Advertisement

Organisms Diversity & Evolution

, Volume 19, Issue 2, pp 87–97 | Cite as

In defence of taxonomic governance

  • Stijn ConixEmail author
Forum Paper

Abstract

It is well known that taxonomists rely on many different methods and criteria for species delimitation, leading to different kinds of groups being recognised as species. While this state of relative disorder is widely acknowledged, there is no similar agreement about how it should be resolved. This paper considers the view that the disorder in species classification should be resolved by a system of taxonomic governance. I argue that such a system of governance is best seen as a combination of standardisation, unification and regulation, each of which can be implemented in different forms. I investigate the forms that these three components should take for taxonomic governance by looking into two successfully governed classification systems, namely, virus classification and enzyme classification. The last part of the paper then defends the governance view against five objections.

Keywords

Taxonomic disorder Governance Standardisation Unification Regulation Species classification Species problem 

Notes

Acknowledgements

I am very grateful to Frank Zachos and an anonymous reviewer for very helpful feedback that substantially improved this forum paper.

Funding information

Work on this paper was supported by the KU Leuven Onderzoeksraad, grant 3H160214.

References

  1. Adams, M., Hendrickson, R. C., Dempsey, D. M., & Lefkowitz, E. J. (2015). Tracking the changes in virus taxonomy. Archives of Virology, 160(5), 1375–1383.CrossRefGoogle Scholar
  2. Adams, M., Lefkowitz, E. J., King, A. M. Q., Harrach, B., Harrison, R. L., Knowles, N. J., et al. (2017). 50 years of the international committee on taxonomy of viruses: Progress and prospects. Archives of Virology, 162(5), 1441–1446.CrossRefGoogle Scholar
  3. Breitwieser, F. P., Lu, J., & Salzberg, S. L. (2017). A review of methods and databases for metagenomic classification and assembly. Briefings in Bioinformatics, bbx120.  https://doi.org/10.1093/bib/bbx120.
  4. Bremer, K., Bremer, B., Karis, P., & Källersjö, M. (1990). Time for change in taxonomy. Nature, 343(6255), 202.CrossRefGoogle Scholar
  5. Buckeridge, J. (2017). Taxonomy: Swallow the costly medicine. Nature, 546(7660), 600.Google Scholar
  6. Camargo, A., & Sites, J. (2013). Species delimitation: A decade after the renaissance. In I. Pavlinov (Ed.), The species problem - ongoing issues (pp. 225–247). Rijeka: InTech.Google Scholar
  7. Cantino, P. D., & De Queiroz, K. (2000). PhyloCode: A phylogenetic code of biological nomenclature. https://www.ohio.edu/PhyloCode/PhyloCode2a.pdf. Accessed 2 August 2018.
  8. Carrasco, P. A., Venegas, P. J., Chaparro, J. C., & Scrocchi, G. J. (2016). Nomenclatural instability in the venomous snakes of the Bothrops complex: Implications in toxinology and public health. Toxicon, 119, 122–128.CrossRefGoogle Scholar
  9. Conix, S. (2018). Integrative taxonomy and the operationalization of evolutionary independence. European Journal for Philosophy of Science, 8, 1–17.  https://doi.org/10.1007/s13194-018-0202-z.CrossRefGoogle Scholar
  10. Cotterill, F. P. D., Groves, C. P., & Taylor, P. J. (2017). Taxonomy: Refine rather than stabilize. Nature. Comments and Opinion, 547, 162.  https://doi.org/10.1038/547162d.CrossRefGoogle Scholar
  11. Crisp, D. J., & Fogg, G. E. (1988). Taxonomic instability continues to irritate. Nature, 335(6186), 120–121.CrossRefGoogle Scholar
  12. De Queiroz, K. (2007). Species concepts and species delimitation. Systematic Biology, 56(6), 879–886.CrossRefGoogle Scholar
  13. Dixon, M., & Webb, E. (1964). Enzymes (2nd ed.). New York: Academic Press.Google Scholar
  14. Doremus, H. (2010). The endangered species act: Static law meets dynamic world. Washington University Journal of Law and Policy, 32, 175.Google Scholar
  15. Dussex, N., Taylor, H., Irestedt, M., & Robertson, B. (2018). When genetic and phenotypic data do not agree: The conservation implications of ignoring inconvenient taxonomic evidence. New Zealand Journal of Ecology, 42(2), 1–7.CrossRefGoogle Scholar
  16. Fauquet, C., & Martelli, G. (2013). Viral classification and nomenclature. In eLS. Chichester: Wiley.Google Scholar
  17. Faurby, S., Eiserhardt, W. L., & Svenning, J.-C. (2016). Strong effects of variation in taxonomic opinion on diversification analyses. Methods in Ecology and Evolution, 7(1), 4–13.CrossRefGoogle Scholar
  18. Frankham, R., Ballou, J. D., Dudash, M. R., Eldridge, M. D. B., Fenster, C. B., Lacy, R. C., Mendelson, J. R., III, Porton, I. J., Ralls, K., & Ryder, O. A. (2012). Implications of different species concepts for conserving biodiversity. Biological Conservation, 153, 25–31.CrossRefGoogle Scholar
  19. Garnett, S. T., & Christidis, L. (2017). Taxonomy anarchy hampers conservation. Nature, 546(7656), 25–27.CrossRefGoogle Scholar
  20. Godfray, H. C. J. (2002). Challenges for taxonomy. Nature, 417(6884), 17–19.CrossRefGoogle Scholar
  21. Groves, C. P., Cotterill, F. P. D., Gippoliti, S., Robovský, J., Roos, C., Taylor, P. J., & Zinner, D. (2017). Species definitions and conservation: A review and case studies from African mammals. Conservation Genetics, 18(6), 1247–1256.CrossRefGoogle Scholar
  22. Harris, J., & Froufe, E. (2005). Taxonomic inflation: Species concept or historical geopolitical bias? Trends in Ecology & Evolution, 20(1), 6–7.CrossRefGoogle Scholar
  23. Hebert, P., & Gregory, T. R. (2005). The promise of DNA barcoding for taxonomy. Systematic Biology, 54(5), 852–859.CrossRefGoogle Scholar
  24. Hedlund, B. P., Dodsworth, J. A., & Staley, J. T. (2015). The changing landscape of microbial biodiversity exploration and its implications for systematics. Systematic and Applied Microbiology, 38(4), 231–236.CrossRefGoogle Scholar
  25. Hollingsworth, P. M. (2017). Taxonomy: avoid extra bureaucracy. Nature, 545(7660), 600.CrossRefGoogle Scholar
  26. International Committee on Taxonomy of Viruses (ICTV). (2018a). The International Code of Virus Classification and Nomenclature. https://talk.ictvonline.org/information/w/ictv-information/383/ictv-code. Accessed 31 July 2018.
  27. International Committee on Taxonomy of Viruses (ICTV). (2018b). The classification and nomenclature of viruses: The online (10th) report of the ICTV. https://talk.ictvonline.org/ictv-reports/ictv_online_report/. Accessed 31 July 2018.
  28. Isaac, N., Mallet, J., & Mace, G. M. (2004). Taxonomic inflation: Its influence on macroecology and conservation. Trends in Ecology & Evolution, 19(9), 464–469.CrossRefGoogle Scholar
  29. International Union of Biochemistry (IUB). (1961). Report of the commission on enzymes of the International Union of Biochemistry, 1961 (Vol. 20). Oxford: Pergamon Press.Google Scholar
  30. King, A. M. Q., Lefkowitz, E. J., Mushegian, A. R., Adams, M. J., Dutilh, B. E., Gorbalenya, A. E., et al. (2018). Changes to taxonomy and the international code of virus classification and nomenclature ratified by the international committee on taxonomy of viruses (2018). Archives of Virology, 163(9), 2601–2631.Google Scholar
  31. Knapp, S., Bateman, R. M., Chalmers, N. R., Humphries, C. J., Rainbow, P. S., Smith, A. B., Taylor, P. D., Vane-Wright, R. I., & Wilkinson, M. (2002). Taxonomy needs evolution, not revolution. Nature, 419(6709), 559.CrossRefGoogle Scholar
  32. Konstantinidis, K. T., & Rosselló-Móra, R. (2015). Classifying the uncultivated microbial majority: A place for metagenomic data in the Candidatus proposal. Systematic and Applied Microbiology, 38(4), 223–230.CrossRefGoogle Scholar
  33. Lambertz, M. (2017). Taxonomy: retain scientific autonomy. Nature, 546(7660), 600.CrossRefGoogle Scholar
  34. Lefkowitz, E. J., Dempsey, D. M., Hendrickson, R. C., Orton, R. J., Siddell, S. G., & Smith, D. B. (2018). Virus taxonomy: The database of the international committee on taxonomy of viruses (ICTV). Nucleic Acids Research, 46(D1), D708–D717.CrossRefGoogle Scholar
  35. Longino, H. E. (1990). Science as social knowledge: Values and objectivity in scientific inquiry. Princeton: Princeton University Press.Google Scholar
  36. Mace, G. M. (2004). The role of taxonomy in species conservation. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 359(1444), 711–719.CrossRefGoogle Scholar
  37. Mallet, J., & Willmott, K. (2003). Taxonomy: Renaissance or tower of babel? Trends in Ecology & Evolution, 18(2), 57–59.CrossRefGoogle Scholar
  38. Mayden, R. (1997). A hierarchy of species concepts: The denouement in the saga of the species problem. In M. Claridge, H. Dawah, & R. A. Wilson (Eds.), Species, the units of biodiversity, systematics association special volume series (pp. 381–424). London: Chapman & Hall.Google Scholar
  39. McDonald, A. G., Boyce, S., Moss, G. P., Dixon, H. B., & Tipton, K. F. (2007). ExplorEnz: A MySQL database of the IUBMB enzyme nomenclature. BMC Biochemistry, 8(1), 14.CrossRefGoogle Scholar
  40. McDonald, A. G., & Tipton, K. F. (2014). Fifty-five years of enzyme classification: Advances and difficulties. The FEBS Journal, 281(2), 583–592.CrossRefGoogle Scholar
  41. Mishler, B. D. (1999). Getting rid of species. In R. N. Brandon (Ed.), Species: New interdisciplinary essays (pp. 307–315). Cambridge: MIT Press.Google Scholar
  42. Montella, I. R., Schama, R., & Valle, D. (2012). The classification of esterases: An important gene family involved in insecticide resistance - a review. Memórias do Instituto Oswaldo Cruz, 107(4), 437–449.CrossRefGoogle Scholar
  43. Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB). (2018). Enzyme Classification: Classification and Nomenclature of Enzymes by the Reactions they Catalyse. http://www.sbcs.qmul.ac.uk/iubmb/enzyme/rules.html. Accessed 19 July 2018.
  44. Newman, W. A. (1989). Barnacle taxonomy. Nature, 337(6202), 23–24.CrossRefGoogle Scholar
  45. Oates, J., & Ting, N. (2015). Conservation consequences of unstable taxonomies: The case of the red colobus monkeys. In A. Behie & O. Marc (Eds.), Taxonomic Tapestries (pp. 321–343). Canberra: ANU Press.Google Scholar
  46. Omelchenko, M. V., Galperin, M. Y., Wolf, Y. I., & Koonin, E. V. (2010). Non-homologous isofunctional enzymes: A systematic analysis of alternative solutions in enzyme evolution. Biology Direct, 5, 31.CrossRefGoogle Scholar
  47. Parker, C. T., Tindall, B. J., & Garrity, G. M. (2015). International code of nomenclature of prokaryotes. International Journal of Systematic and Evolutionary Microbiology, 69, S1–S111.  https://doi.org/10.1099/ijsem.0.000778.Google Scholar
  48. Rahman, S. A., Cuesta, S. M., Furnham, N., Holliday, G. L., & Thornton, J. M. (2014). EC-BLAST: A tool to automatically search and compare enzyme reactions. Nature Methods, 11(2), 171–174.CrossRefGoogle Scholar
  49. Raposo, M., Stopiglia, R., Brito, G., Bockmann, F., Kirwan, G., Gayon, J., & Dubois, A. (2017). What really hampers taxonomy and conservation? A riposte to Garnett and Christidis (2017). Zootaxa, 4317(1), 179–184.CrossRefGoogle Scholar
  50. Regenmortel, M. V., Fauquet, C., Bishop, D., Carsten, E., Estes, M., Lemon, S., et al. (2000). Virus taxonomy: Seventh report of the international committee on taxonomy of viruses. San Diego: Academic Press.Google Scholar
  51. Riddle, B. R., & Hafner, D. J. (1999). Species as units of analysis in ecology and biogeography: Time to take the blinders off. Global Ecology and Biogeography, 8(6), 433–441.  https://doi.org/10.1046/j.1365-2699.1999.00170.x.CrossRefGoogle Scholar
  52. Schiff D., & Wood J. (2017). Petition of Pacific Legal Foundation, et al., for rule-making under the Administrative Procedure Act. https://pacificlegal.org/wp-content/uploads/2017/11/ESA-Taxonomy-Rulemaking-Petition.pdf. Accessed 30 July 2018.
  53. Shanker, K., Vijayakumar, S. P., & Ganeshaiah, K. N. (2017). Unpacking the species conundrum: Philosophy, practice and a way forward. Journal of Genetics, 96(3), 413–430.CrossRefGoogle Scholar
  54. Simmonds, P., Adams, M., Benkő, M., Breitbart, M., Brister, J. R., Carstens, E. B., et al. (2017). Consensus statement: Virus taxonomy in the age of metagenomics. Nature Reviews Microbiology, 15(3), 161–168.CrossRefGoogle Scholar
  55. Sites, J. W., & Marshall, J. C. (2004). Operational criteria for delimiting species. Annual Review of Ecology, Evolution, and Systematics, 35, 199–227.CrossRefGoogle Scholar
  56. Taylor, B. L., Archer, F. I., Martien, K. K., Rosel, P. E., Hancock-Hanser, B. L., Lang, A. R., Leslie, M. S., Mesnick, S. L., Morin, P. A., Pease, V. L., Perrin, W. F., Robertson, K. M., Parsons, K. M., Viricel, A., Vollmer, N. L., Cipriano, F., Reeves, R. R., Krützen, M., & Baker, C. S. (2017a). Guidelines and quantitative standards to improve consistency in cetacean subspecies and species delimitation relying on molecular genetic data. Marine Mammal Science, 33(S1), 132–155.  https://doi.org/10.1111/mms.12411.CrossRefGoogle Scholar
  57. Taylor, B. L., Perrin, W. F., Reeves, R. R., Rosel, P. E., Wang, J. Y., Cipriano, F., Scott Baker, C., & Brownell, R. L., Jr. (2017b). Why we should develop guidelines and quantitative standards for using genetic data to delimit subspecies for data-poor organisms like cetaceans. Marine Mammal Science, 33(S1), 12–26.  https://doi.org/10.1111/mms.12413.CrossRefGoogle Scholar
  58. Thomson, S. A., Pyle, R. L., Ahyong, S. T., Alonso-Zarazaga, M., Ammirati, J., Araya, J. F., Ascher, J. S., Audisio, T. L., Azevedo-Santos, V. M., Bailly, N., Baker, W. J., Balke, M., Barclay, M. V. L., Barrett, R. L., Benine, R. C., Bickerstaff, J. R. M., Bouchard, P., Bour, R., Bourgoin, T., Boyko, C. B., Breure, A. S. H., Brothers, D. J., Byng, J. W., Campbell, D., Ceríaco, L. M. P., Cernák, I., Cerretti, P., Chang, C. H., Cho, S., Copus, J. M., Costello, M. J., Cseh, A., Csuzdi, C., Culham, A., D’Elía, G., d’Udekem d’Acoz, C., Daneliya, M. E., Dekker, R., Dickinson, E. C., Dickinson, T. A., van Dijk, P. P., Dijkstra, K. D. B., Dima, B., Dmitriev, D. A., Duistermaat, L., Dumbacher, J. P., Eiserhardt, W. L., Ekrem, T., Evenhuis, N. L., Faille, A., Fernández-Triana, J. L., Fiesler, E., Fishbein, M., Fordham, B. G., Freitas, A. V. L., Friol, N. R., Fritz, U., Frøslev, T., Funk, V. A., Gaimari, S. D., Garbino, G. S. T., Garraffoni, A. R. S., Geml, J., Gill, A. C., Gray, A., Grazziotin, F. G., Greenslade, P., Gutiérrez, E. E., Harvey, M. S., Hazevoet, C. J., He, K., He, X., Helfer, S., Helgen, K. M., van Heteren, A. H., Hita Garcia, F., Holstein, N., Horváth, M. K., Hovenkamp, P. H., Hwang, W. S., Hyvönen, J., Islam, M. B., Iverson, J. B., Ivie, M. A., Jaafar, Z., Jackson, M. D., Jayat, J. P., Johnson, N. F., Kaiser, H., Klitgård, B. B., Knapp, D. G., Kojima, J. I., Kõljalg, U., Kontschán, J., Krell, F. T., Krisai-Greilhuber, I., Kullander, S., Latella, L., Lattke, J. E., Lencioni, V., Lewis, G. P., Lhano, M. G., Lujan, N. K., Luksenburg, J. A., Mariaux, J., Marinho-Filho, J., Marshall, C. J., Mate, J. F., McDonough, M. M., Michel, E., Miranda, V. F. O., Mitroiu, M. D., Molinari, J., Monks, S., Moore, A. J., Moratelli, R., Murányi, D., Nakano, T., Nikolaeva, S., Noyes, J., Ohl, M., Oleas, N. H., Orrell, T., Páll-Gergely, B., Pape, T., Papp, V., Parenti, L. R., Patterson, D., Pavlinov, I. Y., Pine, R. H., Poczai, P., Prado, J., Prathapan, D., Rabeler, R. K., Randall, J. E., Rheindt, F. E., Rhodin, A. G. J., Rodríguez, S. M., Rogers, D. C., Roque, F. O., Rowe, K. C., Ruedas, L. A., Salazar-Bravo, J., Salvador, R. B., Sangster, G., Sarmiento, C. E., Schigel, D. S., Schmidt, S., Schueler, F. W., Segers, H., Snow, N., Souza-Dias, P. G. B., Stals, R., Stenroos, S., Stone, R. D., Sturm, C. F., Štys, P., Teta, P., Thomas, D. C., Timm, R. M., Tindall, B. J., Todd, J. A., Triebel, D., Valdecasas, A. G., Vizzini, A., Vorontsova, M. S., de Vos, J. M., Wagner, P., Watling, L., Weakley, A., Welter-Schultes, F., Whitmore, D., Wilding, N., Will, K., Williams, J., Wilson, K., Winston, J. E., Wüster, W., Yanega, D., Yeates, D. K., Zaher, H., Zhang, G., Zhang, Z. Q., & Zhou, H. Z. (2018). Taxonomy based on science is necessary for global conservation. PLoS Biology, 16(3), e2005075.CrossRefGoogle Scholar
  59. Tipton, K., & Boyce, S. (2000). History of the enzyme nomenclature system. Bioinformatics, 16(1), 34–40.CrossRefGoogle Scholar
  60. Webb, E. C. (1993). Enzyme nomenclature: A personal retrospective. The FASEB Journal, 7(12), 1192–1194.CrossRefGoogle Scholar
  61. Wildy, P. (1971). Classification and nomenclature of viruses: First report of the international committee on nomenclature of viruses. Basel: S. Karger.Google Scholar
  62. Williams, D., Wüster, W., & Fry, B. G. (2006). The good, the bad and the ugly: Australian snake taxonomists and a history of the taxonomy of Australia’s venomous snakes. Toxicon, 48(7), 919–930.  https://doi.org/10.1016/j.toxicon.2006.07.016.CrossRefGoogle Scholar
  63. Zachos, F. E. (2016). Species Concepts in Biology: Historical Development, Theoretical Foundations and Practical Relevance. Switzerland: Springer.CrossRefGoogle Scholar
  64. Zachos, F. E. (2018a). (New) species concepts, species delimitation and the inherent limitations of taxonomy. Journal of Genetics, 97(4), 811–815.Google Scholar
  65. Zachos, F. E. (2018b). Mammals and meaningful taxonomic units: The debate about species concepts and conservation. Mammal Review, 48(3), 153–159.CrossRefGoogle Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2019

Authors and Affiliations

  1. 1.Centre for Logic and Philosophy of ScienceKU LeuvenLeuvenBelgium

Personalised recommendations