Skip to main content

Advertisement

Log in

Composition of the canid auditory bulla and a new look at the evolution of carnivoran entotympanics

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

The higher carnivoran taxa significantly differ in the morphology of the auditory bulla, but little is known about its non-ectotympanic elements and their contribution to phylogenetically informative bullar characters. The ventral entotympanic sinus, a principal hypotympanic compartment unique to Canidae, expands in post-ossification ontogeny from a distinct portion, rather than the whole, of what is considered the ‘caudal entotympanic’. To trace the earlier development of this sinus and to clarify the potential roles of individual entotympanics in formation of the canid auditory bulla, osteological observations were made on younger skulls of Canis lupus and four additional species. The ventral entotympanic sinus was found to invariably originate at a separate bone provisionally designated the ventral entotympanic. The rest of the caudal entotympanic is a fusion of the posterior (or the proper) caudal entotympanic ossifying near the tympanohyal, and the anterior caudal entotympanic ossifying between the ectotympanic and rostral entotympanic. Examination of the rostral entotympanic also revealed previously unknown details. In sum, the canid auditory bulla includes at least four rather than earlier recognised two (or suspected three) entotympanics. Based on these findings, the composition of the canid intrabullar septum and the homologies of the carnivoran entotympanics are discussed. Within the established phylogenetic framework, the rostral entotympanic and posterior caudal entotympanic appear as plesiomorphic for crown-group Carnivora, while the anterior caudal entotympanic is synapomorphic for Caniformia, and the ventral entotympanic is autapomorphic for Cynoidea. This hypothesis implies that the carnivoran entotympanic patterns may have emerged before complete fusions of bullar bones observed in the fossil record.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Becker, A. (1923). Das postembryonale Wachstum des deutschen Schäferhundschädels. Archiv für Naturgeschichte, Abteilung A, 89(9), 131–197.

    Google Scholar 

  • De Bonis, L., Peigné, S., Guy, F., Likius, A., Makaye, H. T., Vignaud, P., & Brunet, M. (2009). A new mellivorine (Carnivora, Mustelidae) from the Late Miocene of Toros Menalla, Chad. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 252, 33–54. https://doi.org/10.1127/0077-7749/2009/0252-0033.

    Article  Google Scholar 

  • Doronina, L., Churakov, G., Shi, J., Brosius, J., Baertsch, R., Clawson, H., & Schmitz, J. (2015). Exploring massive incomplete lineage sorting in arctoids (Laurasiatheria, Carnivora). Molecular Biology and Evolution, 32, 3194–3204. https://doi.org/10.1093/molbev/msv188.

    Article  CAS  PubMed  Google Scholar 

  • Drews, M. (1934). Über Ossifikationsvorgänge am Katzen-und Hundeschädel. Gegenbaurs Morphologisches Jahrbuch, 73, 185–237.

    Google Scholar 

  • Eizirik, E., Murphy, W. J., Koepfli, K.-P., Johnson, W. E., Dragoo, J. W., Wayne, R. K., & O’Brien, S. J. (2010). Pattern and timing of diversification of the mammalian order Carnivora inferred from multiple nuclear gene sequences. Molecular Phylogenetics and Evolution, 56, 49–63. https://doi.org/10.1016/j.ympev.2010.01.033.

    Article  CAS  PubMed  Google Scholar 

  • Evans, H. E., & De Lahunta, A. (2013). Miller’s anatomy of the dog (4th ed.). St Louis: Elsevier.

    Google Scholar 

  • Fischer, M. S. (1989). Zur Ontogenese der Tympanalregion der Procaviidae (Mammalia: Hyracoidea). Gegenbaurs Morphologisches Jahrbuch, 135, 795–840.

    CAS  PubMed  Google Scholar 

  • Flower, W. H. (1869). On the value of the characters of the base of the cranium in the classification of the order Carnivora, and on the systematic position of Bassaris and other disputed forms. Proceedings of the Zoological Society of London, 1869, 4–37. https://doi.org/10.1111/j.1469-7998.1869.tb07286.x

  • Flower, W. H. (1885). An introduction to the osteology of the Mammalia (3rd ed.). London: Macmillan. https://doi.org/10.5962/bhl.title.996.

    Book  Google Scholar 

  • Flynn, J. J., & Galiano, H. (1982). Phylogeny of early Tertiary Carnivora, with a description of a new species of Protictis from the Middle Eocene of northwestern Wyoming. American Museum Novitates, 2725, 1–64.

    Google Scholar 

  • Flynn, J. J., & Nedbal, M. A. (1998). Phylogeny of the Carnivora (Mammalia): Congruence vs incompatibility among multiple data sets. Molecular Phylogenetics and Evolution, 9, 414–426. https://doi.org/10.1006/mpev.1998.0504.

    Article  CAS  PubMed  Google Scholar 

  • Flynn, J. J., & Wesley-Hunt, G. D. (2005). Carnivora. In K. D. Rose & J. D. Archibald (Eds.), The rise of placental mammals: Origins and relationships of the major extant clades (pp. 175–198). Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • Flynn, J. J., Neff, N. A., & Tedford, R. H. (1988). Phylogeny of the Carnivora. In M. J. Benton (Ed.), Phylogeny and classification of the tetrapods. Vol. 2: Mammals (pp. 73–116). Oxford: Clarendon Press.

  • Flynn, J. J., Finarelli, J. A., Zehr, S., Hsu, J., & Nedbal, M. A. (2005). Molecular phylogeny of the Carnivora (Mammalia): Assessing the impact of increased sampling on resolving enigmatic relationships. Systematic Biology, 54, 317–337. https://doi.org/10.1080/10635150590923326.

    Article  PubMed  Google Scholar 

  • Flynn, J. J., Finarelli, J. A., & Spaulding, M. (2010). Phylogeny of the Carnivora and Carnivoramorpha, and the use of the fossil record to enhance understanding of evolutionary transformations. In A. Goswami & A. Friscia (Eds.), Carnivoran evolution: New views on phylogeny, form, and function (pp. 25–63). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9781139193436.003.

    Chapter  Google Scholar 

  • Gaudin, T. J., & Wible, J. R. (1999). The entotympanic of pangolins and the phylogeny of the Pholidota (Mammalia). Journal of Mammalian Evolution, 6, 39–65. https://doi.org/10.1023/A:1020538313412.

    Article  Google Scholar 

  • Gregory, W. K., & Hellman, M. (1939). On the evolution and major classification of the civets (Viverridae) and allied fossil and recent Carnivora: A phylogenetic study of the skull and dentition. Proceedings of the American Philosophical Society, 81, 309–392.

    Google Scholar 

  • Hough, J. R. (1948). The auditory region in some members of the Procyonidae, Canidae and Ursidae: Its significance in the phylogeny of the Carnivora. Bulletin of the American Museum of Natural History, 92, 67–118.

    Google Scholar 

  • Hough, J. R. (1953). Auditory region in North American fossil Felidae: Its significance in phylogeny. United States Geological Survey Professional Papers, 243-G, 95–115.

    Google Scholar 

  • Hunt, R. M., Jr. (1974). The auditory bulla in Carnivora: An anatomical basis for reappraisal of carnivore evolution. Journal of Morphology, 143, 21–76. https://doi.org/10.1002/jmor.1051430103.

    Article  PubMed  Google Scholar 

  • Hunt, R. M., Jr. (1987). Evolution of the aeluroid Carnivora: Significance of auditory structure in the nimravid cat Dinictis. American Museum Novitates, 2886, 1–74.

    Google Scholar 

  • Hunt, R. M., Jr. (1991). Evolution of the aeluroid Carnivora: Viverrid affinities of the Miocene carnivoran Herpestides. American Museum Novitates, 3023, 1–34.

    Google Scholar 

  • Hunt, R. M., Jr. (1998). Evolution of the aeluroid Carnivora: Diversity of the earliest aeluroids from Eurasia (Quercy, Hsanda-Gol) and the origin of felids. American Museum Novitates, 3252, 1–65.

    Google Scholar 

  • Hunt, R. M., Jr. (2001). Basicranial anatomy of the living linsangs Prionodon and Poiana (Mammalia, Carnivora, Viverridae), with comments on the early evolution of aeluroid carnivorans. American Museum Novitates, 3330, 1–24. https://doi.org/10.1206/0003-0082(2001)330<0001:BAOTLL>2.0.CO;2.

    Article  Google Scholar 

  • Hunt, R. M., Jr. (2011). Evolution of large carnivores during the Mid-Cenozoic of North America: The temnocyonine radiation (Mammalia, Amphicyonidae). Bulletin of the American Museum of Natural History, 358, 1–153. https://doi.org/10.1206/358.1.

    Article  Google Scholar 

  • Hunt, R. M., Jr., & Tedford, R. H. (1993). Phylogenetic relationships within the aeluroid Carnivora and implications of their temporal and geographic distribution. In F. S. Szalay, M. J. Novacek, & M. C. McKenna (Eds.), Mammal phylogeny. Vol. 2: Placentals (pp. 53–73). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • International Committee on Veterinary Gross Anatomical Nomenclature. (2017). Nomina anatomica veterinaria (6th ed.). Hannover: NAV Editorial Committee.

    Google Scholar 

  • Ivanoff, D. V. (2000). Origin of the septum in the canid auditory bulla: Evidence from morphogenesis. Acta Theriologica, 45, 253–270. https://doi.org/10.4098/AT.arch.00-27.

    Article  Google Scholar 

  • Ivanoff, D. V. (2001). Partitions in the carnivoran auditory bulla: Their formation and significance for systematics. Mammal Review, 31, 1–16. https://doi.org/10.1046/j.1365-2907.2001.00069.x.

    Article  Google Scholar 

  • Ivanoff, D. V. (2007). Unlocking the ring: Occurrence and development of the uninterrupted intrabullar septum in Canidae. Mammalian Biology, 72, 145–162. https://doi.org/10.1016/j.mambio.2006.04.007.

    Article  Google Scholar 

  • Joeckel, R. M., Peigné, S., Hunt, R. M., Jr., & Skolnick, R. I. (2002). The auditory region and nasal cavity of Oligocene Nimravidae (Mammalia: Carnivora). Journal of Vertebrate Paleontology, 22, 830–847. https://doi.org/10.1671/0272-4634(2002)022[0830:TARANC]2.0.CO;2.

  • Lombaard, L. J. (1971). Age determination and growth curves in the black-backed jackal, Canis mesomelas Schreber, 1775 (Carnivora: Canidae). Annals of the Transvaal Museum, 27, 135–169.

    Google Scholar 

  • MacPhee, R. D. E. (1979). Entotympanics, ontogeny and primates. Folia Primatologica, 31, 23–47. https://doi.org/10.1159/000155872.

    Article  CAS  Google Scholar 

  • MacPhee, R. D. E. (1981). Auditory regions of primates and eutherian insectivores: Morphology, ontogeny, and character analysis. Contributions to Primatology, 18, 1–284.

    Google Scholar 

  • MacPhee, R. D. E. (2014). The serrialis bone, interparietals, ‘X’ elements, entotympanics, and the composition of the notoungulate caudal cranium. Bulletin of the American Museum of Natural History, 384, 1–69. https://doi.org/10.1206/384.1.

    Article  Google Scholar 

  • Maier, W., Tröscher, A., & Ruf, I. (2013). The entotympanic of Equus caballus (Perissodactyla, Mammalia). Mammalian Biology, 78, 231–234. https://doi.org/10.1016/j.mambio.2012.05.002.

    Article  Google Scholar 

  • Moore, W. J. (1981). The mammalian skull. Cambridge: Cambridge University Press.

    Google Scholar 

  • Novacek, M. J. (1977). Aspects of the problem of variation, origin and evolution of the eutherian auditory bulla. Mammal Review, 7, 131–150. https://doi.org/10.1111/j.1365-2907.1977.tb00366.x.

    Article  Google Scholar 

  • Novacek, M. J. (1993). Patterns of diversity in the mammalian skull. In J. Hanken & B. K. Hall (Eds.), The skull. Vol. 2: Patterns of structural and systematic diversity (pp. 438–545). Chicago: University of Chicago Press.

    Google Scholar 

  • Nyakatura, K., & Bininda-Emonds, O. R. P. (2012). Updating the evolutionary history of Carnivora (Mammalia): A new species-level supertree complete with divergence time estimates. BMC Biology, 10(12). https://doi.org/10.1186/1741-7007-10-12.

  • Owen, P. R. (2006). Description of a new late Miocene American badger (Taxidiinae) utilizing high-resolution X-ray computed tomography. Palaeontology, 49, 999–1011. https://doi.org/10.1111/j.1475-4983.2006.00590.x.

    Article  Google Scholar 

  • Peigné, S., & De Bonis, L. (1999). The genus Stenoplesictis Filhol (Mammalia, Carnivora) from the Oligocene deposits of the Phosphorites of Quercy, France. Journal of Vertebrate Paleontology, 19, 566–575. https://doi.org/10.1080/02724634.1999.10011165.

    Article  Google Scholar 

  • Peigné, S., & De Bonis, L. (2003). Juvenile cranial anatomy of Nimravidae (Mammalia, Carnivora): Biological and phylogenetic implications. Zoological Journal of the Linnean Society, 138, 477–493. https://doi.org/10.1046/j.1096-3642.2003.00066.x.

    Article  Google Scholar 

  • Petter, G. (1966). Cynodictis, Canidé Oligocène d'Europe: Région tympanique et affinités. Annales de Paléontologie (Vertébrés), 52, 3–19.

    Google Scholar 

  • Pfaff, C., Martin, T., & Ruf, I. (2015). ‘Septal compass’ and ‘septal formula’: A new method for phylogenetic investigations of the middle ear region in the squirrel-related clade (Rodentia: Mammalia). Organisms Diversity & Evolution, 15, 721–730. https://doi.org/10.1007/s13127-015-0222-x.

    Article  Google Scholar 

  • Pocock, R. I. (1921). The auditory bulla and other cranial characters in the Mustelidae. Proceedings of the Zoological Society of London, 1921, 473–486. https://doi.org/10.1111/j.1096-3642.1921.tb03274.x.

    Article  Google Scholar 

  • Presley, R. (1993a). Development and the phylogenetic features of the middle ear region. In F. S. Szalay, M. J. Novacek, & M. C. McKenna (Eds.), Mammal phylogeny. Vol. 1: Mesozoic differentiation, multituberculates, monotremes, early eutherians, and marsupials (pp. 21–29). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Presley, R. (1993b). Preconception of adult structural pattern in the analysis of the developing skull. In J. Hanken & B. K. Hall (Eds.), The skull. Vol. 1: Development (pp. 347–377). Chicago: University of Chicago Press.

    Google Scholar 

  • Prevosti, F. J. (2010). Phylogeny of the large extinct South American canids (Mammalia, Carnivora, Canidae) using a ‘total evidence’ approach. Cladistics, 26, 456–481. https://doi.org/10.1111/j.1096-0031.2009.00298.x.

    Article  Google Scholar 

  • Rozen-Rechels, D., Peigné, S., Germain, D., & Ladevèze, S. (2016). Intraspecific morphological variation of the middle ear in the European badger, Meles meles (Carnivora: Mustelidae). Biological Journal of the Linnean Society, 119, 106–116. https://doi.org/10.1111/bij.12800.

    Article  Google Scholar 

  • Sato, J. J., Wolsan, M., Minami, S., Hosoda, T., Sinaga, M. H., Hiyama, K., Yamaguchi, Y., & Suzuki, H. (2009). Deciphering and dating the red panda’s ancestry and early adaptive radiation of Musteloidea. Molecular Phylogenetics and Evolution, 53, 907–922. https://doi.org/10.1016/j.ympev.2009.08.019.

    Article  CAS  PubMed  Google Scholar 

  • Schliemann, H. (1966). Zur Morphologie und Entwicklung des Craniums von Canis lupus f. familiaris L. Gegenbaurs Morphologisches Jahrbuch, 109, 501–603.

    CAS  PubMed  Google Scholar 

  • Schmitt, F. (1903). Ueber das postembryonale Wachstum des Schädels verschiedener Hunderassen. Archiv für Naturgeschichte, 69(1), 69–134.

    Google Scholar 

  • Starck, D. (1964). Über das Entotympanicum der Canidae und Ursidae (Mammalia, Carnivora, Fissipedia). Acta Theriologica, 8, 181–188. https://doi.org/10.4098/AT.arch.64-11.

    Article  Google Scholar 

  • Takada, Y., Izumi, M., & Gotoh, K. (2009). Comparative anatomy of the hyoid apparatus of carnivores. Mammal Study, 34, 213–218. https://doi.org/10.3106/041.034.0406.

    Article  Google Scholar 

  • Tomiya, S. (2011). A new basal caniform (Mammalia: Carnivora) from the Middle Eocene of North America and remarks on the phylogeny of early carnivorans. PLoS One, 6(9), e24146. https://doi.org/10.1371/journal.pone.0024146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomiya, S. (2013). New carnivoraforms (Mammalia) from the middle Eocene of California, USA, and comments on the taxonomic status of ‘Miacisgracilis. Palaeontologia Electronica, 16(2), 14A. https://doi.org/10.26879/364.

    Article  Google Scholar 

  • Van der Klaauw, C. J. (1922). Über die Entwickelung des Entotympanicums. Tijdschrift der Nederlandsche Dierkundige Vereeniging, Serie 2(18), 135–176.

    Google Scholar 

  • Van der Klaauw, C. J. (1931). On the auditory bulla in some fossil mammals, with a general introduction to this region of the skull. Bulletin of the American Museum of Natural History, 62, 1–352.

    Google Scholar 

  • Van Kampen, P. N. (1905). Die Tympanalgegend des Säugetierschädels. Gegenbaurs Morphologisches Jahrbuch, 34, 321–722. https://doi.org/10.5962/bhl.title.15705.

    Article  Google Scholar 

  • Wang, X., & Tedford, R. H. (1994). Basicranial anatomy and phylogeny of primitive canids and closely related miacids (Carnivora: Mammalia). American Museum Novitates, 3092, 1–34.

    Google Scholar 

  • Wang, X., McKenna, M. C., & Dashzeveg, D. (2005). Amphicticeps and Amphicynodon (Arctoidea, Carnivora) from Hsanda Gol Formation, central Mongolia, and phylogeny of basal arctoids with comments on zoogeography. American Museum Novitates, 3483, 1–57. https://doi.org/10.1206/0003-0082(2005)483[0001:AAAACF]2.0.CO;2.

  • Wegner, R. N. (1942). Die Paukeninnenbeine (Endotympanicum und Epipterygoid) bei den Säugetieren. Photographie und Forschung, 3, 289–303.

    Google Scholar 

  • Wesley, G. D., & Flynn, J. J. (2003). A revision of Tapocyon (Carnivoramorpha), including analysis of the first cranial specimens and identification of a new species. Journal of Paleontology, 77, 769–783. https://doi.org/10.1666/0022-3360(2003)077%3C0769:AROTCI%3E2.0.CO;2.

    Article  Google Scholar 

  • Wesley-Hunt, G. D., & Flynn, J. J. (2005). Phylogeny of the Carnivora: Basal relationships among the carnivoramorphans, and assessment of the position of ‘Miacoidea’ relative to Carnivora. Journal of Systematic Palaeontology, 3, 1–28. https://doi.org/10.1017/S1477201904001518.

    Article  Google Scholar 

  • Wesley-Hunt, G. D., & Werdelin, L. (2005). Basicranial morphology and phylogenetic position of the upper Eocene carnivoramorphan Quercygale. Acta Palaeontologica Polonica, 50, 837–846.

    Google Scholar 

  • Wible, J. R. (1984). The ontogeny and phylogeny of the mammalian cranial arterial pattern. Ph.D. dissertation, Duke University, Durham.

  • Wible, J. R. (2010). Petrosal anatomy of the nine-banded armadillo, Dasypus novemcinctus Linnaeus, 1758 (Mammalia, Xenarthra, Dasypodidae). Annals of Carnegie Museum, 79, 1–28. https://doi.org/10.2992/007.079.0101.

    Article  Google Scholar 

  • Wible, J. R., & Davis, D. L. (2000). Ontogeny of the chiropteran basicranium, with reference to the Indian false vampire bat, Megaderma lyra. In R. A. Adams & S. C. Pedersen (Eds.), Ontogeny, functional ecology, and evolution of bats (pp. 214–246). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Wible, J. R., & Novacek, M. J. (1988). Cranial evidence for the monophyletic origin of bats. American Museum Novitates, 2911, 1–19.

    Google Scholar 

  • Wible, J. R., & Spaulding, M. (2013). On the cranial osteology of the African palm civet, Nandinia binotata (Gray, 1830) (Mammalia, Carnivora, Feliformia). Annals of Carnegie Museum, 82, 1–114. https://doi.org/10.2992/007.082.0101.

    Article  Google Scholar 

  • Wińcza, H. (1896). Über einige Entwickelungsveränderungen in der Gegend des Schädelgrundes bei den Säugethieren. Bulletin International de l’Académie des Sciénces de Cracovie, 1896, 326–337.

    Google Scholar 

  • Wińcza, H. (1898). O niektórych zmianach podczas rozwoju osady głowy u zwierząt ssących. Rozprawy Akademii Umiejętności, Wydział Matematyczno-Przyrodniczy, Serya 2(13), 10–26.

  • Winge, H. (1941). The interrelationships of the mammalian genera. Vol. 2: Rodentia, Carnivora, Primates. Copenhagen: CA Reitzels Forlag.

    Google Scholar 

  • Wyss, A. R., & Flynn, J. J. (1993). A phylogenetic analysis and definition of the Carnivora. In F. S. Szalay, M. J. Novacek, & M. C. McKenna (Eds.), Mammal phylogeny. Vol. 2: Placentals (pp. 32–52). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Yu, L., Li, Q.-W., Ryder, O. A., & Zhang, Y.-P. (2004). Phylogenetic relationships within mammalian order Carnivora indicated by sequences of two nuclear DNA genes. Molecular Phylogenetics and Evolution, 33, 694–705. https://doi.org/10.1016/j.ympev.2004.08.001.

    Article  CAS  PubMed  Google Scholar 

  • Yudin, V. G. (1989). The dental system of Canis lupus (Carnivora, Canidae) from the Far East of the USSR. Zoologichesky Zhurnal, 68, 115–123. (in Russian).

  • Zeller, U. A. (1986). Ontogeny and cranial morphology of the tympanic region of the Tupaiidae, with special reference to Ptilocercus. Folia Primatologica, 47, 61–80. https://doi.org/10.1159/000156266.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I am grateful to Gennady Baryshnikov (ZIN), Barbara Herzig-Straschil (NMW) and Sergei Kruskop (ZMMU) for granting access to the specimens examined in this study, and to Cathrin Pfaff and two anonymous reviewers for constructive comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry V. Ivanoff.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Ethical approval

No animals were killed or harmed specifically for this study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanoff, D.V. Composition of the canid auditory bulla and a new look at the evolution of carnivoran entotympanics. Org Divers Evol 19, 363–375 (2019). https://doi.org/10.1007/s13127-019-00395-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-019-00395-2

Keywords

Navigation