Diel behavior in moths and butterflies: a synthesis of data illuminates the evolution of temporal activity

Abstract

Lepidoptera (butterflies and moths) are one of the most taxonomically diverse insect orders with nearly 160,000 described species. They have been studied extensively for centuries and are found on nearly all continents and in many environments. It is often assumed that adult butterflies are strictly diurnal and adult moths are strictly nocturnal, but there are many exceptions. Despite the broad interest in butterflies and moths, a comprehensive review of diel (day-night) activity has not been conducted. Here, we synthesize existing data on diel activity in Lepidoptera, trace its evolutionary history on a phylogeny, and show where gaps lie in our knowledge. Diurnality was likely the ancestral condition in Lepidoptera, the ancestral heteroneuran was likely nocturnal, and more than 40 transitions to diurnality subsequently occurred. Using species diversity estimates across the order, we predict that roughly 75-85% of Lepidoptera are nocturnal. We also define the three frequently used terms for activity in animals (diurnal, nocturnal, crepuscular), and show that literature on the activity of micro-moths is significantly lacking. Ecological factors leading to nocturnality/diurnality is a compelling area of research and should be the focus of future studies.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Barber, J.R., & Conner, W.E. (2007). Acoustic mimicry in a predator-prey interaction. Proceedings of the National Academy of Sciences USA, 104(22) 9331–9334. https://doi.org/10.1073/pnas.0703627104.

  2. Barber, J.R., & Kawahara, A.Y. (2013). Hawkmoths produce anti-bat ultrasound. Biology Letters, 9, 20130161. https://doi.org/10.0474/rsbl.2013.0161

  3. Bazinet, A.L., Cummings, M.P., Mitter, K.T., & Mitter, C. W. (2013). Can RNA-Seq resolve the rapid radiation of advanced moths and butterflies (Hexapoda: Lepidoptera: Apoditrysia)? An exploratory study. PLOS ONE, 8(12), e82615. https://doi.org/10.1371/journal.pone.0082615.

  4. Bazinet, A.L., Mitter, K.T., Davis, D.R., Nieukerken, E.J., Cummings, M.P., & Mitter, C. (2017). Phylotranscriptomics resolves ancient divergences in the Lepidoptera. Systematic Entomology, 42(2), 305–316. https://doi.org/10.1111/syen.12217.

  5. Beadle, D., & Leckie, S. (2012). Peterson field guide to moths of northeastern North America. Boston: Harcourt.

  6. Beck, J., & Linsenmair, K.E. (2006). Feasibility of light-trapping in community research on moths: attraction radius of light, completeness of samples, nightly flight times and seasonality of Southeast-Asian hawkmoths (Lepidoptera: Sphingidae). Journal of Research on the Lepidoptera, 39, 18–37.

  7. Berger, D., & Gotthard, K. (2008). Time stress, predation risk and diurnal–nocturnal foraging trade-offs in larval prey. Behavioral Ecology and Sociobiology, 62(10), 1655–1663.

    Article  Google Scholar 

  8. Blest, A.D. (1964). Protective display and sound production in some New World arctiid and ctenuchid moths. Zoologica, 49, 161–181.

    Google Scholar 

  9. Bollback, J.P. (2006). SIMMAP: Stochastic character mapping of discrete traits on phylogenies. Bioinformatics, 7:88. https://doi.org/10.1186/1471-2105-7-88.

  10. Braby, M.F. (2015). New larval food plant associations for some butterflies and diurnal moths (Lepidoptera) from the Northern Territory and Kimberley. Australia. Part II. Records of the Western Australian Museum, 30(2), 73–97.

    Article  Google Scholar 

  11. Brown, J.W. (1990). The early stages of Doa dora Neumoegen and Dyar (Lepidoptera: Noctuoidea: Doidae) in Baja California, Mexico. Journal of Research on the Lepidoptera, 28, 26–36.

    Google Scholar 

  12. Budashkin, Y.I., & Gaedike, R. (2005). Faunistics of the Epermeniidae from the former USSR (Epermediidae). Nota Lepidopterologica, 28(2), 123–138.

  13. Cho, S., Zwick, A., Regier, J.C., Mitter, C., Cummings, M.P., Yao, J., et al. (2011). Can deliberately incomplete gene sample augmentation improve a phylogeny estimate for the advanced moths and butterflies (Hexapoda: Lepidoptera)? Systematic Biology, 60(6), 782–796. https://doi.org/10.1093/sysbio/syr079.

  14. Comeau, A., Cardé, R., & Roelofs, W. (1976). Relationship of ambient temperatures to diel periodicities of sex attraction in six species of Lepidoptera. The Canadian Entomologist, 108(04), 415–418.

    Article  Google Scholar 

  15. Common, I.F.B. (1970). Lepidoptera (moths and butterflies). In I.M. Mackerras (Ed.), The insects of Australia. (pp. 765–866). Melbourne: Melbourne University Press.

  16. Common, I.F.B. (1990). Moths of Australia. Carlton. Melbourne: University Press.

  17. Covell, C.V. (2005). A field guide to the moths of eastern North America. Martinsville: Virginia Museum of Natural History.

  18. Cowan, T., & Gries, G. (2009). Ultraviolet and violet light: attractive orientation cues for the Indian meal moth, Plodia interpunctella. Entomologia Experimentalis et Applicata, 131(2), 148–158.

    Article  Google Scholar 

  19. Davis, D.R. (1969). A revision of the American moths of the family Carposinidae (Lepidoptera: Carposinoidea). Bulletin United States National Museum, 289, 1–105.

  20. Davis, D.R. (1986). A new family of Monotrysian moths from Austral South America (Lepidoptera: Palaephatidae), with a phylogenetic review of the Monotrysia. Smithsonian Contributions to Zoology (434). Washington DC: Smithsonian Institution Press.

  21. Davis, D.R. (1989). Generic revision of the Opostegidae, with a synoptic catalog of the world's species (Lepidoptera: Nepticuloidea). Smithsonian Contributions to Zoology (478). Washington DC: Smithsonian Institution Press.

  22. Davis, D.R. (1990). Neotropical microlepidoptera. XXIII: First report of the family Eriocottidae from the new world, with descriptions of new taxa. Proceedings of the Entomological Society of Washington, 92, 1–35.

    Google Scholar 

  23. Davis, D.R. (2001). A new species of Prototheora from Malawi, with additional notes on the distribution and morphology of the genus (Lepidoptera: Prototheoridae). Proceedings of the Entomological Society of Washington, 103(2), 452–452.

  24. Davis, D.R., & Stonis, R. (2007). A revision of the New World plant-mining moths of the family Opostegidae (Lepidoptera: Nepticuloidea). Smithsonian Contributions to Zoology (625). Washington DC: Smithsonian Institution Press.

  25. De Prins, J., & De Prins, W. (2017). Global Taxonomic Database of Gracillariidae (Lepidoptera). World Wide Web electronic publication (http://www.gracillariidae.net/). Accessed 16 Jan 2017.

  26. DeVries, P.J., Schull, J., & Greig, N. (1987). Synchronous nocturnal activity and gregarious roosting in the neotropical skipper butterfly Celaenorrhinus fritzgaertneri (Lepidoptera: Hesperiidae). Zoological Journal of the Linnean Society, 89(1), 89–103.

  27. Devries, P.J., Austin, G. T., & Martin, N.H. (2008). Diel activity and reproductive isolation in a diverse assemblage of Neotropical skippers (Lepidoptera: Hesperiidae). Biological Journal of the Linnean Society, 94(4), 723–736.

  28. Dugdale, J.S. (1987). Thambotricha vates Meyrick, reassigned to Epermeniidae (Lepidoptera: Epermenioidea). The. New Zealand Journal of Zoology, 14(3), 375–383. https://doi.org/10.1080/03014223.1987.10423008.

  29. Dugdale, J.S., Kristensen, N.P., Robinson, G.S., & Scoble, M.J. (1998). The smaller microlepidoptera grade superfamilies. In N. P. Kristensen (Ed.), Lepidoptera, moths and butterflies. 1. Evolution, systematics, and biogeography. Handbook of Zoology, Vol. IV, part 35 (pp. 217–232). New York: Walter de Gruyter.

  30. Epstein, M.E., Geertsma, H., Naumann, C.M., & Tarmann, G.M. (1998). The Zygaenoidea. In N. P. Kristensen (Ed.), Lepidoptera, moths and butterflies. 1. Evolution, systematics, and biogeography. Handbook of Zoology, Vol. IV, part 35 (pp. 159–180). New York: Walter de Gruyter.

  31. Evans, D.L. (1978). Defensive behavior in Callosamia promethea and Hyalophora cecropia (Lepidoptera: Saturniidae). American Midland Naturalist, 100(2), 475–479.

  32. Fasoranti, J. (1983). Studies on host selection, flight behaviour and control of the Ceanothus leaf miner Tischeria immaculata (Braun) (Lep., Tischeriidae). Journal of Applied Entomology, 96, 470–476.

    Google Scholar 

  33. Ferguson, D.C. (1978). The moths of America north of Mexico. Fascicle 22.2. Noctuoidea, Lymantriidae. Washington: Wedge Entomological Research Foundation.

  34. Ferguson, D.C. (1985). The moths of America north of Mexico. Fascicle 18.1. Geometroidea: Geometridae (in part). Washington: Wedge Entomological Research Foundation.

  35. Feuda, R., Marletaz, F., Bentley, M.A., & Holland, P.W. (2016). Conservation, duplication, and divergence of five opsin genes in insect evolution. Genome Biology and Evolution, 8(3), 579–587.

  36. Franclemont, J.G. (1973). The moths of America north of Mexico. Fascicle 20.1. Mimallonoidea (Mimallonidae) and Bombycoidea (Apatelodidae, Bombycidae, Lasiocampidae). London: E.W. Classey Ltd. and Richard B. Dominick Publ.

  37. Frost, S.W. (1972). Notes on Urodus parvula (Henry Edwards) (Yponomeutidae). Journal of the Lepidopterists’Society, 26(3), 173–177.

  38. Fullard, J.H. (1982). Cephalic influences on a defensive behaviour in the dogbane tiger moth, Cycnia tenera. Physiological Entomology, 7(2), 157–162.

    Article  Google Scholar 

  39. Fullard, J.H., & Fenton, M.B. (1977). Acoustic and behavioral analyses of sounds produced by some speceis of nearctic Arctiidae (Lepidoptera). Canadian Journal of Zoology, 55(8), 1213–1224. https://doi.org/10.1139/z77-160.

    Article  Google Scholar 

  40. Fullard, J.H., & Napoleone, N. (2001). Diel flight periodicity and the evolution of auditory defences in the Macrolepidoptera. Animal Behaviour, 62(2), 349–368.

    Article  Google Scholar 

  41. Fullard, J. H., Dawson, J. W., Otero, L. D., & Surlykke, A. (1997). Bat-deafness in day-flying moths (Lepidoptera, Notodontidae, Dioptinae). Journal of Comparative Physiology A, 181(5), 477–483. https://doi.org/10.1007/S003590050131.

  42. Gielis, C., & de Jong, R. (1993). Generic revision of the superfamily Pterophoroidea (Lepidoptera): Nationaal Natuurhistorisch Museum, Leiden.

  43. Goodwin, S., & Danthanarayana, W. (1984). Flight activity of Plutella xylostella (L.) (Lepidoptera: Yponomeutidae). Australian Journal of Entomology, 23(3), 235–240.

    Article  Google Scholar 

  44. Gwynne, D. T., & Edwards, E. D. (1986). Ultrasound production by genital stridulation in Syntonarcha iriastis (Lepidoptera: Pyralidae): long-distance signalling by male moths? Zoological Journal of the Linnean Society, 88(4), 363–376.

  45. Hardwick, D.F. (1996). A monograph to the North American Heliothinae (Lepidoptera: Noctuidae). Ottawa: Center for Land and Biological Resources Research. Agriculture Canada.

    Google Scholar 

  46. Harris, T.L. (1971). Crepuscular flight periodicity of Trichoptera. Journal of the Kansas Entomological Society, 44(3), 295–301.

  47. Heikkilä, M., Mutanen, M., Wahlberg, N., Sihvonen, P., & Kaila, L. (2015). Elusive ditrysian phylogeny: an account of combining systematized morphology with molecular data (Lepidoptera). BMC Evolutionary Biology, 15(1), 260. https://doi.org/10.1186/s12862-015-0520-0.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hennig, W. (1981). Insect phylogeny. Translated and edited by AC Pont, Revisionary notes by D. Schlee. New York: John Wiley & Sons

  49. Heppner, J.B. (1982). Millieriinae, a new subfamily of Choreutidae, with new taxa from Chile and the United States (Lepidoptera: Sesioidea). Smithsonian Contributions to Zoology, (370). Washington DC: Smithsonian Institution Press.

    Google Scholar 

  50. Heppner, J.B. (2002). Mexican Lepidoptera biodiversity. Insecta Mundi, 16(4), 171–190.

    Google Scholar 

  51. Heppner, J.B. (2008a). American swallowtail moths (Lepidoptera: Sematuridae). In J.L. Capinera (Ed.), Encyclopedia of Entomology (pp. 149). Dordrecht: Springer, Netherlands.

  52. Heppner, J.B. (2008b). Australian parasite moths (Lepidoptera: Cyclotornidae). In J.L. Capinera (Ed.), Encyclopedia of Entomology (pp. 339). Dordrecht: Springer, Netherlands.

  53. Heppner, J.B. (2008c). Butterflies and moths (Lepidoptera). In J.L. Capinera (Ed.), Encyclopedia of Entomology (pp. 626–672). Dordrecht: Springer, Netherlands.

  54. Heppner, J.B. (2008d). False burnet moths (Lepidptera: Urodidae). In J.L. Capinera (Ed.), Encyclopedia of Entomology (pp. 1412–1413). Dordrecht: Springer, Netherlands.

  55. Heppner, J.B. (2008e). Fruitworm moths (Lepidoptera: Carposinidae). In J.L. Capinera (Ed.), Encyclopedia of Entomology (pp. 1541). Dordrecht: Springer, Netherlands.

  56. Heppner, J.B. (2008f). Glory moths (Lepidoptera: Endromidae). In J.L. Capinera (Ed.), Encyclopedia of Entomology (pp. 1627–1628). Dordrecht: Springer, Netherlands.

  57. Heppner, J.B. (2008g). Gondwanaland moths (Lepidoptera: Palaephatidae). In J.L. Capinera (Ed.), Encyclopedia of Entomology (pp. 1632–1633). Dordrecht: Springer, Netherlands.

  58. Heppner, J.B. (2008h). Long-tailed burnet moths (Lepidoptera: Himantopteridae). In J.L. Capinera (Ed.), Encyclopedia of Entomology​ (pp. 2241–2242). Dordrecht: Springer, Netherlands.

  59. Heppner, J.B. (2008i). Tropical burnet moths (Lepidoptera: Lacturidae). In J.L. Capinera (Ed.), Encyclopedia of Entomology (pp. 3925). Dordrecht: Springer, Netherlands.

  60. Heppner, J.B. (2008j). Tropical carpenterworm moths (Lepidoptera: Metarbelidae). In J.L. Capinera (Ed.), Encyclopedia of Entomology (pp. 3925–3926). Dordrecht: Springer, Netherlands.

  61. Holloway, J.D. (1998). The moths of Borneo: Family Callidulidae. Malayan Nature Journal, 52(8), 7–14.

  62. Horak, M. (1998). The Tortricoidea. In N.P. Kristensen (Ed.), Lepidoptera, moths and butterflies. 1. Evolution, systematics, and biogeography. Handbook of Zoology, Vol. IV, part 35 (Vol. 4, pp. 199–216). New York: Walter De Gruyter.

  63. Idris, A.B., & Zainal-Abidin, B.A.H. (2011). Diurnal behavior of naturally microsporidia-infected Plutella xylostella and its major parasitoid, Diadegma semiclausum. In Proceedings of the sixth international workshop on management of the diamondback moth and other crucifer insect pests. AVRDC (pp. 46–50).

  64. Janzen, D.H. (1984). Two ways to be a tropical big moth: Santa Rosa saturniids and sphingids. In R. Dawkins, & M. Ridley (Eds.), Oxford surveys in evolutionary biology (vol. 1, pp. 85–140). Oxford: Oxford University Press.

  65. Johns, C.A., Moore, M.R. & Kawahara, A.Y. (2016). Molecular phylogeny, revised higher classification, and implications for conservation of endangered Hawaiian leaf-mining moths (Lepidoptera: Gracillariidae: Philodoria). Pacific Science 70 (3):361–372. https://doi.org/10.2984/70.3.7

  66. Jost, B., Schmid, J., & Wymann, H. (2000). Lasiocampidae–Glucken. Wollraupenspinner. Schmetterlinge und ihre Lebensräume: Arten–Gefährdung-Schutz. Schweiz und angrenzenden Gebiete, 3, 263–350.

    Google Scholar 

  67. Kakul, T., Aloysius, M., & Samai, K. (2006). Coconut inflorescence borer, Synneschodes papuana (Lepidoptera: Brachodidae), an important new pest of coconut in Papua New Guinea. In T. V. Price (Ed.), Pest and disease incursions: risks, threats and management in Papua New Guinea (pp. 146–150). Canberra: Australian Centre for International Agricultural Research.

    Google Scholar 

  68. Kallies, A. (2004). The Brachodidae of the oriental region and adjacent territories (Lepidoptera: Sesioidea). Tijdschrift voor Entomologie, 147(1), 1–19.

    Article  Google Scholar 

  69. Kan, E., Kitajima, H., Hidaka, T., Nakashima, T., & Sato, T. (2002). Dusk mating flight in the swift moth, Endoclita excrescens (Butler) (Lepidoptera: Hepialidae). Applied Entomology and Zoology, 37(1), 147–153.

  70. Kawahara, A.Y., & Barber, J.R. (2015). Tempo and mode of ultrasound and jamming in the diverse hawkmoth radiation. Proceedings of the National Academy of Sciences, USA, 112(20), 6407–6412. https://doi.org/10.1073/pnas.1416679112.

    CAS  Article  Google Scholar 

  71. Kawahara, A.Y., & Breinholt, J.W. (2014). Phylogenomics provides strong evidence for relationships of butterflies and moths. Proceedings of the Royal Society of London, Series B, 281, 20140970. https://doi.org/10.1098/rspb.2014.0970.

  72. Kawahara, A.Y., Mignault, A.A., Regier, J.C., Kitching, I.J., & Mitter, C. (2009). Phylogeny and biogeography of hawkmoths (Lepidoptera: Sphingidae): evidence from five nuclear genes. PLOS ONE, 4(5), e5719. https://doi.org/10.1371/journal.pone.0005719.

  73. Kawahara, A.Y., Nishida, K., & Rubinoff, D. (2011a). Behavior of the Hawaiian dancing moth, Dryadaula terpsichorella (Tineidae: Dryadaulinae). Journal of the Lepidopterists  Society, 65(2), 133–135. https://doi.org/10.18473/lepi.v65i2.a6.

  74. Kawahara, A.Y., Ohshima, I., Kawakita, A., Regier, J.C., Mitter, C., Cummings, M.P., et al. (2011b). Increased gene sampling strengthens support for higher-level groups within leaf-mining moths and relatives (Lepidoptera: Gracillariidae). BMC Evolutionary Biology, 11, 182. https://doi.org/10.1186/1471-2148-11-182.

  75. Kawahara, A.Y., Plotkin, D., Ohshima, I., Lopez-Vaamonde, C., Houlihan, P.R., Breinholt, J.W., et al. (2017). A molecular phylogeny and revised higher-level classification for the leaf-mining moth family Gracillariidae and its implications for larval host-use evolution. Systematic Entomology, 42(1), 60–81. https://doi.org/10.1111/syen.12210.

    Article  Google Scholar 

  76. Kelber, A., Balkenius, A., & Warrant, E.J. (2003). Colour vision in diurnal and nocturnal hawkmoths. Integrative and Comparative Biology, 43(4), 571–579. https://doi.org/10.1093/icb/43.4.571.

    Article  PubMed  Google Scholar 

  77. Kelber, A., Warrant, E.J., Pfaff, M., Wallén, R., Theobald, J.C., Wcislo, W.T., et al. (2006). Light intensity limits foraging activity in nocturnal and crepuscular bees. Behavioral Ecology, 17(1), 63–72.

    Article  Google Scholar 

  78. Kemal, M., & Koçak, A. (2014). Illustrated and annotated list on the Entomofauna of Gören Mount (Van Province, East Turkey), with ecological remarks I—period of April-June 2014. Priamus (Suppl.), 33, 5–206.

    Google Scholar 

  79. Kendall, R.O., & Glick, P.A. (1972). Rhopalocera collected at light in Texas. Journal of Research on the Lepidoptera, 10(4), 273–283.

    Google Scholar 

  80. Kitching, I.J., & Rawlins, J.E. (1998). The Noctuoidea. In N.P. Kristensen (Ed.), Lepidoptera, moths and butterflies. 1. Evolution, systematics, and biogeography. Handbook of Zoology, vol. IV, part 35 (pp. 355–401). New York: Walter de Gruyter.

  81. Kite, G. C., Fellows, L.E., Lees, D. C., Kitchen, D., & Monteith, G.B. (1991). Alkaloidal glycosidase inhibitors in nocturnal and diurnal uraniine moths and their respective foodplant genera, Endospermum and Omphalea. Biochemical Systematics and Ecology, 19(6), 441–445.

    CAS  Article  Google Scholar 

  82. Kozlov, M.V., Ivanov, V.D., & Rasnitsyn, A.P. (2007). Order Lepidoptera Linne, 1758. The butterflies and moths. In A. P. Rasnitsyn & D. L. Quicke (Eds.), History of insects (pp. 220–227). Berlin: Springer Science & Business Media.

    Google Scholar 

  83. Kristensen, N.P. (1998). Lepidoptera, moths and butterflies, volume 1: evolution, systematics, and biogeography. In M. Fischer (Ed.), Handbook of zoology, Vol. IV, part 35. New York: Walter de Gruyter.

  84. Kristensen, N.P. (2012). Molecular phylogenies, morphological homologies and the evolution of ‘moth ears’. Systematic Entomology, 37(2), 237–239. https://doi.org/10.1111/j.1365-3113.2012.00619.x

  85. Kristensen, N.P., & Skalski, A.W. (1998). Phylogeny and palaeontology. In N. P. Kristensen (Ed.), Lepidoptera, moths and butterflies. 1. Evolution, systematics, and biogeography. Handbook of Zoology, Vol. IV, part 35 (pp. 7–25). New York: Walter de Gruyter.

  86. Kristensen, N.P., Hilton, D.J., Kallies, A., Milla, L., Rota, J., Wahlberg, N., et al. (2015). A new extant family of primitive moths from Kangaroo Island, Australia, and its significance for understanding early Lepidoptera evolution. Systematic Entomology, 40(1), 5–16.

    Article  Google Scholar 

  87. Lafontaine, J.D. (1987). The moths of America north of Mexico. Fascicle 27.2. Noctuoidea, Noctuidae (part), Noctuinae (part-Euxoa). Washington: Wedge Entomological Research Foundation.

    Google Scholar 

  88. Lafontaine, J.D. (1998). The moths of America north of Mexico. Fascicle 27.3. Noctuoidea, Noctuidae (part): Noctuinae (part): Noctuini. Washington: Wedge Entomological Research Foundation.

    Google Scholar 

  89. Lafontaine, J.D. (2004). The moths of America north of Mexico. Fascicle 27.1. Noctuoidea. Noctuidae (part). Washington: Wedge Entomological Research Foundation.

    Google Scholar 

  90. Lafontaine, J., & Poole, R. (1991). The moths of America north of Mexico. Fascicle 25.1. Noctuoidea, Noctuidae (part), Plusiinae. Washington: Wedge Entomological Research Foundation.

    Google Scholar 

  91. Lamarre, G.P.A., Mendoza, I., Rougerie, R., Decaëns, T., Hérault, B., & Bénéluz, F. (2015). Stay out (almost) all night: contrasting responses in flight activity among tropical moth assemblages. Neotropical Entomology, 44(2), 109–115.

    CAS  Article  PubMed  Google Scholar 

  92. Landry, J. (1998). Additional Nearctic records of Wockia asperipunctella, with notes on its distribution and structural variation (Lepidoptera: Urodidae). Holarctic Lepidoptera, 5(1), 9–13.

    Google Scholar 

  93. Landry, B., & Landry, J.-F. (2004). The genus Alucita in North America, with description of two new species (Lepidoptera: Alucitidae). The Canadian Entomologist, 136(4), 553–579.

    Article  Google Scholar 

  94. Langlois, T.H., & Langlois, M.H. (1964). Notes on the life-history of the hackberry butterfly, Asterocampa celtis (Bdvl. & Lec.) on South Bass Island, Lake Erie (Lepidoptera: Nymphalidae). Ohio. Journal of Science, 64(1), 1–11.

    Google Scholar 

  95. Laštůvka, Z., & Laštůvka, A. (2001). The Sesiidae of Europe: Apollo Books Aps.

    Google Scholar 

  96. Lemaire, C. (2002). The Saturniidae of America. Les Saturniidae Americains (= Attacidae). Hemileucinae. Keltern: Goecke & Evers.

    Google Scholar 

  97. Lemaire, C., & Minet, J. (1998). The Bombycoidea and their relatives. In N. P. Kristensen (Ed.), Lepidoptera, moths and butterflies. 1. Evolution, systematics, and biogeography. Handbook of Zoology, vol. IV, part 35 (pp. 321–353). New York: Walter de Gruyter.

  98. Maor, R., Dayan, T., Ferguson-Gow, H., Jones, K.E. (2017). Temporal niche expansion in mammals from a nocturnal ancestor after dinosaur extinction. Nature Ecology & Evolution. https://doi.org/10.1038/s41559-017-0366-5

  99. Matthews, D.L. (2008). Plume moths (Lepidoptera: Pterophoridae). In J.L. Capinera (Ed.), Encyclopedia of Entomology (pp. 2953–2959): Dordrecht: Springer, Netherlands.

  100. Meiswinkel, R., & Elbers, A. (2016). The dying of the light: crepuscular activity in Culicoides and impact on light trap efficacy at temperate latitudes. Medical and Veterinary Entomology , 30(1), 53–63.

  101. Merckx, T., & Slade, E.M. (2014). Macro-moth families differ in their attraction to light: implications for light-trap monitoring programmes. Insect Conservation and Diversity, 7(5), 453–461.

    Article  Google Scholar 

  102. Michereff, M. F. F., Michereff-Filho, M., & Vilela, E. F. (2007). Mating behavior of the coffee leaf-miner Leucoptera coffeella (Guérin-Mèneville)(Lepidoptera: Lyonetiidae). Neotropical Entomology, 36(3), 376–382.

    Article  PubMed  Google Scholar 

  103. Mikkola, K., Lafontaine, J., & Gill, J. (2009). The moths of America north of Mexico. Fascicle 26.9. Noctuoidea: Noctuidae (part): Xyleninae (part): Apameini (part–Apamea group of genera). Washington: Wedge Entomological Research Foundation.

  104. Miller, J. (1986). The taxonomy, phylogeny, and zoogeography of the neotropical Castniinae (Lepidoptera: Castnioidea: Castniidae). Ph. D. Thesis: University of Florida, Gainesville, USA.

    Google Scholar 

  105. Miller, J.S. (2009). Generic revision of the Dioptinae (Lepidoptera: Noctuoidea: Notodontidae) Part 1: Dioptini. Bulletin of the American Museum of Natural History, 321, 1–674.

  106. Miller, J.Y., & Sourakov, A. (2009). Scientific note: some observations on Amauta cacica procera (Boisduval) (Castniidae : Castniinae) in Costa Rica. Tropical Lepidoptera Research, 19(2), 113–114.

    Google Scholar 

  107. Minet, J. (1998). The Axioidea and Calliduloidea. In N.P. Kristensen (Ed.), Lepidoptera, moths and butterflies. 1. Evolution, systematics, and biogeography. Handbook of zoology, vol. IV, part 35 (pp. 257–261). New York: Walter de Gruyter.

  108. Minet, J. (2002). The Epicopeiidae: phylogeny and a redefinition, with the description of new taxa (Lepidoptera: Drepanoidea). Annales de la Société Entomologique de France, 38(4), 463–487.

  109. Minet, J., & Scoble, M.J. (1998). The Drepanoid/Geometroid assemblage. In N.P. Kristensen (Ed.), Lepidoptera, moths and butterflies. 1. Evolution, systematics, and biogeography. Handbook of Zoology, vol. IV, part 35. New York: Walter de Gruyter.

  110. Minet, J., & Surlykke, A. (2003). Auditory and sound producing organs. In N. P. Kristensen (Ed.), Lepidoptera, moths and butterflies. 2. Morphology and physiology. Handbook of zoology, vol. IV, part 36 (pp. 289–323). New York: Walter de Gruyter.

  111. Misof, B., Liu, S.L., Meusemann, K., Peters, R. S., Donath, A., Mayer, C., et al. (2014). Phylogenomics resolves the timing and pattern of insect evolution. Science , 346(6210), 763–767. https://doi.org/10.1126/Science.1257570.

  112. Mitter, C., Davis, D.R., & Cummings, M.P. (2017). Phylogeny and evolution of Lepidoptera. Annual Review of Entomology, 62, 265–283.

    CAS  Article  PubMed  Google Scholar 

  113. Monsalve, S., Dombroskie, J.J., Lam, W.H., Rota, J., & Brown, J.W. (2011). Variation in the female frenulum in Tortricidae (Lepidoptera). Part 3. Tortricinae. Proceedings of the Entomological Society of Washington, 113(3), 335–370.

    Article  Google Scholar 

  114. Muma, K.E., & Fullard, J.H. (2004). Persistence and regression of hearing in the exclusively diurnal moths, Trichodezia albovittata (Geometridae) and Lycomorpha pholus (Arctiidae). Ecological Entomology, 29(6), 718–726.

    Article  Google Scholar 

  115. Murphy, S.M., Lill, J. T., & Epstein, M. E. (2011). Natural history of limacodid moths (Zygaenoidea) in the environs of Washington, D.C. Journal of the Lepidopterists' Society, 65, 137–152. 10.18473/lepi.v65i3.a1.

  116. Mutanen, M., Wahlberg, N., & Kaila, L. (2010). Comprehensive gene and taxon coverage elucidates radiation patterns in moths and butterflies. Proceedings of the Royal Society of London, Series B, 277, 2839–2848.

    Article  Google Scholar 

  117. Narendra, A., Reid, S.F., & Hemmi, J. M. (2010). The twilight zone: ambient light levels trigger activity in primitive ants. Proceedings of the Royal Society of London B: Biological Sciences, 277(1687), 1531–1538.

  118. Niehuis, O., Yen, S.-H., Naumann, C.M., & Misof, B. (2006). Higher phylogeny of zygaenid moths (Insecta: Lepidoptera) inferred from nuclear and mitochondrial sequence data and the evolution of larval cuticular cavities for chemical defence. Molecular Phylogenetics and Evolution, 39(3), 812–829.

  119. Nielsen, E. S. (1987). The recently discovered primitive (non-ditrysian) family Palaephatidae (Lepidoptera) in Australia. Invertebrate Systematics, 1(2), 201–229.

    Article  Google Scholar 

  120. Nielsen, E. S., & Kristensen, N. P. (1996). The Australian moth family Lophocoronidae and the basal phylogeny of the Lepidoptera–Glossata. Invertebrate Systematics, 10(6), 1199–1302.

    Article  Google Scholar 

  121. van Nieukerken, E.J., Kaila, L., Kitching, I.J., Kristensen, N.P., Lees, D.C., Minet, J., et al. (2011). Order Lepidoptera Linnaeus, 1758. In: Zhang, Z.-Q. (Ed.), Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Zootaxa, 3148, 212–221.

  122. Ormiston, W. (1924). The butterflies of Ceylon. New Delhi: Asian Educational Services.

  123. Ounap, E., Viidalepp, J., & Truuverk, A. (2016). Phylogeny of the subfamily Larentiinae (Lepidoptera: Geometridae): integrating molecular data and traditional classifications. Systematic Entomology, 41(4), 824–843.

    Article  Google Scholar 

  124. Pellmyr, O. (1999). Systematic revision of the yucca moths in the Tegeticula yuccasella complex (Lepidoptera: Prodoxidae) north of Mexico. Systematic Entomology, 24(3), 243–271.

    Article  Google Scholar 

  125. Pellmyr, O., & BalcÁzar-Lara, M. (2000). Systematics of the yucca moth genus Parategeticula (Lepidoptera: Prodoxidae), with description of three mexican species. Annals of the Entomological Society of America, 93(3), 432–439.

    Article  Google Scholar 

  126. Petersson, E. (1989). Swarming activity patterns and seasonal decline in adult size in some caddis flies (Trichoptera: Leptoceridae). Aquatic Insects, 11(1), 17–28.

    Article  Google Scholar 

  127. Pohl, G.R., Cannings, R.A., Landry, J.-F., Holden, D.G., & Scudder, G.G. (2015). Checklist of the Lepidoptera of British Columbia, Canada. Entomological Society of British Columbia Occasional Paper No. 3.

  128. Poole, R.W. (1994). The moths of America north of Mexico. Fascicle 26.1. Noctuoidea, Noctuidae (part). Washington: Wedge Entomological Research Foundation.

    Google Scholar 

  129. Poole, R.W. (2014). Noctuidae - Agaristinae. http://nearctica.com/moths/noctuid/agarista/agaristid.htm. Accessed 15 Feb 2017.

  130. Powell, J.A., & Opler, P.A. (2009). Moths of western North America. Berkeley: University of California Press.

    Google Scholar 

  131. Rajaei, H., Greve, C., Letsch, H., Stüning, D., Wahlberg, N., Minet, J., et al. (2015). Advances in Geometroidea phylogeny, with characterization of a new family based on Pseudobiston pinratanai (Lepidoptera, Glossata). Zoologica Scripta, 44(4), 418–436.

    Article  Google Scholar 

  132. Ratcliffe, J.M., & Fullard, J.H. (2005). The adaptive function of tiger moth clicks against echolocating bats: an experimental and synthetic approach. The Journal of Experimental Biology, 208, 4689–4698. https://doi.org/10.1242/jeb.01927.

    Article  PubMed  Google Scholar 

  133. Razafimanantsoa, T.M., Rajoelison, G., Ramamonjisoa, B., Raminosoa, N., Poncelet, M., Bogaert, J., et al. (2012). Silk moths in Madagascar: a review of the biology, uses, and challenges related to Borocera cajani (Vinson, 1863) (Lepidoptera: Lasiocampidae). Biotechnologie, Agronomie, Société et Environnement, 16(2), 269–276.

  134. Regier, J.C., Zwick, A., Cummings, M.P., Kawahara, A.Y., Cho, S., Weller, S., et al. (2009). Toward reconstructing the evolution of advanced moths and butterflies (Lepidoptera: Ditrysia): an initial molecular study. BMC Evolutionary Biology, 9, 280. https://doi.org/10.1186/1471-2148-9-280.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Regier, J.C., Brown, J.W., Mitter, C., Baixeras, J., Cho, S., Cummings, M. P., et al. (2012a). A molecular phylogeny for the leaf-roller moths (Lepidoptera: Tortricidae) and its implications for classification and life history evolution. PLOS ONE, 7(4), e35574. https://doi.org/10.1371/journal.pone.0035574.

  136. Regier, J.C., Mitter, C., Solis, M.A., Hayden, J.E., Landry, B., Nuss, M., et al. (2012b). A molecular phylogeny for the pyraloid moths (Lepidoptera: Pyraloidea) and its implications for higher-level classification. Systematic Entomology, 37(4), 635–656. https://doi.org/10.1111/j.1365-3113.2012.00641.x.

    Article  Google Scholar 

  137. Regier, J.C., Mitter, C., Zwick, A., Bazinet, A. L., Cummings, M.P., Kawahara, A. Y., et al. (2013). A large-scale, higher-level, molecular phylogenetic study of the insect order Lepidoptera (moths and butterflies). PLOS ONE, 8(3), e58568. https://doi.org/10.1371/journal.pone.0058568.

  138. Regier, J.C., Mitter, C., Kristensen, N.P., Davis, D.R., Van Nieukerken, E.J., Rota, J., et al. (2015a). A molecular phylogeny for the oldest (nonditrysian) lineages of extant Lepidoptera, with implications for classification, comparative morphology and life-history evolution. Systematic Entomology, 40(4), 671–704. https://doi.org/10.1111/syen.12129.

  139. Regier, M., Mitter, C., Davis, D.R., Harrison, T.L., Sohn, J.-C., & Cummings, M.P. (2015b). A molecular phylogeny and revised classification for the oldest ditrysian moth lineages (Lepidoptera: Tineoidea), with implications for ancestral feeding habits of the mega-diverse Ditrysia. Systematic Entomology, 40(2), 409–432. https://doi.org/10.1111/syen.12110.

    Article  Google Scholar 

  140. Revell, L.J. (2012). Phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution , 3(2), 217–223. https://doi.org/10.1111/j.2041-210X.2011.00169.x.

  141. Revell, L.J. (2013). Two new graphical methods for mapping trait evolution on phylogenies. Methods in Ecology and Evolution, 4(8), 754–759. https://doi.org/10.1111/2041-210x.12066.

    Article  Google Scholar 

  142. Rhainds, M., Davis, D.R., & Price, P.W. (2009). Bionomics of bagworms (Lepidoptera: Psychidae). Annual Review of Entomology, 54, 209–226.

    CAS  Article  PubMed  Google Scholar 

  143. Robinson, G.S., & Nielsen, E.S. (1993). Tineid genera of Australia (Lepidoptera). Vol. 2, Monographs on Australian Lepidoptera. Melbourne: CSIRO Publishing.

  144. Rocha, C.F.D., & Duarte, M. (2001). Territorial-like defensive behavior of floral resources by Heliconius ethilla narcaea Godart over H. sara apseudes (Hübner) (Lepidoptera, Nymphalidae, Heliconiinae). Revista Brasileira de  Zoologia, 18 (Suppl. 1), 323–328.

  145. Roeder, K.D., & Treat, A.E. (1970). An acoustic sense in some hawkmoths (Choerocampinae). Journal of Insect Physiology, 16(6), 1069–1086.

    Article  Google Scholar 

  146. Roelofs, W.L., & Brown, R.L. (1982). Pheromones and evolutionary relationships of Tortricidae. Annual Review of Ecology and Systematics, 13(1), 395–422.

    CAS  Article  Google Scholar 

  147. Rota, J., & Kristensen, N.P. (2011). Note on taxonomic history, thoraco-abdominal articulation, and current placement of Millieriidae (Lepidoptera). Zootaxa, 3032, 65–78.

    Google Scholar 

  148. Rota, J., & Miller, S.E. (2013). A new genus of metalmark moths (Lepidoptera, Choreutidae) with Afrotropical and Australasian distribution. ZooKeys, 355, 29–47.

  149. Rota, J., & Wagner, D.L. (2006). Predator mimicry: metalmark moths mimic their jumping spider predators. PLOS ONE , 1(1), e45.

  150. Rydell, J., Entwistle, A., & Racey, P.A. (1996). Timing of foraging flights of three species of bats in relation to insect activity and predation risk. Oikos, 76(2), 243–252. https://doi.org/10.2307/3546196.

    Article  Google Scholar 

  151. Saldaitis, A., Yakovlev, R., & Ivinskis, P. (2007). Carpenter moths (Insecta: Lepidoptera, Cossidae) of Lebanon. Acta Zoologica Lituanica, 17(3), 191–197.

    Article  Google Scholar 

  152. Sato, H., Higashi, S., & Fukuda, H. (1986). Nocturnal flight activity of moths. Environmental science, Hokkaido: Journal of the Graduate School of Environmental Science, Hokkaido University, Sapporo, 9(1), 59–68.

    Google Scholar 

  153. Scoble, M. J. (1986). The structure and affinities of the Hedyloidea: a new concept of the butterflies. Bulletin of The British Museum (Natural History) Entomology, 53, 251–286.

    Google Scholar 

  154. Scoble, M.J. (1990). An identification guide to the Hedylidae (Lepidoptera: Hedyloidea). Insect Systematics & Evolution, 21(2), 121–158.

    Article  Google Scholar 

  155. Scoble, M.J. (1992). The Lepidoptera: form, function, and diversity. Oxford: Oxford University Press.

    Google Scholar 

  156. Scoble, M.J., & Aiello, A. (1990). Moth-like butterflies (Hedylidae: Lepidoptera): a summary, with comments on the egg. Journal of Natural History, 24(1), 159–164.

    Article  Google Scholar 

  157. Sekita, N. (2002). Mass flight activity of Lyonetia prunifoliella malinella (Lepidoptera: Lyonetiidae) with special reference to mating and dispersal. Applied Entomology and Zoology, 37(4), 517–526.

    Article  Google Scholar 

  158. Sharma, S., Tara, J.S., & Bhatia, S. (2013). Bionomics of Hyblaea puera (Lepidoptera: Hyblaeidae), a serious pest of teak (Tectona grandis) from Jammu (India). Munis Entomology & Zoology, 8(1), 139–147.

  159. Singh, I. J. (2014). Butterfly diversity of Dzamling Norzoed Community Forest, Tsirang, Bhutan—a preliminary study. SAARC Forestry Journal, 3, 38–46.

    CAS  Google Scholar 

  160. Sohn, J.C., Regier, J.C., Mitter, C., Davis, D., Landry, J.F., Zwick, A., et al. (2013). A molecular phylogeny for Yponomeutoidea (Insecta, Lepidoptera, Ditrysia) and its implications for classification, biogeography and the evolution of host plant use. PLOS ONE , 8(1), e55066. https://doi.org/10.1371/journal.pone.0055066.

  161. Sohn, J.-C., Regier, J.C., Mitter, C., Adamski, D., Landry, J.-F., Heikkilä, M., et al. (2016). Phylogeny and feeding trait evolution of the mega-diverse Gelechioidea (Lepidoptera: Obtectomera): New insight from 19 nuclear genes. Systematic Entomology, 41(1), 112–132. https://doi.org/10.1111/syen.12143.

    Article  Google Scholar 

  162. Spangler, H.G. (1985). Sound production and communication by the greater wax moth (Lepidoptera: Pyralidae). Annals of the Entomological Society of America, 78(1), 54–61.

  163. St Laurent, R., & Carvalho, A.P.S. (2017). Report of diurnal activity in Mimallonoidea with notes on the sexual behavior of Lacosoma chiridota Grote, 1864. Journal of the Lepidopterists'  Society, 71(1), 12–15.

  164. Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312–1313. https://doi.org/10.1093/bioinformatics/btu033.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  165. Tuskes, P.M., Tuttle, J.P., & Collins, M.M. (1996). The wild silk moths of North America: A natural history of the Saturniidae of the United States and Canada. Ithaca: Cornell University Press.

  166. United_States_Naval_Oceanography_Portal. (2011). Rise, set. In and twilight definitions http://aa.usno.navy.mil/faq/docs/RST_defs.php2016.

    Google Scholar 

  167. Wagner, D. (1985). Biology and description of the larva of Dicymolomia metalliferalis: a case-bearing Glaphyriine (Pyralidae). Journal of the Lepidopterists Society, 39(1), 13–18.

  168. Wagner, D.L. (2005). Caterpillars of eastern North America: a guide to identification and natural history. Princeton: Princeton University Press.

    Google Scholar 

  169. Ward, J.B. (1995). Nine new species of New Zealand caddis (Trichoptera). New Zealand Journal of Zoology, 22, 91–103. https://doi.org/10.1080/03014223.1995.9518025.

    Article  Google Scholar 

  170. Warren, A.D., Ogawa, J.R., & Brower, A.V. (2009). Revised classification of the family Hesperiidae (Lepidoptera: Hesperioidea) based on combined molecular and morphological data. Systematic Entomology, 34(3), 467–523.

    Article  Google Scholar 

  171. Weller, S., DaCosta, M., Simmons, R., Dittmar, K., & Whiting, M. (2009). Evolution and taxonomic confusion in Arctiidae. In W. E. Connor (Ed.), Tiger moths and woolly bears, behavior, ecology, and evolution of the Arctiidae (pp. 11–30). New York: Oxford University Press.

  172. Wells, A. (1990). The micro-caddisflies (Trichoptera: Hydroptilidae) of North Sulawesi. Invertebrate Systematics, 3, 363–406. https://doi.org/10.1071/IT9890363.

    Article  Google Scholar 

  173. Whiting, M.F., Carpenter, J.C., Wheeler, Q.D., & Wheeler, W.C. (1997). The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Systematic Biology, 46, 1–68. https://doi.org/10.1093/sysbio/46.1.1.

    CAS  PubMed  Google Scholar 

  174. Wiggins, G.B. (1998). The Caddisfly family Phryganeidae (Trichoptera). Toronto: University of Toronto Press.

    Google Scholar 

  175. Wiggins, G.B. (2015). Larvae of the North American Caddisfly genera (Trichoptera). Toronto: University of Toronto Press.

    Google Scholar 

  176. Willemstein, S.C. (1987). An evolutionary basis for pollination ecology. Leiden Botanical Series, 10, 3–425.

    Google Scholar 

  177. Yack, J.E. (2004). The structure and function of auditory chordotonal organs in insects. Microscopy Research and Technique, 63(6), 315–337.

    Article  PubMed  Google Scholar 

  178. Yack, J.E., & Fullard, J.H. (2000). Ultrasonic hearing in nocturnal butterflies. Nature, 403(6767), 265–266.

    CAS  Article  PubMed  Google Scholar 

  179. Yack, J.E., Scudder, G.G.E., & Fullard, J.H. (1999). Evolution of the metathoracic tympanal ear and its mesothoracic homologue in the Macrolepidoptera (Insecta). Zoomorphology, 119(2), 93–103. https://doi.org/10.1007/S004350050084.

    Article  Google Scholar 

  180. Yack, J.E., Johnson, S.E., Brown, S.G., & Warrant, E.J. (2007). The eyes of Macrosoma sp. (Lepidoptera: Hedyloidea): a nocturnal butterfly with superposition optics. Arthropod Structure & Development, 36(1), 11–22.

    Article  Google Scholar 

  181. Yagi, S., Hirowatari, T., & Arita, Y. (2016). A remarkable new species of the genus Teinotarsina (Lepidoptera, Sesiidae) from Okinawa-jima, Japan. ZooKeys, 571, 143–152.

  182. Yakovlev, R. (2015). Patterns of geographical distribution of carpenter moths (Lepidoptera: Cossidae) in the old world. Contemporary Problems of Ecology, 8(1), 36–50.

    Article  Google Scholar 

  183. Yen, S.-H., & Minet, J. (2007). Cimelioidea: a new superfamily name for the gold moths (Lepidoptera: Glossata). Zoological Studies, 46(3), 262–271.

    Google Scholar 

  184. Yen, S.H., Robinson, G.S., & Quicke, D.L. (2005). Phylogeny, systematics and evolution of mimetic wing patterns of Eterusia moths (Lepidoptera, Zygaenidae, Chalcosiinae). Systematic Entomology, 30(3), 358–397.

    Article  Google Scholar 

  185. Yen, S.-H., Wu, S., & Chen, Y.-L. (2009). Biota Taiwanica: Hexapoda: Lepidoptera. Drepanoidea, Drepanidae, Cyclidiinae: National Sun Yat-Sen University & National Science Council, Guangzhou.

    Google Scholar 

  186. Zahiri, R., Lafontaine, D., Schmidt, C., Holloway, J.D., Kitching, I.J., Mutanen, M., et al. (2013). Relationships among the basal lineages of Noctuidae (Lepidoptera, Noctuoidea) based on eight gene regions. Zoologica Scripta, 42(5), 488–507.

    Article  Google Scholar 

  187. Zaspel, J.M., Weller, S. J., & Epstein, M.E. (2016). Origin of the hungry caterpillar: evolution of fasting in slug moths (Insecta: Lepidoptera: Limacodidae). Molecular Phylogenetics and Evolution, 94, 827–832. https://doi.org/10.1016/j.ympev.2015.09.017.

    CAS  Article  PubMed  Google Scholar 

  188. Zborowski, P., & Edwards, T. (2007). A guide to Australian moths.Clayton: CSIRO Publishing.

  189. Zwick, A., Regier, J.C., Mitter, C., & Cummings, M.P. (2011). Increased gene sampling yields robust support for higher-level clades within Bombycoidea (Lepidoptera). Systematic Entomology, 36(1), 31–43.

    Article  Google Scholar 

Download references

Acknowledgements

We thank James K. Adams, Evan Braswell, Charles V. Covell Jr., Jurate De Prins, James E. Hayden, Chris Johns, Ian Kitching, Shigeki Kobayashi, Sei Maruyama, Deborah Matthews, Erik van Nieukerken, Richard Peigler, Rodolphe Rougerie, Andrei Sourakov, Emmanuel Toussaint, Andrew Warren, Andreas Zwick, and an anonymous reviewer for insightful comments. Photographs in Fig. 1 were taken by Patrick Clement, Gail Hampshire, Donald Hobern, Pavel Kirilov, Carla Kishinami, Jürgen Magelsdorf, Ronnie Pitman, Lary Reeves, Line Sabroe, Alan Schmierer, Ken-ichi Ueda, Alexey Yakovlev, and Mark Yokoyama.

Funding

This study was funded by NSF DEB grant numbers 1541500 and 1557007 to AYK, NSF IOS-1121739 and IOS-1121807 to AYK and JRB, and NSF PRFB-1612862 to CAH.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Akito Y. Kawahara.

Electronic supplementary material

Fig. S1

Ancestral state reconstruction of diel activity in adult Lepidoptera, based on a make.simmap analysis in ‘phytools’. The phylogeny was inferred using a ‘nt123_partitioned’ Regier et al. (2013) dataset with a backbone constraint composed of Kawahara and Breinholt (2014) and Bazinet et al. (2017). Nodes correspond to the posterior probabilities of a state with over 10,000 simulations. Colors: black = nocturnal, blue = crepuscular, orange = diurnal, gray = all. Branches are colored according to their character state and where along the branch transitions likely occurred. (PDF 440 kb)

Fig. S2

Ancestral state reconstruction of diel activity in adult Lepidoptera, based on a make.simmap analysis in ‘phytools’. The phylogeny was inferred using the ‘nt123’ Regier et al. (2013) dataset with a backbone constraint composed of Kawahara and Breinholt (2014) and Bazinet et al. (2017). Nodes correspond to the posterior probabilities of a state with over 10,000 simulations. Colors: black = nocturnal, blue = crepuscular, orange = diurnal, gray = all. Branches are colored according to their character state and where along the branch transitions likely occurred. (PDF 456 kb)

Fig. S3

Ancestral state reconstruction of diel activity in adult Lepidoptera, based on a make.simmap analysis in ‘phytools’. The phylogeny was inferred using the ‘nt123_degen1’ Regier et al. (2013) dataset with a backbone constraint composed of Kawahara and Breinholt (2014) and Bazinet et al. (2017). Nodes correspond to the posterior probabilities of a state with over 10,000 simulations. Colors: black = nocturnal, blue = crepuscular, orange = diurnal, gray = all. Branches are colored according to their character state and where along the branch transitions likely occurred. (PDF 444 kb)

Fig. S4

Character states mapped for each tip of the phylogeny, using a ‘nt123_partitioned’ Regier et al. (2013) dataset and the Kawahara and Breinholt (2014) and Bazinet et al. (2017) chimaera topological constraint. Colors: black = nocturnal, blue = crepuscular, orange = diurnal, gray = all. (PDF 23 kb)

Table S1

Compilation of diel activity times of adult Lepidoptera. Taxonomic information in Columns A-F is taken directly from the Regier et al. (2013) dataset, and in a few instances does not reflect more recent taxonomic changes. Column G contains the species’ code names used as tip labels on the phylogeny in Fig. S1. In situations where diel activity was unavailable for a particular species, the citations listed in Column H correspond to diel activity for a higher-level taxon containing that species, as indicated in Column J. (XLSX 90 kb)

Table S2

Attributions for Lepidoptera images used in Fig. 1. (XLSX 42 kb)

Table S3

Character state matrix used in ancestral state reconstructions. (TXT 19 kb)

Table S4

Diel probabilities of selected higher monophyletic lepidopteran groups. Values are probabilities generated in SIMMAP on the “nt123_partitioned” dataset. (XLSX 48 kb)

ESM 1

Supp. Tree 1. Kawahara and Breinholt (2014) and Bazinet et al. (2017) backbone tree used as a topological constraint in the present study. (TRE 1023 bytes)

ESM 2

Supp. Tree 2. ML tree file using the original Regier et al. (2013) ‘nt123_partitioned’ dataset with topological constraints mentioned in the methods. The dataset was partitioned by site. (TRE 32 kb)

ESM 3

Supp. Tree 3. ML tree file built from the original Regier et al. (2013) ‘nt123’ dataset with topological constraints mentioned in the methods. (TRE 32 kb)

ESM 4

Supp. Tree 4. ML tree file built from the original Regier et al. (2013) ‘nt123_degen1’ dataset with topological constraints mentioned in the methods. (TRE 32 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kawahara, A.Y., Plotkin, D., Hamilton, C.A. et al. Diel behavior in moths and butterflies: a synthesis of data illuminates the evolution of temporal activity. Org Divers Evol 18, 13–27 (2018). https://doi.org/10.1007/s13127-017-0350-6

Download citation

Keywords

  • Crepuscular
  • Day-flying
  • Diurnal
  • Flight time
  • Lepidoptera
  • Night-flying
  • Nocturnal