Skip to main content
Log in

New fossil data and phylogenetic inferences shed light on the morphological disparity of Mesozoic Sinoalidae (Hemiptera, Cicadomorpha)

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

Like many fossil insect groups, the systematic framework of extinct ‘Homoptera’ is mainly based on venational traits of isolated wings; most taxa of Mesozoic Sinoalidae, however, were erected with whole-bodied specimens. On the basis of new fossil data and phylogenetic analyses, this froghopper family is herein chosen as a case study to discuss the potential influence of the absence and/or neglect of body information in palaeoentomological studies. Mesodorus orientalis Chen et Wang, gen. et sp. nov., found in the mid-Cretaceous Burmese amber, bears a venational topology of fore- and hindwings similar to that of the genus Fangyuania from the same horizon and locality, but distinctly differs from the latter and other known sinoalids in possessing a series of unique body characters. Given the similar wing features, Jiania crebra and J. gracila were proposed to be synonyms in a recent study; these two congeners, however, are apparently discernable in their ovipositor and so the synonym should be rejected. Three main clades were recovered within the Sinoalidae in our cladistic analyses, including Clade I (Stictocercopis + Chengdecercopis), Clade II (Huabeicercopis + Luanpingia + Sinoala + Jiania + Shufania), and Clade III (Fangyuania + Mesodorus), and their relationship is as following: Clade I + (Clade II + Clade III). The Jurassic Clade I, as the basal lineage, is remarkably different from other sinoalids in bearing wings with complex venation, but similar to the Jurassic Clade II in body structures. The Cretaceous Clade III possesses a reduced wing topology similar to Clade II, but differs from the latter in possessing a series of novel body characteristics for each taxon (i.e., Fangyuania and Mesodorus). Unsurprisingly, our finds confirm that the information from body structures, vital to understanding the biodiversity and evolutionary history of extinct insects, should not be ignored in palaeoentomological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Allman, E. S., Holder, M. T., & Rhodes, J. A. (2009). Estimating trees from filtered data: identifiability of models for morphological phylogenetics. Journal of Theoretical Biology, 263, 108–119.

    Article  PubMed  Google Scholar 

  • Bai, M., Nie, R., Zhang, W., Ren, D., Shih, C., & Yang, X. (2017). The first fossil Athyreini beetle (Coleoptera: Geotrupidae). Organisms Diversity & Evolution, 17, 157–162.

    Article  Google Scholar 

  • Bartlett, C. R., Deitz, L. L., Dmitriev, D. A., Sanborn, A. F., Soulier-Perkins, A., & Wallace, M. S. (2018). The diversity of the true hoppers (Hemiptera: Auchenorrhyncha). Insect Biodiversity: Science and Society, 2, 501–590.

    Article  Google Scholar 

  • Becker-Migdisova, E. E. (1962). Some new Hemiptera and Psocoptera. Paleontologicheskii Zhurnal, 1962, 89–104.

    Google Scholar 

  • Beutel, R. G., Friedrich, F., Ge, S., & Yang, X. (2014). Insect morphology and phylogeny. A textbook for students of entomology. Berlin-Boston: Walter de Gruyter.

    Google Scholar 

  • Bourgoin, T., Wang, R., Asche, M., Hoch, H., Soulier-Perkins, A., Stroinski, A., Yap, S., & Szwedo, J. (2015). From micropterism to hyperpterism: recognition strategy and standardized homology-driven terminology of the forewing venation patterns in planthoppers (Hemiptera: Fulgoromorpha). Zoomorphology, 134, 63–77.

    Article  PubMed  Google Scholar 

  • Carpenter, F. M. (1992). Superclass Hexapoda. In R. L. Kaesler (Ed.), Treatise on invertebrate paleontology, Part R, Arthropoda 4 (pp. 1–655). Boulder, Colorado: Geological Society of America.

    Google Scholar 

  • Chen, J., Wang, B., Zhang, H., & Wang, X. (2014). A remarkable new genus of Tettigarctidae (Insecta, Hemiptera, Cicadoidea) from the Middle Jurassic of northeastern China. Zootaxa, 3764, 581–586.

    Article  PubMed  Google Scholar 

  • Chen, J., Wang, B., Zhang, H., Wang, X., & Zheng, X. (2015a). New fossil Procercopidae (Hemiptera: Cicadomorpha) from the Middle Jurassic of Daohugou, Inner Mongolia, China. European Journal of Entomology, 112, 373–380.

    Article  Google Scholar 

  • Chen, J., Zhang, H., Wang, B., Zheng, X., & Wang, X. (2015b). High variability in tegminal venation of primitive cercopoids (Insecta, Hemiptera), as implied by the new discovery of fossils from the Middle Jurassic of China. Entomological Science, 18, 147–152.

    Article  Google Scholar 

  • Chen, J., Wang, B., & Jarzembowski, E. A. (2016a). Palaeontology: benefits of trade in amber fossils. Nature, 532, 441.

    Article  PubMed  Google Scholar 

  • Chen, J., Zhang, H., Wang, B., Zheng, X., & Wang, X. (2016b). New Jurassic Sinopalaeocossus and related genera with notes on their evolutionary implications (Hemiptera, Palaeontinidae). Insect Systematics & Evolution, 47, 113–129.

    Article  Google Scholar 

  • Chen, J., Zheng, Y., Wei, G., & Wang, X. (2017). New data on Jurassic Sinoalidae from northeastern China (Insecta, Hemiptera). Journal of Paleontology, 91, 994–1000.

    Article  Google Scholar 

  • Chen, J., Szwedo, J., Wang, B., Zheng, Y., Wang, Y., Wang, X., & Zhang, H. (2018). The first Mesozoic froghopper in amber from northern Myanmar (Hemiptera, Cercopoidea, Sinoalidae). Cretaceous Research, 85, 243–249.

    Article  Google Scholar 

  • Cruickshank, R. D., & Ko, K. (2003). Geology of an amber locality in the Hukawng Valley, northern Myanmar. Journal of Asian Earth Sciences, 21, 441–455.

    Article  Google Scholar 

  • Cryan, J. R., & Svenson, G. J. (2010). Family-level relationships of the spittle bugs and froghoppers (Hemiptera: Cicadomorpha: Cercopoidea). Systematic Entomology, 35, 393–415.

    Article  Google Scholar 

  • Cryan, J. R., & Urban, J. M. (2012). Higher-level phylogeny of the insect order Hemiptera: is Auchenorrhyncha really paraphyletic? Systematic Entomology, 37, 7–21.

    Article  Google Scholar 

  • Evans, J. W. (1946). A natural classification of leaf-hoppers (Homoptera, Jassoidea). Part 1. External morphology and systematic position. Transactions of the Royal Entomological Society of London, 96, 47–60.

    Article  Google Scholar 

  • Evans, J. W. (1966). The leafhoppers and froghoppers of Australia and New Zealand (Homoptera: Cicadelloidea and Cercopoidea). Australian Museum Memoir, 12, 1–347.

    Article  Google Scholar 

  • Forero, D. (2008). The systematics of the Hemiptera. Revista Colombiana de Entomología, 34, 1–21.

    Google Scholar 

  • Fu, Y., & Huang, D. (2018). New fossil genus and species of Sinoalidae (Hemiptera: Cercopoidea) from the Middle to Upper Jurassic deposits in northeastern China. European Journal of Taxonomy, 115, 127–133.

    Google Scholar 

  • Fu, Y., Cai, C., & Huang, D. (2017). A new fossil sinoalid species from the Middle Jurassic Daohugou beds (Insecta: Hemiptera: Cercopoidea). Alcheringa, 42, 94–100.

    Article  Google Scholar 

  • Grimaldi, D., Zhang, J., Fraser, N. C., & Rasnistyn, A. (2005). Revision of the bizarre Mesozoic scorpionflies in the Pseudopolycentropodidae (Mecopteroidea). Insect Systematics & Evolution, 36, 443–458.

    Article  Google Scholar 

  • Hamilton, K. G. A. (1990). Chapter 6. Homoptera. In D. A. Grimaldi (Ed.), Insects from the Santana Formation, Lower Cretaceous of Brazil (pp. 82–122). New York: Bulletin of the American Museum of Natural History.

    Google Scholar 

  • Hamilton, K. G. A. (2015). A new tribe and species of Clastopterinae (Hemiptera: Cercopoidea: Clastopteridae) from Africa, Asia and North America. Zootaxa, 3946, 151–189.

    Article  PubMed  Google Scholar 

  • Hayashi, M. (1985). A new species of Machaerotidae (Homoptera, Cercopoidea) from Taiwan. Kontyu, 53, 366–369.

    Google Scholar 

  • Helm, O. (1893). Further note on Burmite, a new amber-like fossil resin from Upper Burma. Records of the Geological Survey of India (Vol. 26, pp. 61–64).

    Google Scholar 

  • Herendeen, P. S., Friis, E. M., Pedersen, K. R., & Crane, P. R. (2017). Palaeobotanical redux: revisiting the age of the angiosperms. Nature Plants, 3, 17015.

    Article  PubMed  Google Scholar 

  • Hong, Y. (1983). Middle Jurassic fossil insects in north China. Beijing: Geological Publishing House 187 pp.

    Google Scholar 

  • Kania, I., Wang, B., & Szwedo, J. (2015). Dicranoptycha Osten Sacken, 1860 (Diptera, Limoniidae) from the earliest Upper Cretaceous Burmese amber. Cretaceous Research, 52, 522–530.Katz, O. (2017). Extending the scope of Darwin’s ‘abominable mystery’: integrative approaches to understanding angiosperm origins and species richness. Annals of Botany, 121, 1–8.

    Google Scholar 

  • Leach, W. E. (1815). Entomology. In D. Brewster (Ed.), The Edinburgh Encyclopaedia (pp. 57–172). Edinburgh: Blackwood.

    Google Scholar 

  • Lewis, P. O. (2001). A likelihood approach to estimating phylogeny from discrete morphological character data. Systematic Biology, 50, 913–925.

    Article  CAS  PubMed  Google Scholar 

  • Linnaeus, C. (1758). Systema natura per regna tria naturae secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis (10th ed.). Holmiae: Laurentius Salvius 824 pp.

    Google Scholar 

  • Lloyd, G. T., Davis, K. E., Pisani, D., Tarver, J. E., Ruta, M., Sakamoto, M., Hone, D. W. E., Jennings, R., & Benton, M. J. (2008). Dinosaurs and the Cretaceous Terrestrial Revolution. Proceedings of the Royal Society B, 275, 2483–2490.

    Article  PubMed  Google Scholar 

  • Nel, A., Prokop, J., Nel, P., Grandcolas, P., Huang, D., Roques, P., Guilbert, E., Dostal, O., & Szwedo, J. (2012). Traits and evolution of wing venation pattern in paraneopteran insects. Journal of Morphology, 273, 480–506.

    Article  PubMed  Google Scholar 

  • Nel, A., Roques, P., Nel, P., Prokin, A. A., Bourgoin, T., Prokop, J., Szwedo, J., Azar, D., Desutter-Grandcolas, L., Wappler, T., Garrouste, R., Coty, D., Huang, D., Engel, M. S., & Kirejtshuk, A. G. (2013). The earliest known holometabolous insects. Nature, 503, 257–261.

    Article  CAS  PubMed  Google Scholar 

  • Nie, J., & Liang, A. (2009). Dianmachaerota serratiphalla, a new genus and species of Machaerotini from China (Hemiptera: Cercopoidea: Machaerotidae). Annals of the Entomological Society of America, 102, 739–746.

    Article  Google Scholar 

  • Nixon, K. C. (2002). WinClada Ver. 1.00.08. New York: Ithaca.

    Google Scholar 

  • Paladini, A., Takiya, D. M., Urban, J. M., & Cryan, J. R. (2018). New World spittlebugs (Hemiptera: Cercopidae: Ischnorhininae): dated molecular phylogeny, classification, and evolution of aposematic coloration. Molecular Phylogenetics and Evolution, 120, 32–334.

    Article  Google Scholar 

  • Perrichot, V., Nel, A., & Quicke, D. L. J. (2009). New braconid wasps from French Cretaceous amber (Hymenoptera, Braconidae): synonymisation with Eoichneumonidae and implications for the phylogeny of Ichneumonoidea. Zoologica Scripta, 38, 79–88.

    Article  Google Scholar 

  • Poinar, G. O., Buckley, R., & Brown, A. E. (2008). The secrets of burmite amber. Mid-America Paleontological Society Digest, 20, 21–29.

    Google Scholar 

  • Poinar, G., Jr., & Brown, A. (2017). A new genus of leafhoppers (Hemiptera: Cicadellidae) in mid-Cretaceous Myanmar amber. Historical Biology, 1–4. https://doi.org/10.1080/08912963.2017.1384472.

  • Poinar, G., Jr., & Kritsky, G. (2011). Morphological conservatism in the foreleg structure of cicada hatchlings, Burmacicada protera n. gen., n. sp. in Burmese amber, Dominicicada youngi n. gen., n. sp. in Dominican amber and the extant Magicicada septendecim (L.) (Hemiptera: Cicadidae). Historical Biology, 24, 461–466.

    Article  Google Scholar 

  • Ronquist, F., & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574.

    Article  CAS  Google Scholar 

  • Ross, A., Mellish, C., York, P., & Crighton, B. (2010). Chapter 12. Burmese amber. In D. Penney (Ed.), Biodiversity of fossils in amber from the major world deposits (pp. 208–235). Manchester: Siri Scientific Press.

    Google Scholar 

  • Ross, A.J. (2018). Burmese (Myanmar) amber taxa, on-line checklist v.2018.1. http://www.nms.ac.uk/explore/stories/natural-world/burmese-amber/

  • Scotese, C. R., (2014). Atlas of Jurassic paleogeographic maps, PALEOMAP Atlas for ArcGIS. Evanston, IL: Mollweide Projection, PALEOMAP Project.

  • Shcherbakov, D. E. (1988). New cicadas (Cicadina) from the later Mesozoic of Transbaikalia. Paleontological Journal, 4, 52–63.

    Google Scholar 

  • Shcherbakov, D. E. (1992). The earliest leafhoppers (Hemiptera: Karajassidae n. fam.) from the Jurassic of Karatau. Neues Jahrbuch für Geologie und Paläontologie Monatshefte, 1992, 39–51.

    Google Scholar 

  • Shcherbakov, D. E. (2012). More on Mesozoic Membracoidea (Homoptera). Russian Entomological Journal, 21, 15–22.

    Article  Google Scholar 

  • Shcherbakov, D. E., & Popov, Y. A. (2002). Superorder Cimicidea Laicharting, 1781 order Hemiptera Linné, 1758. The bugs, cicadas, plantlice, scale insects, etc. In A. P. Rasnitsyn & D. L. J. Quicke (Eds.), History of insects (pp. 152–155). Dordrecht: Kluwer Academic Publisher.

    Google Scholar 

  • Shi, G., Grimaldi, D. A., Harlow, G. E., Wang, J., Wang, J., Wang, M., Lei, W., Li, Q., & Li, X. (2012). Age constraint on Burmese amber based on U-Pb dating of zircons. Cretaceous Research, 37, 155–163.

    Article  Google Scholar 

  • Song, N., & Liang, A. (2013). A preliminary molecular phylogeny of planthoppers (Hemiptera: Fulgoroidea) based on nuclear and mitochondrial DNA sequences. PLoS One, 8, e58400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song, N., Liang, A., & Bu, C. (2012). A molecular phylogeny of Hemiptera inferred from mitochondrial genome sequences. PLoS One, 7, e48778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorensen, J. T., Campbell, B. C., Gill, R. J., & Steffen-Campbell, J. D. (1995). Non-monophyly of Auchenorrhyncha (“Homoptera”), based upon 18S rDNA phylogeny: eco-evolutionary and cladistic implications within pre-heteropterodea Hemiptera (s. l.) and a proposal for new monophyletic suborders. Pan-Pacific Entomologist, 71, 31–60.

    Google Scholar 

  • Swofford, D. L. (2003). PAUP*. Phylogenetic analyses using parsimony (* and other methods). Sunderland: Sinauer Associates.

    Google Scholar 

  • Szwedo, J. (2018). The unity, diversity and conformity of bugs (Hemiptera) through time. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 107, 109–128.

    Article  Google Scholar 

  • Wang, B., Zhang, H., Fang, Y., Wang, D., & Ji, S. (2008). New data on Cretaceous Palaeontinidae (Insecta: Hemiptera) from China. Cretaceous Research, 29, 551–560.

    Article  CAS  Google Scholar 

  • Wang, B., Zhang, H., & Szwedo, J. (2009). Jurassic Palaeontinidae from China and the higher systematics of Palaeontinoidea (Insecta: Hemiptera: Cicadomorpha). Palaeontology, 52, 53–64.

    Article  Google Scholar 

  • Wang, B., Szwedo, J., & Zhang, H. (2012). New Jurassic Cercopoidea from China and their evolutionary significance (Insecta: Hemiptera). Palaeontology, 55, 1223–1243.

    Article  Google Scholar 

  • Wang, B., Xia, F., Engel, M. S., Perrichot, V., Shi, G., Zhang, H., Chen, J., Jarzembowski, E. A., Wappler, T., & Rust, J. (2016). Debris-carrying camouflage among diverse lineages of cretaceous insects. Science Advances, 2, e1501918.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, T., Pan, L., Zhang, Y., & Dai, W. (2015). Morphology of the mouthparts of the spittlebug Philagra albinotata Uhler (Hemiptera: Cercopoidea: Aphrophoridae). Arthropod Structure and Development, 44, 121–130.

    Article  PubMed  Google Scholar 

  • Zherikhin, V. V. (2002). Ecological history of the terrestrial insects. In A. P. Rasnitsyn & D. L. J. Quicke (Eds.), History of insects (pp. 331–388). Dordrecht: Kluwer Academic Publisher.

    Google Scholar 

Download references

Acknowledgements

The authors sincerely thank Limei Lin and Yameng Li for their constructive comments on an earlier version of the manuscript. We also express our heartfelt thanks to Qian Long who helped take the photograph of the entire amber piece.

Funding

This research was supported by the National Natural Science Foundation of China (41502007; 41702012; 41572010; 41622201; 41688103), the Natural Scientific Foundation of Shandong Province (ZR2016DB24; ZR2016DL04), the China Postdoctoral Science Foundation (2017M621582), the State Key Laboratory of Palaeobiology and Stratigraphy (Nanjing Institute of Geology and Palaeontology, CAS) (No. 183105), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB26000000).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Chen or Haichun Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Wang, B., Zheng, Y. et al. New fossil data and phylogenetic inferences shed light on the morphological disparity of Mesozoic Sinoalidae (Hemiptera, Cicadomorpha). Org Divers Evol 19, 287–302 (2019). https://doi.org/10.1007/s13127-019-00399-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-019-00399-y

Keywords

Navigation