Advertisement

Organisms Diversity & Evolution

, Volume 19, Issue 2, pp 211–276 | Cite as

Taxonomic revision of the dwarf spider genus Shaanxinus Tanasevitch, 2006 (Araneae, Linyphiidae, Erigoninae), with new species from Taiwan and Vietnam

  • Shou-Wang LinEmail author
  • Lara Lopardo
  • Martin Haase
  • Gabriele Uhl
Original Article

Abstract

Dwarf spiders are of special interest due to their sexually dimorphic prosomal structures in males. Glandular secretions within these structures serve as nuptial gifts, and thus sexual selection may have contributed to their high species richness. However, species diversity of dwarf spiders in East Asia is yet understudied. Here, we review the erigonine genus Shaanxinus Tanasevitch, 2006, and describe 13 new species from Taiwan: S. magniclypeus sp. n. (♂♀), S. shihchoensis sp. n. (♂♀), S. shoukaensis sp. n. (♂♀), S. hirticephalus sp. n. (♂♀), S. mingchihensis sp. n. (♂♀), S. makauyensis sp. n. (♂♀), S. lixiangae sp. n. (♂♀), S. curviductus sp. n. (♂♀), S. tsou sp. n. (♂♀), S. hehuanensis sp. n. (♂♀), S. seediq sp. n. (♂♀), S. meifengensis sp. n. (♂♀), and S. atayal sp. n. (♂♀). In addition, one new species from Vietnam, S. tamdaoensis sp. n. (♂), is described from museum material. We reconstructed the dimension of glandular tissues associated with male prosoma modifications in Shaanxinus, as well as the detailed palpal structure by micro-computer tomography. Placement within Shaanxinus and intrageneric relationships were inferred by means of a cladistic analysis based on morphological characters. Sequences of COI, 16S, and 28S genetic markers corroborated the monophyly of some species, as well as male-female matching. Poly-/paraphyly of morphologically delimitated species in the mitochondrial DNA (mtDNA) trees led to the discovery of two seemingly identical species, for which diagnostic morphological features could then be further identified. We discuss incomplete lineage sorting and introgression as possible causes of mtDNA poly-/paraphyly in morphologically indistinguishable specimens.

Keywords

Erigonines Phylogeny Arboreal spiders Gustatorial courtship Sexual selection 

Notes

Acknowledgements

We are very grateful to Theo Michael Schmitt, Anja Junghanns, and Pierick Mouginot for suggestions on the manuscript. For kindly loaning material, we would like to thank Julia Altmann, Peter Jäger (both Senckenberg Museum Frankfurt, DE; SMF) and Nikolaj Scharff (Zoological Museum, University of Copenhagen, DK; ZMUC). We also thank the University of Greifswald (International Office) for a stipend to visit the aforementioned two museums. For providing facility for preserving and identifying newly collected material, we would like to thank Shiuh-Feng Shiao (National Taiwan University, Taiwan). For support in collecting specimen, we sincerely thank Li-Xiang Huang, the first author’s mother. For support in molecular lab work, we thank Silke Fregin; for imaging assistance, we thank Peter Michalik and Tim Dederichs (all Zoological Institut and Museum, Greifswald, DE; ZIMG). For micro-CT imaging and reconstruction, we cordially thank Stefan Bock. The SEM images were taken by Carsten Müller at the Image Center of Biology, Greifswald. For critical reviews and constructive advice, we thank Andrei D. Tanasevitch and Gustavo Hormiga.

References

  1. Agustí, N., Shayler, S. P., Harwood, J. D., Vaughan, I. P., Sunderland, K., & Symondson, W. O. C. (2003). Collembola as alternative prey sustaining spiders in arable ecosystems: prey detection within predators using molecular markers. Molecular Ecology, 12, 3467–3475.Google Scholar
  2. Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716–723.Google Scholar
  3. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.Google Scholar
  4. Álvarez-Padilla, F., Dimitrov, D., Giribet, G., & Hormiga, G. (2009). Phylogenetic relationships of the spider family Tetragnathidae (Araneae, Araneoidea) based on morphological and DNA sequence data. Cladistics, 25, 109–146.Google Scholar
  5. Arnedo, M. A., Hormiga, G., & Scharff, N. (2009). Higher-level phylogenetics of linyphiid spiders (Araneae, Linyphiidae) based on morphological and molecular evidence. Cladistics, 25, 231–262.Google Scholar
  6. Astrin, J. J., Huber, B. A., Misof, B., & Klütsch, C. F. C. (2006). Molecular taxonomy in pholcid spiders (Pholcidae, Araneae): evaluation of species identification methods using CO1 and 16S rRNA. Zoologica Scripta, 35, 441–457.Google Scholar
  7. Astrin, J. J., Höfer, H., Spelda, J., Holstein, J., Bayer, S., Hendrich, L., et al. (2016). Towards a DNA barcode reference database for spiders and harvestmen of Germany. PLoS One, 11, e0162624.Google Scholar
  8. Austerlitz, F., David, O., Schaeffer, B., Bleakley, K., Olteanu, M., Leblois, R., et al. (2009). DNA barcode analysis: a comparison of phylogenetic and statistical classification methods. BMC Bioinformatics, 10, S10.Google Scholar
  9. Ballard, J. W. O., & Whitlock, M. C. (2004). The incomplete natural history of mitochondria. Molecular Ecology, 13, 729–744.Google Scholar
  10. Ballarin, F., & Li, S. (2018). Diversification in tropics and subtropics following the mid-Miocene climate change: a case study of the spider genus Nesticella. Global Change Biology, 24, e577–e591.Google Scholar
  11. Barber, B. R., Xu, J., Pérez-Losada, M., Jara, C. G., & Crandall, K. A. (2012). Conflicting evolutionary patterns due to mitochondrial introgression and multilocus phylogeography of the Patagonian freshwater crab Aegla neuquensis. PLoS One, 7, e37105.Google Scholar
  12. Barrantes, G., Aisenberg, A., & Eberhard, W. G. (2013). Functional aspects of genital differences in Leucauge argyra and L. mariana (Araneae: Tetragnathidae). The Journal of Arachnology, 41, 59–69.Google Scholar
  13. Barrett, R. D. H., & Hebert, P. D. N. (2005). Identifying spiders through DNA barcodes. Canadian Journal of Zoology, 83, 481–491.Google Scholar
  14. Barton, N., & Jones, J. (1983). Evolutionary biology: Mitochondrial DNA: new clues about evolution. Nature, 306, 317.Google Scholar
  15. Basset, Y., & Arthington, A. (1992). The arthropod community of an Australian rainforest tree: abundance of component taxa, species richness and guild structure. Australian Journal of Ecology, 17, 89–98.Google Scholar
  16. Betz, O., Wegst, U., Weide, D., Heethoff, M., Helfen, L., Lee, W. K., et al. (2007). Imaging applications of synchrotron X-ray phase-contrast microtomography in biological morphology and biomaterials science. I. General aspects of the technique and its advantages in the analysis of millimetre-sized arthropod structure. Journal of Microscopy, 227, 51–71.Google Scholar
  17. Beutel, R. G., Friedrich, F., & Whiting, M. F. (2008). Head morphology of Caurinus (Boreidae, Mecoptera) and its phylogenetic implications. Arthropod Structure & Development, 37, 418–433.Google Scholar
  18. Blest, A. D., & Pomeroy, G. (1978). The sexual behaviour and genital mechanics of three species of Mynoglenes (Araneae: Linyphiidae). Journal of Zoology, 185, 319–340.Google Scholar
  19. Blest, A. D., & Taylor, H. H. (1977). The clypeal glands of Mynoglenes and of some other linyphiid spiders. Journal of Zoology, 183, 473–493.Google Scholar
  20. Bodner, M. R., & Maddison, W. P. (2012). The biogeography and age of salticid spider radiations (Araneae: Salticidae). Molecular Phylogenetics and Evolution, 65, 213–240.Google Scholar
  21. Bösenberg, W., & Strand, E. (1906). Japanische Spinnen. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft, 30, 93–422.Google Scholar
  22. Bremer, K. (1988). The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution, 42, 795–803.Google Scholar
  23. Bremer, K. (1994). Branch support and tree stability. Cladistics, 10, 295–304.Google Scholar
  24. Bristowe, W. S. (1938). The classification of spiders. Proceedings of the Zoological Society of London (B), 108, 285–322.Google Scholar
  25. Brown, S. D. J., Collins, R. A., Boyer, S., Lefort, M.-C., Malumbres-Olarte, J., Vink, C. J., et al. (2012). Spider: an R package for the analysis of species identity and evolution, with particular reference to DNA barcoding. Molecular Ecology Resources, 12, 562–565.Google Scholar
  26. Burger, M. (2008). Functional genital morphology of armored spiders (Arachnida: Araneae: Tetrablemmidae). Journal of Morphology, 269, 1073–1094.Google Scholar
  27. Burger, M., Izquierdo, M., & Carrera, P. (2010). Female genital morphology and mating behavior of Orchestina (Arachnida: Araneae: Oonopidae). Zoology, 113, 100–109.Google Scholar
  28. Chapman, T., Arnqvist, G., Bangham, J., & Rowe, L. (2003). Sexual conflict. Trends in Ecology & Evolution, 18, 41–47.Google Scholar
  29. Chapman, E. G., Schmidt, J. M., Welch, K. D., & Harwood, J. D. (2013). Molecular evidence for dietary selectivity and pest suppression potential in an epigeal spider community in winter wheat. Biological Control, 65, 72–86.Google Scholar
  30. Clouse, R. M., de Bivort, B. L., & Giribet, G. (2010). A phylogenetic analysis for the South-east Asian mite harvestman family Stylocellidae (Opiliones: Cyphophthalmi)—a combined analysis using morphometric and molecular data. Invertebrate Systematics, 23, 515–529.Google Scholar
  31. Comstock, J. H. (1910). The palpi of male spiders. Annals of the Entomological Society of America, 3, 161–185.Google Scholar
  32. Crosby, C. R., Bishop, S. C., & Seeley, R. M. (1928). Revision of the spider genera Erigone, Eperigone and Catabrithorax (Erigoneae). New York State Museum Bulletin, 278, 1–73.Google Scholar
  33. Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9, 772–772.  https://doi.org/10.1038/nmeth.2109.Google Scholar
  34. de Bivort, B. L., Clouse, R. M., & Giribet, G. (2010). A morphometrics-based phylogeny of the temperate Gondwanan mite harvestmen (Opiliones, Cyphophthalmi, Pettalidae). Journal of Zoological Systematics and Evolutionary Research, 48, 294–309.Google Scholar
  35. de Causmaecker, B. (2004). Morfologie en histologie van de mannelijke kopstructuren bij Oedothorax dwergspinnen en zaadcompetitie bij de mannelijk dimorfe Oedothorax gibbosus (Blackwall, 1814)(Erigoninae, Linyphiidae, Araneae). Master's thesis, Faculty of Biology, University of Gent, Belgium. Google Scholar
  36. Dowling, T. E., & Secor, C. L. (1997). The role of hybridization and introgression in the diversification of animals. Annual Review of Ecology and Systematics, 28, 593–619.Google Scholar
  37. Drovetski, S. V., Reeves, A. B., Red'kin, Y. A., Fadeev, I. V., Koblik, E. A., Sotnikov, V. N., et al. (2018). Multi-locus reassessment of a striking discord between mtDNA gene trees and taxonomy across two congeneric species complexes. Molecular Phylogenetics and Evolution, 120, 43–52.Google Scholar
  38. Eberhard, W. G. (1985). Sexual selection and animal genitalia (Vol. 244). Cambridge: Harvard University Press.Google Scholar
  39. Eberhard, W. G., & Huber, B. A. (2010). Spider genitalia: precise maneuvers with a numb structure in a complex lock. In J. L. Leonard & A. Córdoba-Aguilar (Eds.), Evolution of primary sexual characters in animals (pp. 249–284). Oxford: Oxford University Press.Google Scholar
  40. Elias, M., Hill, R. I., Willmott, K. R., Dasmahapatra, K. K., Brower, A. V., Mallet, J., et al. (2007). Limited performance of DNA barcoding in a diverse community of tropical butterflies. Proceedings of the Royal Society of London B: Biological Sciences, 274, 2881–2889.Google Scholar
  41. Fanenbruck, M., De Carlo, F., & Mancini, D. (2001). Evaluating the Advantage of X-ray Microtomography in Microanatomical Studies of Small Arthropods. APS Activity Reports. Argonne, Illinois: Argonne National Laboratory.Google Scholar
  42. Farris, J. S. (1990). Phenetics in camouflage. Cladistics, 6, 91–100.Google Scholar
  43. Folmer, O., Black, M., Hoeh, W., Lutz, R., & Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294–299.Google Scholar
  44. Friedrich, F., & Beutel, R. G. (2008). Micro-computer tomography and a renaissance of insect morphology. Proceedings of SPIE, 7078, 70781U1–70781U6.Google Scholar
  45. Friedrich, F., Pohl, H., Beckmann, F., & Beutel, R. G. (2013). The head of Merope tuber (Meropeidae) and the phylogeny of Mecoptera (Hexapoda). Arthropod Structure & Development, 42, 69–88.Google Scholar
  46. Funk, D. J., & Omland, K. E. (2003). Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annual Review of Ecology, Evolution, and Systematics, 34, 397–423.Google Scholar
  47. Goloboff, P. A., & Farris, J. S. (2001). Methods for quick consensus estimation. Cladistics, 17, S26–S34.Google Scholar
  48. Goloboff, P. A., Mattoni, C. I., & Quinteros, A. S. (2006). Continuous characters analyzed as such. Cladistics, 22, 589–601.Google Scholar
  49. Goloboff, P. A., Farris, J. S., & Nixon, K. C. (2008). TNT, a free program for phylogenetic analysis. Cladistics, 24, 774–786.Google Scholar
  50. González-José, R., Escapa, I., Neves, W. A., Cúneo, R., & Pucciarelli, H. M. (2008). Cladistic analysis of continuous modularized traits provides phylogenetic signals in Homo evolution. Nature, 453, 775.Google Scholar
  51. Grant, P. R., Grant, B. R., & Petren, K. (2005). Hybridization in the recent past. The American Naturalist, 166, 56–67.Google Scholar
  52. Guilbert, E., Chazeau, J., & Larbogne, L. D. (1994). Canopy arthropod diversity of New Caledonian forests sampled by fogging: preliminary results. Memoirs of the Queensland Museum, 36, 77–85.Google Scholar
  53. Guindon, S., Gascuel, O., & Rannala, B. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology, 52, 696–704.Google Scholar
  54. Harrison, R. G. (1989). Animal mitochondrial DNA as a genetic marker in population and evolutionary biology. Trends in Ecology & Evolution, 4, 6–11.Google Scholar
  55. Hawlitschek, O., Morinière, J., Lehmann, G., Lehmann, A., Kropf, M., Dunz, A., et al. (2017). DNA barcoding of crickets, katydids and grasshoppers (Orthoptera) from Central Europe with focus on Austria, Germany and Switzerland. Molecular Ecology Resources, 17, 1037–1053.Google Scholar
  56. Hebert, P. D., Cywinska, A., Ball, S. L., & deWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society of London B: Biological Sciences, 270, 313–321.Google Scholar
  57. Hebert, P. D., Penton, E. H., Burns, J. M., Janzen, D. H., & Hallwachs, W. (2004). Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States of America, 101, 14812–14817.Google Scholar
  58. Hennig, W. (1966). Phylogenetic systematics. Urbana, Illinois: University of Illinois Press.Google Scholar
  59. Höfer, H., Brescovit, A. D., Adis, J., & Paarmann, W. (1994). The spider fauna of neotropical tree canopies in Central Amazonia: first results. Studies on Neotropical Fauna and Environment, 29, 23–32.Google Scholar
  60. Hormiga, G. (2000). Higher level phylogenetics of erigonine spiders (Araneae, Linyphiidae, Erigoninae). Smithsonian Contributions to Zoology, 609, 1–160.Google Scholar
  61. Hormiga, G., Arnedo, M., & Gillespie, R. G. (2003). Speciation on a conveyor belt: sequential colonization of the Hawaiian Islands by Orsonwelles spiders (Araneae, Linyphiidae). Systematic Biology, 52, 70–88.Google Scholar
  62. Hörnschemeyer, T., Beutel, R. G., & Pasop, F. (2002). Head structures of Priacma serrata Leconte (Coleoptera, Archostemata) inferred from X-ray tomography. Journal of Morphology, 252, 298–314.Google Scholar
  63. Huber, B. A. (1993). Genital mechanics and sexual selection in the spider Nesticus cellulanus (Araneae: Nesticidae). Canadian Journal of Zoology, 71, 2437–2447.Google Scholar
  64. Huber, B. A. (1994a). Copulatory mechanics in the funnel-web spiders Histopona torpida and Textrix denticulata (Agelenidae, Araneae). Acta Zoologica, 75, 379–384.Google Scholar
  65. Huber, B. A. (1994b). Funktion und evolution komplexer Kopulationsorgane. Eine Analyse von Schnittserien durch in copula schockfixierte Spinnen. Mitteilungen der Deutschen Gesellschaft für Allgemeine und Angewandte Entomologie, 9, 247–250.Google Scholar
  66. Huber, B. A. (1995a). Copulatory mechanism in Holocnemus pluchei and Pholcus opilionoides, with notes on male cheliceral apophyses and stridulatory organs in Pholcidae (Araneae). Acta Zoologica, 76, 291–300.Google Scholar
  67. Huber, B. A. (1995b). Genital morphology and copulatory mechanics in Anyphaena accentuata (Anyphaenidae) and Clubiona pallidula (Clubionidae: Araneae). Journal of Zoology, 235, 689–702.Google Scholar
  68. Huber, B. A. (1995c). The retrolateral tibial apophysis in spiders—shaped by sexual selection? Zoological Journal of the Linnean Society, 113, 151–163.Google Scholar
  69. Huber, B. A., & Eberhard, W. G. (1997). Courtship, copulation, and genital mechanics in Physocyclus globosus (Araneae, Pholcidae). Canadian Journal of Zoology, 75, 905–918.Google Scholar
  70. Humphries, C. J. (2002). Homology, characters and continuous variables. In N. Macleod & P. Forey (Eds.), Morphology, shape and phylogeny (pp. 8–26). London: Taylor and Francis.Google Scholar
  71. Hurst, G. D., & Jiggins, F. M. (2005). Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: the effects of inherited symbionts. Proceedings of the Royal Society of London B, 272, 1525–1534.Google Scholar
  72. Hurvich, C. M., & Tsai, C.-L. (1989). Regression and time series model selection in small samples. Biometrika, 76, 297–307.Google Scholar
  73. Jackson, A. R. (1932). On new and rare British spiders. Proceedings of the Dorset Natural History and Antiquarian Field Club, 53, 200–214.Google Scholar
  74. Jang, K. H. (2012). Molecular Phylogeny of Spiders (Arachnida, Araneae). Doctoral thesis, Kyungpook National University, South Korea.Google Scholar
  75. Janicke, T., Ritchie, M. G., Morrow, E. H., & Marie-Orleach, L. (2018). Sexual selection predicts species richness across the animal kingdom. Proceedings of the Royal Society B, 285, 20180173.Google Scholar
  76. Juberthie, C., & Lopez, A. (1980). La glande clypéale d’Argyrodes argyrodes (Walck.): nouvelles précisions sur son ultrastructure. Revué Arachnologique, 3, 1–11.Google Scholar
  77. Karsch, F. (1879). Baustoffe zu einer Spinnenfauna von Japan. Verhandlungen des naturhistorischen Vereins der preussischen Rheinlande und Westfalens, 36, 57–105.Google Scholar
  78. Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780.Google Scholar
  79. Katoh, K., Misawa, K., Kuma, K., & Miyata, T. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30, 3059–3066.Google Scholar
  80. Kimura, M., & Ohta, T. (1969). The average number of generations until fixation of a mutant gene in a finite population. Genetics, 61, 763–771.Google Scholar
  81. Kunz, K., Garbe, S., & Uhl, G. (2012). The function of the secretory cephalic hump in males of the dwarf spider Oedothorax retusus (Linyphiidae: Erigoninae). Animal Behaviour, 83, 511–517.Google Scholar
  82. Kunz, K., Witthuhn, M., & Uhl, G. (2015). Paired and complex copulatory organs: do they really impede flexible use? Journal of Zoology, 297, 278–285.Google Scholar
  83. Leduc-Robert, G., & Maddison, W. P. (2018). Phylogeny with introgression in Habronattus jumping spiders (Araneae: Salticidae). BMC Evolutionary Biology, 18, 24.Google Scholar
  84. Legendre, R., & Lopez, A. (1974). Ètude histologique de quelques formations glandulaires chez les Araignées du genre Argyrodes (Theridiidae) et description d'un nouveau type de glande : la glande clypéale des males. Bulletin de la Société Zoologique de France, 99, 453–460.Google Scholar
  85. Lindsay, D. J., Grossmann, M. M., Nishikawa, J., Bentlage, B., & Collins, A. G. (2015). DNA barcoding of pelagic cnidarians: current status and future prospects. Bulletin of Plankton Society of Japan, 62, 39–43.Google Scholar
  86. Lopardo, L., & Hormiga, G. (2015). Out of the twilight zone: phylogeny and evolutionary morphology of the orb-weaving spider family Mysmenidae, with a focus on spinneret spigot morphology in symphytognathoids (Araneae, Araneoidea). Zoological Journal of the Linnean Society, 173, 527–786.Google Scholar
  87. Lopardo, L., & Uhl, G. (2014). Testing mitochondrial marker efficacy for DNA barcoding in spiders: a test case using the dwarf spider genus Oedothorax (Araneae : Linyphiidae : Erigoninae). Invertebrate Systematics, 28, 501–521.Google Scholar
  88. Lopardo, L., Giribet, G., & Hormiga, G. (2011). Morphology to the rescue: molecular data and the signal of morphological characters in combined phylogenetic analyses—a case study from mysmenid spiders (Araneae, Mysmenidae), with comments on the evolution of web architecture. Cladistics, 27, 278–330.Google Scholar
  89. Maddison, W. P., & Hedin, M. C. (2003). Jumping spider phylogeny (Araneae: Salticidae). Invertebrate Systematics, 17, 529–549.Google Scholar
  90. Maddison, W. P., & Maddison, D. R. (2017). Mesquite: a modular system for evolutionary analysis. Version 3.10 http://www.mesquiteproject.org. Accessed 2 Jan 2018.
  91. Majer, J., & Recher, H. (1988). Invertebrate communities on Western Australian eucalypts: a comparison of branch clipping and chemical knockdown procedures. Australian Journal of Ecology, 13, 269–278.Google Scholar
  92. Majer, J. D., Recher, H. F., & Postle, A. C. (1994). Comparison of arthropod species richness in eastern and western Australian canopies: a contribution to the species number debate. Memoirs of the Queensland Museum, 36, 121–131.Google Scholar
  93. Mayr, E. (1942). Systematics and the origin of species, from the viewpoint of a zoologist. New York: Columbia University Press.Google Scholar
  94. Mayr, E. (2000). The biological species concept. In Q. Wheeler & R. Meier (Eds.), Species concepts and phylogenetic theory: a debate (pp. 17–29). New York: Columbia University Press.Google Scholar
  95. Meier, R., Shiyang, K., Vaidya, G., & Ng, P. K. (2006). DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success. Systematic Biology, 55, 715–728.Google Scholar
  96. Metscher, B. D. (2009). MicroCT for comparative morphology: simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiology, 9, 11.Google Scholar
  97. Michalik, P., & Uhl, G. (2011). Cephalic modifications in dimorphic dwarf spiders of the genus Oedothorax (Erigoninae, Linyphiidae, Araneae) and their evolutionary implications. Journal of Morphology, 272, 814–832.Google Scholar
  98. Miller, J. A. (1999). Revision and cladistic analysis of the erigonine spider genus Sisicottus (Araneae, Linyphiidae, Erigoninae). The Journal of Arachnology, 27, 553–603.Google Scholar
  99. Miller, J. A. (2007). Review of erigonine spider genera in the neotropics (Araneae: Linyphiidae, Erigoninae). Zoological Journal of the Linnean Society, 149, 1–263.Google Scholar
  100. Miller, J. A., & Hormiga, G. (2004). Clade stability and the addition of data: a case study from erigonine spiders (Araneae : Linyphiidae, Erigoninae). Cladistics, 20, 385–442.Google Scholar
  101. Millidge, A. F. (1977). The conformation of the male palpal organs of linyphiid spiders, and its application to the taxonomic and phylogenetic analysis of the family (Araneae: Linyphiidae). Bulletin of the British Arachnological Society, 4, 1–60.Google Scholar
  102. Minin, V., Abdo, Z., Joyce, P., & Sullivan, J. (2003). Performance-based selection of likelihood models for phylogeny estimation. Systematic Biology, 52, 674–683.Google Scholar
  103. Mizutani, R., Takeuchi, A., Hara, T., Uesugi, K., & Suzuki, Y. (2007). Computed tomography imaging of the neuronal structure of Drosophila brain. Journal of Synchrotron Radiation, 14, 282–287.Google Scholar
  104. Mizutani, R., Takeuchi, A., Akamatsu, G., Uesugi, K., & Suzuki, Y. (2008). Element-specific microtomographic imaging of Drosophila brain stained with high-Z probes. Journal of Synchrotron Radiation, 15, 374–377.Google Scholar
  105. Moore, W. S. (1995). Inferring phylogenies from mtDNA variation: mitochondrial-gene trees versus nuclear-gene trees. Evolution, 49, 718–726.Google Scholar
  106. Nixon, K. C. 2002. WINKLADA, program and documentation. (1.00.08 ed.). Accessed 25 Sep 2014.Google Scholar
  107. Nyffeler, M., & Benz, G. (1981). Field studies on the feeding ecology of spiders: observations in the region of Zurich (Switzerland). Anzeiger für Schädlingskunde, Pflanzen und Umweltschutz, 54, 33–39.Google Scholar
  108. Oi, R. (1960). Linyphiid spiders of Japan. Journal of the Institute of Polytechnics Osaka City University, 11, 137–244.Google Scholar
  109. Oi, R. (1977). A new erigonid spider from Formosa. Acta Arachnologica, 27, 23–26.Google Scholar
  110. Palumbi, S. R., Martin, A. P., Romano, S., Mcmilan, W. O., Stice, L., & Grabowski, G. (1991). The simple fool’s guide to PCR. Honolulu: University of Hawaii.Google Scholar
  111. R Development Core Team. (2011). R: a language and environment for statistical computing. R Core Team. Vienna: The R Foundation for Statistical Computing.Google Scholar
  112. Rae, T. C. (1998). The logical basis for the use of continuous characters in phylogenetic systematics. Cladistics, 14, 221–228.Google Scholar
  113. Rambaut, A. (2016). FigTree 1.4.3. http://tree.bio.ed.ac.uk/software/figtree/. Accessed 2 Jan 2018.
  114. Rambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A. (2018). Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67, 901–904.Google Scholar
  115. Robinson, E. A., Blagoev, G. A., Hebert, P. D., & Adamowicz, S. J. (2009). Prospects for using DNA barcoding to identify spiders in species-rich genera. ZooKeys, 16, 27–46.Google Scholar
  116. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Hohna, S., et al. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542.Google Scholar
  117. Rosenberg, N. A. (2007). Statistical tests for taxonomic distinctiveness from observations of monophyly. Evolution, 61, 317–323.Google Scholar
  118. Ross, H. A. (2014). The incidence of species-level paraphyly in animals: a re-assessment. Molecular Phylogenetics and Evolution, 76, 10–17.Google Scholar
  119. Russell-Smith, A., & Stork, N. (1995). Composition of spider communities in the canopies of rainforest trees in Borneo. Journal of Tropical Ecology, 11, 223–235.Google Scholar
  120. Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.Google Scholar
  121. Sauer, J., & Hausdorf, B. (2009). Sexual selection is involved in speciation in a land snail radiation on Crete. Evolution, 63, 2535–2546.Google Scholar
  122. Schaible, U., & Gack, C. (1987). Zur Morphologie, Histologie und biologischen Bedeutung der Kopfstrukturen einiger Arten der Gattung Diplocephalus (Araneida, Linyphiidae, Erigoninae). Verhandlungen des naturwissenschaftlichen Vereins in Hamburg, 29, 171–180.Google Scholar
  123. Schaible, U., Gack, C., & Paulus, H. F. (1986). Zur Morphologie, Histologie und biologischen Bedeutung der Kopfstrukturen männlicher Zwergspinnen (Linyphiidae: Erigoninae). Zoologische Jahrbücher. Abteilung für Systematik, Ökologie und Geographie der Tiere, 113, 389–408.Google Scholar
  124. Schenkel, E. (1963). Ostasiatische Opilioniden aus dem Museum d’Histoire Naturelle de Paris. Mémoires du Muséum National d’Histoire Naturelle, Série A, Zoologie, 25, 483–494.Google Scholar
  125. Schluter, D. (2000). The ecology of adaptive radiation. Oxford: OUP Oxford.Google Scholar
  126. Schneeberg, K., Bauernfeind, R., & Pohl, H. (2017). Comparison of cleaning methods for delicate insect specimens for scanning electron microscopy. Microscopy Research and Technique, 80, 1199–1204.Google Scholar
  127. Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–464.Google Scholar
  128. Sentenská, L., Müller, C. H., Pekár, S., & Uhl, G. (2017). Neurons and a sensory organ in the pedipalps of male spiders reveal that it is not a numb structure. Scientific Reports, 7, 12209.Google Scholar
  129. Shao, K. T. (2018). Catalogue of life in Taiwan. Web electronic publication. version 2009. http://taibnet.sinica.edu.tw. Accessed 22 Oct 2018.
  130. Shaw, K. L. (2002). Conflict between nuclear and mitochondrial DNA phylogenies of a recent species radiation: what mtDNA reveals and conceals about modes of speciation in Hawaiian crickets. Proceedings of the National Academy of Sciences of the United States of America, 99, 16122–16127.Google Scholar
  131. Silva, D. (1996). Species composition and community structure of Peruvian rainforest spiders: a case study from a seasonally inundated forest along the Samiria river. Revue Suisse de Zoologie, 2, 597–610.Google Scholar
  132. Sombke, A., Lipke, E., Michalik, P., Uhl, G., & Harzsch, S. (2015). Potential and limitations of X-Ray micro-computed tomography in arthropod neuroanatomy: a methodological and comparative survey. Journal of Comparative Neurology, 523, 1281–1295.Google Scholar
  133. Sørensen, L. L. (2004). Composition and diversity of the spider fauna in the canopy of a montane forest in Tanzania. Biodiversity and Conservation, 13, 437–452.Google Scholar
  134. Srivathsan, A., & Meier, R. (2012). On the inappropriate use of Kimura-2-parameter (K2P) divergences in the DNA-barcoding literature. Cladistics, 28, 190–194.Google Scholar
  135. Steinhoff, P. O. M., & Uhl, G. (2015). Taxonomy and nomenclature of some mainland SE-Asian Coeliccia species (Odonata, Platycnemididae) using micro-CT analysis. Zootaxa, 4059, 257–276.Google Scholar
  136. Steinke, D., Vences, M., Salzburger, W., & Meyer, A. (2005). TaxI: a software tool for DNA barcoding using distance methods. Philosophical Transactions of the Royal Society B, 360, 1975–1980.Google Scholar
  137. Stork, N. (1991). The composition of the arthropod fauna of Bornean lowland rain forest trees. Journal of Tropical Ecology, 7, 161–180.Google Scholar
  138. Sunderland, K. D. (1986). Distribution of linyphiid spiders in relation to capture of prey in cereal fields. Pedobiologia, 29, 367–375.Google Scholar
  139. Tanasevitch, A. V. (2006). On some Linyphiidae of China, mainly from Taibai Shan, Qinling Mountains, Shaanxi Province (Arachnida: Araneae). Zootaxa, 1325, 277–311.Google Scholar
  140. Tanasevitch, A. V. (2011). On some linyphiid spiders from Taiwan (Araneae: Linyphiidae). Zootaxa, 3114, 31–39.Google Scholar
  141. Tanasevitch, A. V. (2018a). Linyphiid spiders of the world. http://old.cepl.rssi.ru/bio/tan/linyphiidae/. Accessed 23 May 2018.
  142. Tanasevitch, A. V. (2018b). A survey of the genus Nasoona Locket, 1982 with the description of six new species (Araneae, Linyphiidae). Revue Suisse de Zoologie, 125, 87–100.Google Scholar
  143. Tanisako, A., Hori, A., Okumura, A., Miyata, C., Kuzuryu, C., Obi, T., et al. (2005). Micro-CT of Pseudocneorhinus bifasciatus by projection X-ray microscopy. Journal of Electron Microscopy, 54, 379–383.Google Scholar
  144. Thiele, K. (1993). The holy grail of the perfect character: the cladistic treatment of morphometric data. Cladistics, 9, 275–304.Google Scholar
  145. Uhl, G., & Maelfait, J.-P. (2008). Male head secretion triggers copulation in the dwarf spider Diplocephalus permixtus. Ethology, 114, 760–767.Google Scholar
  146. Uhl, G., Huber, B. A., & Rose, W. (1995). Male pedipalp morphology and copulatory mechanism in Pholcus phalangioides (Fuesslin, 1775) (Araneae, Pholcidae). Bulletin of the British Arachnological Society, 10, 1–9.Google Scholar
  147. Uhl, G., Nessler, S. H., & Schneider, J. (2007). Copulatory mechanism in a sexually cannibalistic spider with genital mutilation (Araneae: Araneidae: Argiope bruennichi). Zoology, 110, 398–408.Google Scholar
  148. van Helsdingen, P. J. (1965). Sexual behaviour of Lepthyphantes leprosus (Ohlert) (Araneida, Linyphiidae), with notes on the function of the genital organs. Zoologische Mededelingen, 41, 15–42.Google Scholar
  149. Vanacker, D., Borre, J. V., Jonckheere, A., Maes, L., Pardo, S., Hendrickx, F., et al. (2003). Dwarf spiders (Erigoninae, Linyphiidae, Araneae): good candidates for evolutionary research. Belgian Journal of Zoology, 133, 143–149.Google Scholar
  150. Vences, M., Thomas, M., van der Meijden, A., Chiari, Y., & Vieites, D. R. (2005). Comparative performance of the 16S rRNA gene in DNA barcoding of amphibians. Frontiers in Zoology, 2, 5.Google Scholar
  151. Vink, C. J., & Kean, J. M. (2013). PCR gut analysis reveals that Tenuiphantes tenuis (Araneae: Linyphiidae) is a potentially significant predator of Argentine stem weevil, Listronotus bonariensis (Coleoptera: Curculionidae), in New Zealand pastures. New Zealand Journal of Zoology, 40, 304–313.Google Scholar
  152. Voris, H. K. (2000). Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. Journal of Biogeography, 27, 1153–1167.Google Scholar
  153. Wallace, A. (1912). Influence of natural selection upon sterility and fertility. In A. Wallace (Ed.), Darwinsim: an exposition of the theory of natural selection with some of its applications (3rd. ed., pp. 173–179). London: Macmillan.Google Scholar
  154. Wang, Q., Li, S., & Murphy, R. W. 2009. Higher-level phylogeny of linyphiid spiders (Araneae: Linyphiidae) based on mitochondrial and nuclear gene sequences. Unpublished.Google Scholar
  155. Wang, F., Ballesteros, J. A., Hormiga, G., Chesters, D., Zhan, Y., Sun, N., et al. (2015). Resolving the phylogeny of a speciose spider group, the family Linyphiidae (Araneae). Molecular Phylogenetics and Evolution, 91, 135–149.Google Scholar
  156. Wang, Z. L., Yang, X. Q., Wang, T. Z., & Yu, X. (2017). Assessing the effectiveness of mitochondrial COI and 16S rRNA genes for DNA barcoding of farmland spiders in China. Mitochondrial DNA Part A, 29, 695–702.Google Scholar
  157. Ward, R. D. (2009). DNA barcode divergence among species and genera of birds and fishes. Molecular Ecology Resources, 9, 1077–1085.Google Scholar
  158. Whiting, M. F., Carpenter, J. C., Wheeler, Q. D., & Wheeler, W. C. (1997). The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Systematic Biology, 46, 1–68.Google Scholar
  159. Wiens, J. J. (2001). Character analysis in morphological phylogenetics: problems and solutions. Systematic Biology, 50, 689–699.Google Scholar
  160. Williams, D., Schmitt, M., & Wheeler, Q. (2016). The future of phylogenetic systematics: the legacy of Willi Hennig (Vol. 86). Cambridge: Cambridge University Press.Google Scholar
  161. World Spider Catalog (2018). World Spider Catalog. http://wsc.nmbe.ch, version 19.5. Accessed 22 Oct 2018.
  162. Xia, X. (2013). DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution. Molecular Biology and Evolution, 30, 1720–1728.Google Scholar
  163. Xia, X. (2017). DAMBE6: new tools for microbial genomics, phylogenetics, and molecular evolution. Journal of Heredity, 108, 431–437.Google Scholar
  164. Xia, Q., Zhang, G. R., Gao, J. C., Fei, R., & Kim, J. P. (2001). Three new species of spiders of Erigoninae (Araneae: Linyphiidae) from China. Korean Arachnology, 17, 161–168.Google Scholar
  165. Zujko-Miller, J. (1999). On the phylogenetic relationships of Sisicottus hibernus (Araneae, Linyphiidae, Erigoninae). The Journal of Arachnology, 27, 44–52.Google Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2019

Authors and Affiliations

  1. 1.Zoological Institute and Museum, Department of General and Systematic ZoologyUniversity of GreifswaldGreifswaldGermany

Personalised recommendations