Organisms Diversity & Evolution

, Volume 18, Issue 2, pp 225–239 | Cite as

Same same but different: a stunning analogy between tracheal and vascular supply in the CNS of different arachnids

  • Bastian-J. Klußmann-Fricke
  • Christian S. Wirkner
Original Article


Described herein is an as yet unprecedented structural and functional analogy of both the tracheal supply of the prosomal ganglion in opilionids and the arterial supply of the prosomal ganglion in pulmonate arachnids. Within Arachnida, two different modes of respiration can be observed: the so-called book lungs, and the tube-like tracheae. These different respiratory modes always correlate with a specific setup concerning the complexity of the circulatory system. This fact has a particular influence on the supply of certain organ systems, such as the central nervous system. It has recently been shown that pulmonate arachnids possess a highly complex pattern of intraganglionic arteries. Here, we show that Opiliones (harvestmen) possess a complex tracheal system (which supplies the different organ systems with oxygen) and only a relatively simple vascular system, comprising a short heart and an anterior aorta that runs directly to the prosomal ganglion. Using a variety of modern and classical morphological methods, we studied the vascular, tracheal and nervous systems of different representatives from all higher taxa of Opiliones. We show that the prosomal ganglion is extensively supplied with intraganglionic tracheae. What is especially surprising is the high degree of correspondence between the pattern of these ganglionic tracheae in harvestmen and the pattern of arteries in the prosomal ganglion of pulmonate arachnids. We aim to provide mechanistic causal explanations of these analogous patterns by applying the concepts of role analogy and constructional analogy. We also aim to establish the circulatory system as a model organ system and hope that this may, in turn, provide a starting point for future research programmes.


hemolymph vascular system cs rs Morphology Evolution Analogy Opiliones Scorpiones Chelicerata 



The authors would like to thank Stefan Richter and the rest of the lab of the Allgemeine und Spezielle Zoologie, Universität Rostock, for fruitful discussions on organ system evolution and analogy. Furthermore, we extend our thanks to Nikolaus Szucsich (Vienna), Martin Ramirez (Buenos Aires), Caroline Haug (Munich) and an anonymous reviewer for useful comments on earlier versions of the manuscript. Günther Raspotnig (Graz) provided specimens of Cyphophthalmus duricorius, and Gerd Fulda and the team of the EMZ Rostock provided technical assistance with SEM and critical point drying, which is gratefully acknowledged. The authors also thank Abel Perez Gonzalez (Buenos Aires) for the identification of Chilean gonyleptids and Helen Johnson for improving the English. BJKF was funded by the “Landesgraduierten Stipendium” of Mecklenburg-Vorpommern. CSW received funding from the Deutsche Forschungsgemeinschaft DFG (WI 3334/4-1). The MicroCT machine (DFG INST 264/38-1 FUGG) and the confocal microscope (DFG INST 264/70-1 FUGG) were sponsored by the Deutsche Forschungsgemeinschaft.

Supplementary material

13127_2018_360_MOESM1_ESM.pdf (4.1 mb)
ESM 1 (PDF 4.05 MB)
13127_2018_360_MOESM2_ESM.pdf (1.1 mb)
ESM 2 (PDF 1.05 MB)
13127_2018_360_MOESM3_ESM.pdf (1.4 mb)
ESM 3 (PDF 1.43 MB)
13127_2018_360_MOESM4_ESM.pdf (2 mb)
ESM 4 (PDF 1.96 MB)
13127_2018_360_MOESM5_ESM.pdf (3.3 mb)
ESM 5 (PDF 3.30 MB)


  1. Aiello, L. C., & Wheeler, P. (1995). The expensive-tissue hypothesis: the brain and the digestive system in human and primate evolution. Current Anthropology, 36, 199–221.CrossRefGoogle Scholar
  2. Bock, W. J., & von Wahlert, G. (1965). Adaptation and the form-function complex. Evolution, 19, 360–299.CrossRefGoogle Scholar
  3. Breidbach, O., & Wegerhoff, R. (1993). Neuroanatomy of the central nervous system of the harvestman, Rilaena triangularis (Herbst 1799)(Arachnida; Opiliones): principal organization, Gaba-like and serotonin-immunohistochemistry. Zoologischer Anzeiger, 230(1-2), 55–81.Google Scholar
  4. Bromhall, C. (1987). Spider tracheal systems. Tissue & Cell, 19(6), 793–807.CrossRefGoogle Scholar
  5. Coddington, J. A., Giribet, G., Harvey, M. S., Prendini, L. & Walter, D. E. (2004). Arachnida. In Assembling the tree of life, 296-318.Google Scholar
  6. Crome, W. (1953). Die Respirations-und Circulationsorgane der Argyroneta aquatica CL.(Araneae). Wissenschaftliche Zeitschrift der Humboldt-Universitaet Berlin 2, II Math Nat R 3/4, 53-83.Google Scholar
  7. Dannhorn, D. R., & Seitz, K. A. (1986). Ultrastructure and function of the circulatory organs of Leiobunum limbatum and two other species of harvestmen (Arachnida: Opiliones). Journal of Morphology, 190(1), 93–107.CrossRefGoogle Scholar
  8. Dunlop, J. A. (2010). Geological history and phylogeny of Chelicerata. Arthropod Structure & Development, 39(2), 124–142.CrossRefGoogle Scholar
  9. Dunlop, J. A., Anderson, L. I., Kerp, H., & Hass, H. (2004). A harvestman (Arachnida: Opiliones) from the early Devonian Rhynie cherts, Aberdeenshire, Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences, 94, 341–354.CrossRefGoogle Scholar
  10. Englund, C., Uv, A. E., Cantera, R., Mathies, L. D., Krasnow, M. A., & Samakovlis, C. (1999). adrift, a novel bnl-induced Drosophila gene, required for tracheal pathfinding into the CNS. Development, 126(7), 1505–1514.PubMedGoogle Scholar
  11. Firstman, B. (1973). The relationship of the chelicerate arterial system to the evolution of the endosternite. Journal of Arachnology, 1, 1–54.Google Scholar
  12. Franz-Guess, S., Klußmann-Fricke, B. J., Wirkner, C. S., Prendini, L., & Starck, J. M. (2016). Morphology of the tracheal system of camel spiders (Chelicerata: Solifugae) based on micro-CT and 3D-reconstruction in exemplar species from three families. Arthropod Structure & Development, 45(5), 440–451.Google Scholar
  13. Göpel, T., & Wirkner, C. S. (2015). An “ancient” complexity? Evolutionary morphology of the circulatory system in Xiphosura. Zoology, 118, 221–238.CrossRefPubMedGoogle Scholar
  14. Huckstorf, K., Kosok, G., Seyfarth, E. A., & Wirkner, C. S. (2013). The hemolymph vascular system in Cupiennius salei (Araneae: Ctenidae). Zoologischer Anzeiger, 252(1), 76–87.CrossRefGoogle Scholar
  15. Kästner, A. (1935). 7. Ordnung der Arachnida: Opiliones Sundevall. In Handbuch der Zoologie (pp. 300–393). Jena: Gustav Fischer.Google Scholar
  16. Klambt, C., Glazer, L., & Shilo, B. Z. (1992). breathless, a Drosophila FGF receptor homolog, is essential for migration of tracheal and specific midline glial cells. Genes & Development, 6(9), 1668–1678.CrossRefGoogle Scholar
  17. Klußmann-Fricke, B. J., Prendini, L., & Wirkner, C. S. (2012). Evolutionary morphology of the hemolymph vascular system in scorpions: a character analysis. Arthropod Structure & Development, 41(6), 545–560.CrossRefGoogle Scholar
  18. Klußmann-Fricke, B. J., Pomrehn, S. W., & Wirkner, C. S. (2014). A wonderful network unraveled—detailed description of capillaries in the prosomal ganglion of scorpions. Frontiers in Zoology, 11(1), 28.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Klußmann‐Fricke, B. J., & Wirkner, C. S. (2016). Comparative morphology of the hemolymph vascular system in Uropygi and Amblypygi (Arachnida): complex correspondences support Arachnopulmonata. Journal of Morphology, 277(8), 1084–1103.Google Scholar
  20. Laughlin, S. B., van Steveninck, R. R. D. R., & Anderson, J. C. (1998). The metabolic cost of neural information. Nature Neuroscience, 1(1), 36–41.CrossRefPubMedGoogle Scholar
  21. Levi, H. W. (1967). Adapations of respiratory systems of spiders. Evolution, 21, 571–583.PubMedGoogle Scholar
  22. Lorenz, K. (1974). Analogy as a source of knowledge. Science, 19, 229–234.CrossRefGoogle Scholar
  23. Love, A. C. (2006). Evolutionary morphology and evo-devo: hierarchy and novelty. Theory in Bioscience, 124(3-4), 317–333.CrossRefGoogle Scholar
  24. Metzger, R. J., & Krasnow, M. A. (1999). Genetic control of branching morphogenesis. Science, 284(5420), 1635–1639.CrossRefPubMedGoogle Scholar
  25. Mink, J. W., Blumenschine, R. J., & Adams, D. B. (1981). Ratio of central nervous system to body metabolism in vertebrates: its constancy and functional basis. American Journal of Physiology, 241(3), R203–R212.PubMedGoogle Scholar
  26. Nation, J. L. (1983). A new method using hexamethyldisilazane for preparation of soft insect tissues for scanning electron microscopy. Biotechnic and Histochemistry, 58(6), 347–351.Google Scholar
  27. Pereanu, W., Spindler, S., Cruz, L., & Hartenstein, V. (2007). Tracheal development in the Drosophila brain is constrained by glial cells. Developmental Biology, 302(1), 169–180.CrossRefPubMedGoogle Scholar
  28. Pernstich, A., Krenn, H. W., & Pass, G. (2003). Preparation of serial sections of arthropods using 2, 2-dimethoxypropane dehydration and epoxy resin embedding under vacuum. Biotechnic and Histochemistry, 78(1), 5–9.CrossRefPubMedGoogle Scholar
  29. Richter, S., & Wirkner, C. S. (2014). A research program for evolutionary morphology. Journal of Zoological Systematics and Evolutionary Research, 52(4), 338–350.CrossRefGoogle Scholar
  30. Richter, S., Loesel, R., Purschke, G., Schmidt-Rhaesa, A., Scholtz, G., Stach, T., Vogt, L., Wanninger, A., Brenneis, G., Döring, C., Faller, S., Fritsch, M., Grobe, P., Heuer, C. M., Kaul, S., Møller, O. S., Müller, C. H. G., Rieger, V., Rothe, B. H., Stegner, M. E. J., & Harzsch, S. (2010). Invertebrate neurophylogeny: suggested terms and definitions for a neuroanatomical glossary. Frontiers in Zoology, 7(1), 29.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Romeis, B. (2010). Mikroskopische Technik. Heidelberg: Spektrum Akademischer Verlag.Google Scholar
  32. Runge, J., & Wirkner, C. S. (2016). The hemolymph vascular system in A raneus diadematus with special focus on intraspecific variability in artery systems. Journal of Arachnology, 44(2), 153–164.Google Scholar
  33. Sharma, P. P., Kaluziak, S. T., Pérez-Porro, A. R., González, V. L., Hormiga, G., Wheeler, W. C. and Giribet, G. (2014). Phylogenomic interrogation of Arachnida reveals systemic conflicts in phylogenetic signal. Molecular Biology & Evolution, msu235.Google Scholar
  34. Shultz, J. W. (2007). A phylogenetic analysis of the arachnid orders based on morphological characters. Zoological Journal of the Linnean Society, 150, 221–265.CrossRefGoogle Scholar
  35. Shultz, J.W. & Pinto-da-Rocha, R. (2006). Morphology and functional morphology. In Harvestmen: the biology of Opiliones. Harvard University Press, 14-61.Google Scholar
  36. Sudhaus, W., & Rehfeld, K. (1992). Einfuhrung in die Phylogenetik und Systematik. Stuttgart: Gustav Fischer.Google Scholar
  37. Sutherland, D., Samakovlis, C., & Krasnow, M. A. (1996). branchless encodes a Drosophila FGF homolog that controls tracheal cell migration and the pattern of branching. Cell, 87(6), 1091–1101.CrossRefPubMedGoogle Scholar
  38. Weygoldt, P. (1979). Cladistic versus phenetic classification—an endless debate? Journal of Zoological Systematics and Evolutionary Research, 17(4), 310–314.CrossRefGoogle Scholar
  39. Weygoldt, P., & Paulus, H. F. (1979). Untersuchungen zur Morphologie, Taxonomie und Phylogenie der Chelicerata1 II. Cladogramme und die Entfaltung der Chelicerata. Journal of Zoological Systematics and Evolutionary Research, 17(3), 177–200.CrossRefGoogle Scholar
  40. Wirkner, C. S., Tögel, M. & Pass, G. (2013). The arthropod circulatory system. In Arthropod biology and evolution. Springer Berlin Heidelberg, 343-391.Google Scholar
  41. Wirkner, C. S., Göpel, T., Runge, J., Keiler, J., Klußmann-Fricke, B. J., Huckstorf, K., Scholz, S., Mikó, I., Yoder, M. J. & Richter, S. (2017). The First Organ-Based Ontology for Arthropods (Ontology of Arthropod Circulatory Systems-OArCS) and its Integration into a Novel Formalization Scheme for Morphological Descriptions. Systematic Biology, 66(5), 754–768.Google Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2018

Authors and Affiliations

  • Bastian-J. Klußmann-Fricke
    • 1
  • Christian S. Wirkner
    • 1
  1. 1.Allgemeine & Spezielle Zoologie, Institut für BiowissenschaftenUniversität RostockRostockGermany

Personalised recommendations