Advertisement

Organisms Diversity & Evolution

, Volume 18, Issue 2, pp 151–161 | Cite as

A review of the palm genus Acrocomia: Neotropical green gold

  • Natácia Evangelista de Lima
  • Alexandre Assis Carvalho
  • Alan William Meerow
  • Maura Helena Manfrin
Review

Abstract

The genus Acrocomia, popularly known as macaw palm or macaúba, occurs in savanna areas and open forests of tropical America, with distribution from Central to southern South America. They are important oleaginous palm trees, due to their role in ecosystems and local economies and their potential for biofuel production and vegetable oil. Although the taxonomy of the genus is not resolved because of observed phenotypic diversity in A. aculeata (Jacq.) Lodd. ex Mart., there are several conflicting treatments. Some authors recognize three caulescent spp. occurring in South America: A. aculeata, A. intumescens Drude, and A. totai Mart, although a new one was described recently—Acrocomia corumbaensis. Because some Latin American governments want to expand production of macaw palm in their territory as raw material for agro-energy, several groups have been encouraged to study this genus, focusing on the production of biodiesel, seed germination, phenotypic aspects, and genetic diversity. The goal of this review is to compile key information available in the literature and herbarium data, focusing on South American populations of the genus.

Keywords

Arecaceae Fossil record Macaw palm Raw material Taxonomy 

Notes

Acknowledgments

The authors thank the anonymous reviewers for their suggestions, which were important for the improvement of this manuscript. They acknowledge Harri Lorenzi, Suelen Vianna, Jason Schoneman, and Mike Gray for the permission to reuse photograph material. They are also thankful to CAPES, USDA/ARS, USFS, and the University of São Paulo for the support.

Author contributions

NEL conceived the study and was in charge of overall direction and planning. NEL wrote the manuscript with support from AAC and AWM. AWM and MHM supervised the research. All authors contributed to the final version of the manuscript.

Funding

This work was supported by grants of Doctoral Sandwich Program Abroad - CAPES (006795/2015-03), CAPES scholarships to NEL, Agricultural Research Service - USDA/ARS, USFS International Visitor Program, and Postgraduation Programme in Genetics - Ribeirão Preto Medical School of University of São Paulo.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

13127_2018_362_MOESM1_ESM.docx (31 kb)
ESM 1 (DOCX 30 kb)
13127_2018_362_MOESM2_ESM.docx (670 kb)
ESM 2 (DOCX 669 kb)
13127_2018_362_MOESM3_ESM.docx (670 kb)
ESM 3 (DOCX 669 kb)
13127_2018_362_MOESM4_ESM.docx (666 kb)
ESM 4 (DOCX 665 kb)

References

  1. Abreu, A. G., Priolli, R. H., Azevedo-Filho, J. A., Nucci, S. M., Zucchi, M. I., Coelho, R. M., et al. (2012). The genetic structure and mating system of Acrocomia aculeata (Arecaceae). Genetics and Molecular Biology, 35(1), 119–121.  https://doi.org/10.1590/S1415-47572012005000002.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Abreu, I., Roberto Carvalho, C., Carvalho, G., & Motoike, S. (2011). First karyotype, DNA C-value and AT/GC base composition of macaw palm (Acrocomia aculeata, Arecaceae)—a promising plant for biodiesel production. Australian Journal of Botany, 59, 149–155.  https://doi.org/10.1071/BT10245.CrossRefGoogle Scholar
  3. Almeida, S. P., Proença, C. E. B., Sano, S. M., & Ribeiro, J. F. (1998). Cerrado: espécies vegetais úteis. Planaltina: Embrapa Cerrados.Google Scholar
  4. Amadeu, L. S., Sampaio, M. B., & Dos Santos, F. A. (2016). Influence of light and plant size on the reproduction and growth of small palm tree species: comparing two methods for measuring canopy openness. American Journal of Botany, 103(9), 1678–1686.  https://doi.org/10.3732/ajb.1600178.CrossRefPubMedGoogle Scholar
  5. Asmussen, C. B., Dransfield, J., Deickmann, V., Barfod, A. S., Pintaud, J. C., & Baker, W. J. (2006). A new subfamily classification of the palm family (Arecaceae): evidence from plastid DNA phylogeny. Botanical Journal of the Linnean Society, 151(1), 15–38.  https://doi.org/10.1111/j.1095-8339.2006.00521.x.CrossRefGoogle Scholar
  6. Bailey, L. H. (1941). Acrocomia—preliminary paper. Gentes Herbarum, 4(12), 421–476.Google Scholar
  7. Baker, W. J., & Dransfield, J. (2016). Beyond Genera Palmarum: progress and prospects in palm systematics. Botanical Journal of the Linnean Society, 182(2), 207–233.  https://doi.org/10.1111/boj.12401.CrossRefGoogle Scholar
  8. Beck, H. A. (2006). Review of peccary—palm interactions and their ecological ramifications across the Neotropics. Journal of Mammalogy, 87(3), 519–530.  https://doi.org/10.1644/05-MAMM-A-174R1.1.CrossRefGoogle Scholar
  9. Behling, H., Negret, A. J. & Hooghiemstra, H. (1998). Late quaternary vegetational and climatic change in the Popayán region, southern Colombian Andes. Journal of Quaternary Science, 13(1), 43–53.  https://doi.org/10.1002/(SICI)1099-1417(199801/02)13:1<43::AID-JQS348>3.0.CO;2-G.
  10. Belén-Camacho, D. R., López, I., García, D., González, M., Moreno-Álvarez, M. J., & Medina, C. (2005). Physicochemical evaluation of seed and seed oil of corozo (Acrocomia aculeata Jacq.) Grasas Aceites, 56(4), 311–316.  https://doi.org/10.3989/gya.2005.v56.i4.98.Google Scholar
  11. Bora, P. S., & Rocha, R. V. M. (2004). Macaíba palm: fatty and amino acids composition of fruits Macaíba. Ciencia y Tecnologia Alimentaria, 4(3), 158–162.  https://doi.org/10.1080/11358120409487755.CrossRefGoogle Scholar
  12. Brito, A. C. (2013). Biologia reprodutiva de macaúba: floração, polinizadores, frutificação e conservação de pólen. Viçosa: Universidade Federal de Viçosa.Google Scholar
  13. Cerratinga Macaúba: espécies de vários biomas. (n.d.). http://www.cerratinga.org.br/macauba/. Accessed 23 June 2016.
  14. Ciconini, G., Favaro, S. P., Roscoe, R., Miranda, C. H. B., Tapeti, C. F., Miyahira, M. A. M., Bearari, L., Galvani, F., Borsato, A. V., Colnago, L. A., & Naka, M. H. (2013). Biometry and oil contents of Acrocomia aculeata fruits from the Cerrados and Pantanal biomes in Mato Grosso do Sul, Brazil. Industrial Crops and Products, 45(208–214), 208–214.  https://doi.org/10.1016/j.indcrop.2012.12.008.CrossRefGoogle Scholar
  15. Cooke, R. (1992). Etapas tempranas de la producción de alimentos vegetales en la baja centroamérica y partes de colombia (región histórica Chibcha-Choco). Revista de Arqueología Americana, 6, 35–70.Google Scholar
  16. Cooke, R. (2005). Prehistory of native Americans on the Central American land bridge: colonization, dispersal, and divergence. Journal of Archaeological Research, 13(2), 129–187.  https://doi.org/10.1007/s10804-005-2486-4.CrossRefGoogle Scholar
  17. Cooke, R., & Ranere, A. (1992). Prehistoric human adaptations to the seasonally dry forests of Panama. World Archaeology, 24(2), 114–133.CrossRefGoogle Scholar
  18. Cortez, S. P., & Pérez, E. S. M. (2010). El tapir Tapirus bairdii en la región sureste del Área de Protección de Flora y Fauna Bala’an Ka’ax, Quintana Roo, México. Therya, 1(2), 137–144.  https://doi.org/10.12933/therya-10-10.CrossRefGoogle Scholar
  19. Dransfield, J., Uhl, N. W., Asmussen, C. B., Baker, W. J., Harley, M. M., & Lewis, C. E. (2005). A new phylogenetic classification of the palm family, Arecaceae. Kew Bulletin, 60(4), 559–569.Google Scholar
  20. Dransfield, J., Uhl, N. W., Asmussen, C. B., Baker, W. J., Harley, M. M., & Lewis, C. E. (2008). Genera Palmarum: the evolution and classification of the palms (2 edn.). Kew, UK: International Palm Society.Google Scholar
  21. Eiserhardt, W. L., Pintaud, J. C., Asmussen-Lange, C., Hahn, W. J., Bernal, R., Balslev, H., et al. (2011). Phylogeny and divergence times of Bactridinae (Arecaceae, Palmae) based on plastid and nuclear DNA sequences. Taxon, 60(2), 485–498.Google Scholar
  22. Evaristo, A. B., Grossi, J. A. S., Carneiro, A. C. O., Pimentel, L. D., Motoike, S. Y., & Kuki, K. N. (2016). Actual and putative potentials of macauba palm as feedstock for solid biofuel production from residues. Biomass and Bioenergy, 85, 18–24.  https://doi.org/10.1016/j.biombioe.2015.11.024.CrossRefGoogle Scholar
  23. Galeano, G., & Bernal, R. (2010). Palmas de Colombia. Guía de Campo (1ed.). Bogotá, Colombia: Editorial Universidad Nacional de Colombia.Google Scholar
  24. Gneeco, C., & Mora, S. (1997). Late Pleistocene/early Holocene tropical forest occupations at San Isidro and Pefia Roja, Colombia. Antiquity, 71(273), 683–690.  https://doi.org/10.1017/S0003598X00085409.CrossRefGoogle Scholar
  25. Govaerts, R., & Dransfield, J. (2005). World checklist of palms. Kew: Royal Botanic Gardens.Google Scholar
  26. Guedes, N. M. R. (2009). Sucesso reprodutivo, mortalidade e crescimento de filhotes de araras azuis Anodorhynchus hyacinthinus (Aves, Psittacidae), no Pantanal, Brasil. Universidade Estadual Paulista, Botucatu, Brazil.Google Scholar
  27. Guimaraes, P. R., Galetti, M., & Jordano, P. (2008). Seed dispersal anachronisms: rethinking the fruits extinct megafauna ate. PLoS One, 3(3), e1745.  https://doi.org/10.1371/journal.pone.0001745.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Gunn, B. F. (2004). The phylogeny of the Cocoeae (Arecaceae) with emphasis on Cocos nucifera. Annals of the Missouri Botanical Garden, 91(3), 505–522.Google Scholar
  29. Henderson, A. (2002). Evolution and ecology of palms. New York: The New York Botanical Garden.Google Scholar
  30. Henderson, A., Galeano, G., & Bernal, R. (1995). A field guide to the palms of the Americas. Princeton, USA: Princeton University.Google Scholar
  31. IBGE (2004). Instituto Brasileiro de Geografia e Estatística.Google Scholar
  32. Janzen, D. H., & Martin, P. S. (1982). Neotropical anachronisms—the fruits the Gomphotheres ate. Science, 215(4528), 19–27.CrossRefPubMedGoogle Scholar
  33. Lanes, E. C., Motoike, S. Y., Kuki, K. N., Nick, C., & Freitas, R. D. (2015). Molecular characterization and population structure of the macaw palm, Acrocomia aculeata (Arecaceae), ex situ germplasm collection using microsatellites markers. Journal of Heredity, 106(1), 102–112.  https://doi.org/10.1093/jhered/esu073.CrossRefPubMedGoogle Scholar
  34. Lanes, E. C., Motoike, S. Y., Kuki, K. N., Resende, M. D., & Caixeta, E. T. (2016). Mating system and genetic composition of the macaw palm (Acrocomia aculeata): implications for breeding and genetic conservation programs. Journal of Heredity, 107(6), 527–536.  https://doi.org/10.1093/jhered/esw038.CrossRefPubMedGoogle Scholar
  35. Lapuerta, M., Ruiz, R. A., & Lechón, Y. (2014). Sustainability study of biodiesel from Acrocomia totai. Global NEST Journal, 16(6), 1046–1056.Google Scholar
  36. Leiner, N. O., Nascimento, A. R. T., & Melo, C. (2009). Plant strategies for seed dispersal in tropical habitats: patterns and implications. In K. Del Claro, P. S. Oliveira, & V. Rico-Gray (Eds.), Tropical biology and conservation management (1 ed., Vol. 1): Encyclopedia of Life Support Systems / UNESCO.Google Scholar
  37. Lentz, D. L. (1990). Acrocomia mexicana: palm of the ancient Mesoamericans. Journal of Ethnobiology, 10(2), 183–194.Google Scholar
  38. Lopes, D. C., Steidle Neto, A. J., Mendes, A. A., & Pereira, D. T. V. (2013). Economic feasibility of biodiesel production from Macauba in Brazil. Energy Economics, 40, 819–824.  https://doi.org/10.1016/j.eneco.2013.10.003.CrossRefGoogle Scholar
  39. Lorenzi, H., Noblick, L., Kahn, F., & Ferreira, E. (2010). Flora Brasileira: Arecaceae (palmeiras). Nova Odessa, SP: Instituto plantarum.Google Scholar
  40. Machado, W., Guimarães, M. F., Lira, F. F., Santos, J. V. F., Takahashi, L. S. A., Leal, A. C., & Coelho, G. T. C. P. (2015). Evaluation of two fruit ecotypes (totai and sclerocarpa) of macaúba (Acrocomia aculeata). Industrial Crops and Products, 63, 287–293.  https://doi.org/10.1016/j.indcrop.2014.11.002.CrossRefGoogle Scholar
  41. Martius, C. F. P. (1823–1837). Historia naturalis palmarum: opus tripartitium. Lipsiae, German.  https://doi.org/10.5962/bhl.title.506.
  42. Mckillop, H. (1996). Prehistoric Maya use of native palms: archaeobotanical and ethnobotanical evidence. In S. L. Fedick (Ed.), The managed mosaic: ancient Maya agriculture and resource use (p. 424). Salt Lake City: University of Utah Press.Google Scholar
  43. Meerow, A. W., Noblick, L., Salas-Leiva, D. E., Sanchez, V., Francisco-Ortega, J., Jestrow, B., & Nakamura, K. (2015). Phylogeny and historical biogeography of the cocosoid palms (Arecaceae, Arecoideae, Cocoseae) inferred from sequences of six WRKY gene family loci. Cladistics, 31, 509–534.  https://doi.org/10.1111/cla.12100.CrossRefGoogle Scholar
  44. Moraes, R. M. (2015). Actualización de la lista de especies nativas de Arecaceae para Bolivia. Revista de la Sociedad Boliviana de Botánica, 8(1), 17–26.Google Scholar
  45. Morcote-Ríos, G., & Bernal, R. (2001). Remains of palms (Palmae) at archaeological sites in the new world: a review. [journal article]. The Botanical Review, 67(3), 309–350.  https://doi.org/10.1007/bf02858098.CrossRefGoogle Scholar
  46. Mota, C. S., Corrêa, T. R., Grossi, J. A. S., Castricini, A., & Ribeiro, A. S. (2011). Exploração sustentável da macaúba para produção de biodiesel: Colheita, pós-colheita e qualidade dos frutos. Informe Agropecuário, 32, 41–51.Google Scholar
  47. Motoike, S., & Kuki, K. N. (2009). The potential of macaw palm (Acrocomia aculeata) as source of biodiesel in Brazil. International Review of Chemical Engineering, 1, 632–635.Google Scholar
  48. Motoike, S. Y., Carvalho, M., Pimentel, L. D., Kuki, K. N., Paes, J. M. V., Dias, H. C. T., & Sato, A. Y. (2013). A Cultura da Macaúba: Implantação e Manejo de Cultivos Racionais. Viçosa: Universidade Federal de Viçosa.Google Scholar
  49. Neiva, D. S., Melo Júnior, A. F., Oliveira, D. A., Royo, V. A., Brandão, M. M., & Menezes, E. V. (2016). Acrocomia emensis (Arecaceae) genetic structure and diversity using SSR molecular markers. Genetics and Molecular Research, 15(1).  https://doi.org/10.4238/gmr.15017785.
  50. Oliveira, D. A., Melo Júnior, A. F., Brandão, M. M., Rodrigues, L. A., Menezes, E. V., & Ferreira, P. R. (2012). Genetic diversity in populations of Acrocomia aculeata (Arecaceae) in the northern region of Minas Gerais, Brazil. Genetics and Molecular Research, 11(1), 531–538.  https://doi.org/10.4238/2012.March.8.1.CrossRefPubMedGoogle Scholar
  51. Olmos, F. (1997). Tapirs—status survey and conservation action plan. In: B. R. a. M. S. Brooks DM (Ed.), Status survey and conservation, action plan in tapirs (pp. 164). IUCN, Gland, Switzerland and Cambridge, UK: IUCN/SSC Tapir Specialist group.Google Scholar
  52. Ortega, J., & Castro-Arellano, I. (2001). Mammalian species Artibeus jamaicensis. Mammalian Species (662), 1–9, doi:  https://doi.org/10.1644/1545-1410(2001)662<0001:AJ>2.0.CO;2.
  53. Palmweb Acrocomia Mart. (n.d.). Hist. Nat. Palm. Accessed 10 May 2016.Google Scholar
  54. Pimentel, L. D., Dias, L. A. S., Paes, J. M. V., Sato, A. Y., & Motoike, S. Y. (2011). Diversidade no gênero Acrocomia e proposta de subdivisão da espécie Acrocomia aculeata. Informe Agropecuário, 32(81–87).Google Scholar
  55. Piperno, D. R., & Pearsall, D. M. (1998). The origins of agriculture in the lowland Neotropics (1ed.): Emerald Group.Google Scholar
  56. Pires, T. P., Souza, E. S., Kuki, K. N., & Motoike, S. Y. (2013). Ecophysiological traits of the macaw palm: a contribution towards the domestication of a novel oil crop. Industrial Crops and Products, 44, 200–210.  https://doi.org/10.1016/j.indcrop.2012.09.029.CrossRefGoogle Scholar
  57. Poetsch, J., Haupenthal, D., Lewandowski, I., Oberländer, D., & Hilger, T. (2012). Acrocomia aculeata—a sustainable oil crop. Ruralia, 21(41–43).Google Scholar
  58. Raczka, M. F. (2009). Mudanças Paleoambientais Quaternárias na Região de Lagoa Santa, MG, Brasil: A Palinologia Como Subsídio para o Entendimento do Padrão de Ocupação Humana. Universidade Guarulhos, Guarulhos, São Paulo, Brazil.Google Scholar
  59. Rivero, K., Rumiz, D. I., & Taber, A. B. (2005). Differential habitat use by two sympatric brocket deer species (Mazama americana and M. gouazoubira) in a seasonal Chiquitano forest of Bolivia. Mammalian Species, 69(2), 169–183.  https://doi.org/10.1515/mamm.2005.015.Google Scholar
  60. Roncal, J., Kahn, F., Millan, B., Couvreur, T. L. P., & Pintaud, J. C. (2013). Cenozoic colonization and diversification patterns of tropical American palms: evidence from Astrocaryum (Arecaceae). Botanical Journal of the Linnean Society, 171(1), 120–139.  https://doi.org/10.1111/j.1095-8339.2012.01297.x.CrossRefGoogle Scholar
  61. Röser, M., Johnson, M. A. T., & Hanson, L. (1997). Nuclear DNA amounts in palms (Arecaceae). Botanica Acta, 110(1), 79–89.  https://doi.org/10.1111/j.1438-8677.1997.tb00614.x.CrossRefGoogle Scholar
  62. Roosevelt, A. C. (1992). Moundbuilders of the Amazon: geophysical archaeology on Marajó Island, Brazil. Journal of Field Archaeology, 19(3), 399–404.  https://doi.org/10.2307/529927. CrossRefGoogle Scholar
  63. Rumiz, D. I. (2001). The role of wildlife in tropical forest dynamics: a literature review with implications for Bolivia. In B. Mostacedo & T. S. Fredericksen (Eds.), Regeneración y Silvicultura de Bosques Tropicales en Bolivia (p. 224). El País, Bolívia: Santa Cruz.Google Scholar
  64. Santos, A. A., & Ragusa-Netto, J. (2014). Plant food resources exploited by blue-and-yellow macaws (Ara ararauna, Linnaeus 1758) at an urban area in Central Brazil. Brazilian Journal of Biology, 74(2), 429–437.CrossRefGoogle Scholar
  65. Scariot, A. O., Lleras, E., & Hay, J. D. (1991). Reproductive biology of the palm Acrocomia aculeata in Central Brazil. Biotropica, 23(1), 12–22.CrossRefGoogle Scholar
  66. Scariot, A., Lleras, E., & Hay, J. D. (1995). Flowering and fruiting phenologies of the palm Acrocomia aculeata: patterns and consequences. Biotropica, 27(2), 168–173.CrossRefGoogle Scholar
  67. Scariot, A. O. (1998). Seed dispersal and predation of the palm Acrocomia aculeata. Principes, 42(1), 5–8.Google Scholar
  68. Silva, G. F. ( 2015). Aspectos da biologia reprodutiva da arara-azul Anodorhynchus hyacinthinus (Latham, 1790) no mosaico Carajás/PA. Universidade Estadual Paulista, Campus de Botucatu, Botucatu, SP.Google Scholar
  69. Smith, C. E. (1965). Plant fibers and civilization: cotton, a case in point. Economic Botany, 19(1), 71–82.CrossRefGoogle Scholar
  70. Smith, N. (2015). Palms and people in the Amazon: Springer International.Google Scholar
  71. Soares, K. P., Longhi, S. J., Neto, L. W., & Assis, L. C. (2014). Palms (Arecaceae) from Rio Grande do Sul, Brazil. Rodriguésia, 65(1), 113–139.CrossRefGoogle Scholar
  72. Tófoli, C., Medici, P., & Valladares-Pádua, C. B. (2006). Feeding ecology of the lowland tapir (Tapirus terrestris) in the Atlantic Forests of the Pontal do Paranapanema Region, São Paulo, Brasil. In Annals of Third International Tapir Symposium Buenos Aires, Argentina (pp. 26–31).Google Scholar
  73. Turner, B. L., & Miksicek, C. H. (1984). Economic plant species associated with prehistoric agriculture in the Maya lowlands. Economic Botany, 38(2), 179–193.  https://doi.org/10.1007/BF02858831. CrossRefGoogle Scholar
  74. Vega, B. (1995). Frutas en la dieta precolombina en la isla Española. In: Ponencias del primer seminário de arqueologia del Caribe, 1995 (pp. 48–90).Google Scholar
  75. Vianna, A. S., & Colombo, C. A. (2013). Distribuição Geográfica de Acrocomia aculeata (Jacq.) Lodd ex Mart. (Arecaceae) em Sua Região de Ocorrência. In I Congresso Brasileiro de Macaúba: Consolidação da Cadeia Produtiva, Patos de Minas, Minas Gerais, Brasil. Google Scholar
  76. Vianna, S. A. (2017). A new species of Acrocomia (Arecaceae) from Central Brazil. Phytotaxa, 314(1), 45–54.  https://doi.org/10.11646/phytotaxa.314.1.2. CrossRefGoogle Scholar
  77. Vianna, S. A., Berton, L. H. C., Pott, P., Guerreiro, S. M. C., & Colombo, C. A. (2017b). Biometric characterization of fruits and morphoanatomy of the mesocarp of Acrocomia species (Arecaceae). International Journal of Biology, 9(3), 78–92.  https://doi.org/10.5539/ijb.v9n3p78. CrossRefGoogle Scholar
  78. Vianna, S. A., Carmelo-Guerreiro, S. M., Noblick, L. R., & Colombo, C. A. (2017c). Leaf anatomy of Acrocomia (Arecaceae): an additional contribution to the taxonomic resolution of a genus with great economic potential. Plant Systematics and Evolution, 303(2), 233–248.  https://doi.org/10.1007/s00606-016-1369-4.CrossRefGoogle Scholar
  79. Waga, I. C., Dacier, A. K., Pinha, P. S., & Tavares, M. C. H. (2006). Spontaneous tool use by wild capuchin monkeys (Cebus libidinosus) in the Cerrado. Folia Primatologica, 77(5), 337–344.CrossRefGoogle Scholar
  80. Wandeck, F. A., & Justo, P. G. (1982). A macaúba, fonte energética e insumo industrial: sua significação econômica no Brasil. In: E. Cerrados (Ed.), Simpósio Sobre o Cerrado, Savanas: alimento e energia, Planaltina, Brazil, 1982: Planaltina: Embrapa Cerrados.Google Scholar
  81. World Checklist of Selected Plant Families. (2016). Royal Botanic Gardens. http://apps.kew.org/wcsp/namedetail.do?name_id=2569. Accessed April/03.
  82. Yamashita, C., & Valle, M. P. (1993). On the linkage between Anodorhynchus macaw and palm nuts, and the extinction of the glaucous macaw. Bulletin of the British Ornithologists, 113, 53–60.Google Scholar
  83. Zorzi, B. T. (2009). Frugivoria por Tapirus terrestris em três regiões do Pantanal. Universidade Federal do Mato Grosso do Sul.Google Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2018

Authors and Affiliations

  • Natácia Evangelista de Lima
    • 1
  • Alexandre Assis Carvalho
    • 2
  • Alan William Meerow
    • 3
  • Maura Helena Manfrin
    • 1
    • 4
  1. 1.Postgraduation Programme in Genetics, Department of Genetics, Ribeirão Preto Medical SchoolUniversity of São PauloRibeirão PretoBrazil
  2. 2.University of BrasíliaBrasíliaBrazil
  3. 3.United States Department of AgricultureNational Germplasm RepositoryMiamiUSA
  4. 4.Department of Genetics, Ribeirão Preto Medical School and Department of Biology, Faculty of Philosophy, Science and Letters of Ribeirão PretoUniversity of São PauloRibeirão PretoBrazil

Personalised recommendations