., Pan, H., Robbins, P. A., Shianna, K. V., Tam, S. C., Tsering, N., Veeramah, K. R., Wang, W., Wangdui, P., Weale, M. E., Xu, Y., Xu, Z., Yang, L., Zaman, M. J., Zeng, C., Zhang, L., Zhang, X., Zhaxi, P., & Zheng, Y. T. (2010). Natural selection on EPAS1 (HIF2alpha) associated with low hemoglobin concentration in Tibetan highlanders. Proceedings of the National Academy of Sciences of the United States of America, 107(25), 11459–11464.Google Scholar
  4. Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B, 57, 289–300.Google Scholar
  5. Benson, F. E., Baumann, P., & West, S. C. (1998). Synergistic actions of Rad51 and Rad52 in recombination and DNA repair. Nature, 391(6665), 401–404.Google Scholar
  6. Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120.Google Scholar
  7. Busch, R. H. (1998). The wolf almanac. Guilford: The Lyons Press.Google Scholar
  8. Cano, C. E., Hamidi, T., Sandi, M. J., & Iovanna, J. L. (2011). Nupr1: the Swiss-knife of cancer. Journal of Cellular Physiology, 226(6), 1439–1443.Google Scholar
  9. Chaussabel, D., Pascual, V., & Banchereau, J. (2010). Assessing the human immune system through blood transcriptomics. BMC Biology, 8, 84.Google Scholar
  10. Cheviron, Z. A., Bachman, G. C., Connaty, A. D., McClelland, G. B., & Storz, J. F. (2012). Regulatory changes contribute to the adaptive enhancement of thermogenic capacity in high-altitude deer mice. Proceedings of the National Academy of Sciences of the United States of America, 109(22), 8635–8640.Google Scholar
  11. Cheviron, Z. A., Bachman, G. C., & Storz, J. F. (2013). Contributions of phenotypic plasticity to differences in thermogenic performance between highland and lowland deer mice. The Journal of Experimental Biology, 216(Pt 7, 1160–1166.Google Scholar
  12. Cheviron, Z. A., Connaty, A. D., McClelland, G. B., & Storz, J. F. (2014). Functional genomics of adaptation to hypoxic cold-stress in high-altitude deer mice: transcriptomic plasticity and thermogenic performance. Evolution, 68(1), 48–62.Google Scholar
  13. Coller, J., & Parker, R. (2005). General translational repression by activators of mRNA decapping. Cell, 122(6), 875–886.Google Scholar
  14. Cummings, M.P. (2004). PAUP* (phylogenetic analysis using parsimony (and other methods)).Google Scholar
  15. de Vries, S., Naarmann-de Vries, I. S., Urlaub, H., Lue, H., Bernhagen, J., Ostareck, D. H., & Ostareck-Lederer, A. (2013). Identification of DEAD-box RNA helicase 6 (DDX6) as a cellular modulator of vascular endothelial growth factor expression under hypoxia. The Journal of Biological Chemistry, 288(8), 5815–5827.Google Scholar
  16. Du, L., Li, W., Fan, Z., Shen, F., Yang, M., Wang, Z., et al. (2015). First insights into the giant panda (Ailuropoda melanoleuca) blood transcriptome: a resource for novel gene loci and immunogenetics. Molecular Ecology Resources, 15(4), 1001–1013.Google Scholar
  17. Elkin, M. (2001). Heparanase as mediator of angiogenesis: mode of action. The FASEB Journal., 15, 1661–1663.Google Scholar
  18. Fan, Z., Silva, P., Gronau, I., Wang, S., Armero, A. S., Schweizer, R. M., Ramirez, O., Pollinger, J., Galaverni, M., Ortega del-Vecchyo, D., du, L., Zhang, W., Zhang, Z., Xing, J., Vilà, C., Marques-Bonet, T., Godinho, R., Yue, B., & Wayne, R. K. (2016). Worldwide patterns of genomic variation and admixture in gray wolves. Genome Research, 26(2), 163–173.Google Scholar
  19. Ge, R. L., Cai, Q., Shen, Y. Y., San, A., Ma, L., Zhang, Y., Yi, X., Chen, Y., Yang, L., Huang, Y., He, R., Hui, Y., Hao, M., Li, Y., Wang, B., Ou, X., Xu, J., Zhang, Y., Wu, K., Geng, C., Zhou, W., Zhou, T., Irwin, D. M., Yang, Y., Ying, L., Bao, H., Kim, J., Larkin, D. M., Ma, J., Lewin, H. A., Xing, J., Platt, R. N., Ray, D. A., Auvil, L., Capitanu, B., Zhang, X., Zhang, G., Murphy, R. W., Wang, J., Zhang, Y. P., & Wang, J. (2013). Draft genome sequence of the Tibetan antelope. Nature Communications, 4, 1858.Google Scholar
  20. Gelfi, C., De Palma, S., Ripamonti, M., Eberini, I., Wait, R., Bajracharya, A., et al. (2004). New aspects of altitude adaptation in Tibetans: a proteomic approach. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 18(3), 612–614.Google Scholar
  21. Gironella, M., Malicet, C., Cano, C., Sandi, M. J., Hamidi, T., Tauil, R. M., et al. (2009). p8/nupr1 regulates DNA-repair activity after double-strand gamma irradiation-induced DNA damage. Journal of Cellular Physiology, 221(3), 594–602.Google Scholar
  22. Guo, D. C., Pannu, H., Tran-Fadulu, V., Papke, C. L., Yu, R. K., Avidan, N., Bourgeois, S., Estrera, A. L., Safi, H. J., Sparks, E., Amor, D., Ades, L., McConnell, V., Willoughby, C. E., Abuelo, D., Willing, M., Lewis, R. A., Kim, D. H., Scherer, S., Tung, P. P., Ahn, C., Buja, L. M., Raman, C. S., Shete, S. S., & Milewicz, D. M. (2007). Mutations in smooth muscle alpha-actin (ACTA2) lead to thoracic aortic aneurysms and dissections. Nature Genetics, 39(12), 1488–1493.Google Scholar
  23. Ji, F., Sharpley, M. S., Derbeneva, O., Alves, L. S., Qian, P., Wang, Y., Chalkia, D., Lvova, M., Xu, J., Yao, W., Simon, M., Platt, J., Xu, S., Angelin, A., Davila, A., Huang, T., Wang, P. H., Chuang, L. M., Moore, L. G., Qian, G., & Wallace, D. C. (2012). Mitochondrial DNA variant associated with Leber hereditary optic neuropathy and high-altitude Tibetans. Proceedings of the National Academy of Sciences of the United States of America, 109(19), 7391–7396.Google Scholar
  24. Kang, X., Liu, G., Liu, Y., Xu, Q., Zhang, M., & Fang, M. (2013). Transcriptome profile at different physiological stages reveals potential mode for curly fleece in Chinese tan sheep. PLoS One, 8(8), e71763.Google Scholar
  25. Kanwal, R., Pandey, M., Bhaskaran, N., Maclennan, G. T., Fu, P., Ponsky, L. E., et al. (2014). Protection against oxidative DNA damage and stress in human prostate by glutathione S-transferase P1. Molecular Carcinogenesis, 53(1), 8–18.Google Scholar
  26. Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., & Salzberg, S. L. (2013). TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology, 14(4), R36.Google Scholar
  27. Lan, R. F., Liu, Z. X., Liu, X. C., Song, Y. E., & Wang, D. W. (2005). CD151 promotes neovascularization and improves blood perfusion in a rat hind-limb ischemia model. Journal of endovascular therapy : an official journal of the International Society of Endovascular Specialists, 12(4), 469–478.Google Scholar
  28. Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357–359.Google Scholar
  29. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., & Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947–2948.Google Scholar
  30. Li, M., Tian, S., Jin, L., Zhou, G., Li, Y., Zhang, Y., Wang, T., Yeung, C. K. L., Chen, L., Ma, J., Zhang, J., Jiang, A., Li, J., Zhou, C., Zhang, J., Liu, Y., Sun, X., Zhao, H., Niu, Z., Lou, P., Xian, L., Shen, X., Liu, S., Zhang, S., Zhang, M., Zhu, L., Shuai, S., Bai, L., Tang, G., Liu, H., Jiang, Y., Mai, M., Xiao, J., Wang, X., Zhou, Q., Wang, Z., Stothard, P., Xue, M., Gao, X., Luo, Z., Gu, Y., Zhu, H., Hu, X., Zhao, Y., Plastow, G. S., Wang, J., Jiang, Z., Li, K., Li, N., Li, X., & Li, R. (2013). Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars. Nature Genetics, 45(12), 1431–1438.Google Scholar
  31. Li, Y., Wu, D. D., Boyko, A. R., Wang, G. D., Wu, S. F., Irwin, D. M., & Zhang, Y. P. (2014). Population variation revealed high-altitude adaptation of Tibetan mastiffs. Molecular Biology and Evolution, 31(5), 1200–1205.Google Scholar
  32. Liu, G., Zhang, H., Sun, G., Zhao, C., Shang, S., Gao, X., Xia, T., & Yang, X. (2017). Characterization of the peripheral blood transcriptome and adaptive evolution of the MHC I and TLR gene families in the wolf (Canis lupus). BMC Genomics, 18(1), 584.Google Scholar
  33. Liu, Y., & Maizels, N. (2000). Coordinated response of mammalian Rad51 and Rad52 to DNA damage. EMBO Reports, 1(1), 85–90.Google Scholar
  34. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods, 25(4), 402–408.Google Scholar
  35. Lopez, M. B., Garcia, M. N., Grasso, D., Bintz, J., Molejon, M. I., Velez, G., Lomberk, G., Neira, J. L., Urrutia, R., & Iovanna, J. (2015). Functional characterization of Nupr1L, a novel p53-regulated isoform of the high-mobility group (HMG)-related protumoral protein Nupr1. Journal of Cellular Physiology, 230(12), 2936–2950.Google Scholar
  36. Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12), 550.Google Scholar
  37. Luo, Y., Gao, W., Gao, Y., Tang, S., Huang, Q., Tan, X., Chen, J., & Huang, T. (2008). Mitochondrial genome analysis of Ochotona curzoniae and implication of cytochrome c oxidase in hypoxic adaptation. Mitochondrion, 8(5–6), 352–357.Google Scholar
  38. Manalo, D. J., Rowan, A., Lavoie, T., Natarajan, L., Kelly, B. D., Ye, S. Q., Garcia, J. G., & Semenza, G. L. (2005). Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood, 105(2), 659–669.Google Scholar
  39. Martinelli, M., Winterhalder, R., Cerretelli, P., Howald, H., & Hoppeler, H. (1990). Muscle lipofuscin content and satellite cell volume is increased after high altitude exposure in humans. Experientia, 46, 672–676.Google Scholar
  40. Mori, S., & Matsunami, M. (2018). Signature of positive selection in mitochondrial DNA in Cetartiodactyla. Genes & Genetic Systems, 93, 65–73.Google Scholar
  41. Nonhoff, U., Ralser, M., Welzel, F., Piccini, I., Balzereit, D., Yaspo, M. L., Lehrach, H., & Krobitsch, S. (2007). Ataxin-2 interacts with the DEAD/H-box RNA helicase DDX6 and interferes with P-bodies and stress granules. Molecular Biology of the Cell, 18(4), 1385–1396.Google Scholar
  42. Pan, S., Zhang, T., Rong, Z., Hu, L., Gu, Z., Wu, Q., Dong, S., Liu, Q., Lin, Z., Deutschova, L., Li, X., Dixon, A., Bruford, M. W., & Zhan, X. (2017). Population transcriptomes reveal synergistic responses of DNA polymorphism and RNA expression to extreme environments on the Qinghai-Tibetan Plateau in a predatory bird. Molecular Ecology, 26(11), 2993–3010.Google Scholar
  43. Pang, X. Y., Wang, S., Jurczak, M. J., Shulman, G. I., & Moise, A. R. (2017). Retinol saturase modulates lipid metabolism and the production of reactive oxygen species. Archives of Biochemistry and Biophysics, 633, 93–102.Google Scholar
  44. Park, M. S. (1995). Expression of human RAD52 confers resistance to ionizing radiation in mammalian cells. The Journal of Biological Chemistry, 270(26), 15467–15470.Google Scholar
  45. Pond, S. L., Frost, S. D., & Muse, S. V. (2005). HyPhy: hypothesis testing using phylogenies. Bioinformatics, 21(5), 676–679.Google Scholar
  46. Posada, D., & Crandall, K. A. (1998). MODELTEST: testing the model of DNA substitution. Bioinformatics, 14(9), 817–818.Google Scholar
  47. Qiu, Q., Zhang, G., Ma, T., Qian, W., Wang, J., Ye, Z., Cao, C., Hu, Q., Kim, J., Larkin, D. M., Auvil, L., Capitanu, B., Ma, J., Lewin, H. A., Qian, X., Lang, Y., Zhou, R., Wang, L., Wang, K., Xia, J., Liao, S., Pan, S., Lu, X., Hou, H., Wang, Y., Zang, X., Yin, Y., Ma, H., Zhang, J., Wang, Z., Zhang, Y., Zhang, D., Yonezawa, T., Hasegawa, M., Zhong, Y., Liu, W., Zhang, Y., Huang, Z., Zhang, S., Long, R., Yang, H., Wang, J., Lenstra, J. A., Cooper, D. N., Wu, Y., Wang, J., Shi, P., Wang, J., & Liu, J. (2012). The yak genome and adaptation to life at high altitude. Nature Genetics, 44(8), 946–949.Google Scholar
  48. Qu, Y., Zhao, H., Han, N., Zhou, G., Song, G., Gao, B., Tian, S., Zhang, J., Zhang, R., Meng, X., Zhang, Y., Zhang, Y., Zhu, X., Wang, W., Lambert, D., Ericson, P. G. P., Subramanian, S., Yeung, C., Zhu, H., Jiang, Z., Li, R., & Lei, F. (2013). Ground tit genome reveals avian adaptation to living at high altitudes in the Tibetan plateau. Nature Communications, 4, 2071.Google Scholar
  49. Rapaport, F., Khanin, R., Liang, Y., Pirun, M., Krek, A., Zumbo, P., Mason, C. E., Socci, N. D., & Betel, D. (2013). Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. Genome Biology, 14(9), R95.Google Scholar
  50. Ren, J., Liu, H., Yan, L., Tian, S., Li, D., & Xu, Z. (2011). Microvessel density and heparanase over-expression in clear cell renal cell cancer: correlations and prognostic significances. World Journal of Surgical Oncology, 9, 158.Google Scholar
  51. Ripple, W. J., Estes, J. A., Beschta, R. L., Wilmers, C. C., Ritchie, E. G., Hebblewhite, M., Berger, J., Elmhagen, B., Letnic, M., Nelson, M. P., Schmitz, O. J., Smith, D. W., Wallach, A. D., & Wirsing, A. J. (2014). Status and ecological effects of the world's largest carnivores. Science, 343(6167), 1241484.Google Scholar
  52. Roberts, T. J. (1977). The mammals of Pakistan. London: Ernest Benn ltd.Google Scholar
  53. Ronquist, F., & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19(12), 1572–1574.Google Scholar
  54. Saito, K., Kondo, E., & Matsushita, M. (2011). MicroRNA 130 family regulates the hypoxia response signal through the P-body protein DDX6. Nucleic Acids Research, 39(14), 6086–6099.Google Scholar
  55. Stipp, C. S., Kolesnikova, T. V., & Hemler, M. E. (2003). Functional domains in tetraspanin proteins. Trends in Biochemical Sciences, 28(2), 106–112.Google Scholar
  56. Sumi, C., Okamoto, A., Tanaka, H., Kusunoki, M., Shoji, T., Uba, T., Adachi, T., Iwai, T., Nishi, K., Harada, H., Bono, H., Matsuo, Y., & Hirota, K. (2018). Suppression of mitochondrial oxygen metabolism mediated by the transcription factor HIF-1 alleviates propofol-induced cell toxicity. Scientific Reports, 8(1), 8987.Google Scholar
  57. Suzuki, R., & Shimodaira, H. (2006). Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics, 22(12), 1540–1542.Google Scholar
  58. Thompson, L. G. (2000). A high-resolution millennial record of the south Asian monsoon from Himalayan ice cores. Science, 289(5486), 1916–1919.Google Scholar
  59. Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M. J., Salzberg, S. L., Wold, B. J., & Pachter, L. (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology, 28(5), 511–515.Google Scholar
  60. Velotta, J. P., Jones, J., Wolf, C. J., & Cheviron, Z. A. (2016). Transcriptomic plasticity in brown adipose tissue contributes to an enhanced capacity for nonshivering thermogenesis in deer mice. Molecular Ecology, 25(12), 2870–2886.Google Scholar
  61. Wallace, D. C., Fan, W., & Procaccio, V. (2010). Mitochondrial energetics and therapeutics. Annual Review of Pathology, 5, 297–348.Google Scholar
  62. Wang, G. D., Fan, R. X., Zhai, W., Liu, F., Wang, L., Zhong, L., Wu, H., Yang, H. C., Wu, S. F., Zhu, C. L., Li, Y., Gao, Y., Ge, R. L., Wu, C. I., & Zhang, Y. P. (2014). Genetic convergence in the adaptation of dogs and humans to the high-altitude environment of the Tibetan plateau. Genome Biology and Evolution, 6(8), 2122–2128.Google Scholar
  63. Wang, G. L., & Semenza, G. L. (1993). Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. The Journal of Biological Chemistry, 268(29), 21513–21518.Google Scholar
  64. Wang, H., Long, R., Liang, J. B., Guo, X., Ding, L., & Shang, Z. (2011). Comparison of nitrogen metabolism in yak (Bos grunniens) and indigenous cattle (Bos taurus) on the Qinghai-Tibetan Plateau. Asian-Australasian Journal of Animal Sciences, 24(6), 766–773.Google Scholar
  65. Wei, Q., Huang, X. L., Lin, J. J., Fei, Y. J., Liu, Z. X., & Zhang, X. A. (2011). Adeno associated viral vector-delivered and hypoxia response element-regulated CD151 expression in ischemic rat heart. Acta Pharmacologica Sinica, 32(2), 201–208.Google Scholar
  66. Wiener, G., Han, J. L., Long, R. J. (2003). The yak, 2nd edn. Regional Office for Asia and the Pacific Food and Agriculture Organization of the United Nations: Bangkok.Google Scholar
  67. Xie, C., Mao, X., Huang, J., Ding, Y., Wu, J., Dong, S., Kong, L., Gao, G., Li, C. Y., & Wei, L. (2011). KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Research, 39(suppl, W316–W322.Google Scholar
  68. Yang, S., Banerjee, S., Freitas, A., Cui, H., Xie, N., Abraham, E., et al. (2012). miR-21 regulates chronic hypoxia-induced pulmonary vascular remodeling. American Journal of Physiology. Lung Cellular and Molecular Physiology, 302(6), L521–L529.Google Scholar
  69. Yang, Z. H. (2007). PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution, 24(8), 1586–1591.Google Scholar
  70. Yi, X., Liang, Y., Huerta-Sanchez, E., Jin, X., Cuo, Z. X., Pool, J. E., et al. (2010). Sequencing of 50 human exomes reveals adaptation to high altitude. Science, 329(5987), 75–78.Google Scholar
  71. Yu, G., Wang, L. G., Han, Y., & He, Q. Y. (2012). clusterProfiler: an R package for comparing biological themes among gene clusters. Omics : a journal of integrative biology, 16(5), 284–287.Google Scholar
  72. Yu, L., Wang, G. D., Ruan, J., Chen, Y. B., Yang, C. P., Cao, X., Wu, H., Liu, Y. H., du, Z. L., Wang, X. P., Yang, J., Cheng, S. C., Zhong, L., Wang, L., Wang, X., Hu, J. Y., Fang, L., Bai, B., Wang, K. L., Yuan, N., Wu, S. F., Li, B. G., Zhang, J. G., Yang, Y. Q., Zhang, C. L., Long, Y. C., Li, H. S., Yang, J. Y., Irwin, D. M., Ryder, O. A., Li, Y., Wu, C. I., & Zhang, Y. P. (2016). Genomic analysis of snub-nosed monkeys (Rhinopithecus) identifies genes and processes related to high-altitude adaptation. Nature Genetics, 48(8), 947–952.Google Scholar
  73. Zhang, H., Zhang, J., Zhao, C., Chen, L., Sha, W., & Liu, G. (2015). Complete mitochondrial genome of Canis lupus campestris. Mitochondrial DNA, 26(2), 255–256.Google Scholar
  74. Zhang, J., Nielsen, R., & Yang, Z. (2005). Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Molecular Biology and Evolution, 22(12), 2472–2479.Google Scholar
  75. Zhang, W., Fan, Z., Han, E., Hou, R., Zhang, L., Galaverni, M., Huang, J., Liu, H., Silva, P., Li, P., Pollinger, J. P., du, L., Zhang, X. Y., Yue, B., Wayne, R. K., & Zhang, Z. (2014). Hypoxia adaptations in the grey wolf (Canis lupus chanco) from Qinghai-Tibet Plateau. PLoS Genetics, 10(7), e1004466.Google Scholar
  76. Zuo, H. J., Liu, Z. X., Liu, X. C., Yang, J., Liu, T., Wen, S., Wang, D. W., & Zhang, X. (2009). Assessment of myocardial blood perfusion improved by CD151 in a pig myocardial infarction model. Acta Pharmacologica Sinica, 30(1), 70–77.Google Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2019

Authors and Affiliations

  1. 1.College of Life ScienceQufu Normal UniversityQufuChina
  2. 2.School of Information Science and EngineeringQufu Normal UniversityRizhaoChina
  3. 3.Dailake National Nature ReserveHulunbuirChina

Personalised recommendations