Skip to main content
Log in

Absence of co-phylogeny indicates repeated diatom capture in dinophytes hosting a tertiary endosymbiont

Organisms Diversity & Evolution Aims and scope Submit manuscript

Cite this article

Abstract

Tertiary endosymbiosis is proven through dinophytes, some of which (i.e. Kryptoperidiniaceae) have engulfed diatom algae containing a secondary plastid. Chloroplasts are usually inherited together permanently with the host cell, leading to co-phylogeny. We compiled a diatom sequence data matrix of two nuclear and two chloroplast loci. Almost all endosymbionts of Kryptoperidiniaceae found their closest relatives in free-living diatoms and not in other harboured algae, rejecting co-phylogeny and indicating that resident diatoms were taken up by dinophytes multiple times independently. Almost intact ultrastructure and insignificant genome reduction are supportive for young, if not recent events of diatom capture. With their selective specificity on the one hand and extraordinary degree of endosymbiotic flexibility on the other hand, dinophytes hosting diatoms share more traits with lichens or facultatively phototrophic ciliates than with green algae and land plants. Time estimates indicate the dinophyte lineages as consistently older than the hosted diatom lineages, thus also favouring a repeated uptake of endosymbionts. The complex ecological role of dinophytes employing a variety of organismic interactions may explain their high potential and plasticity in acquiring a great diversity of plastids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alverson, A. J., Jansen, R. K., & Theriot, E. C. (2007). Bridging the Rubicon: phylogenetic analysis reveals repeated colonizations of marine and fresh waters by thalassiosiroid diatoms. Molecular Phylogenetics and Evolution, 45, 193–210.

    Article  CAS  PubMed  Google Scholar 

  • Alverson, A. J., Beszteri, B., Julius, M. L., Theriot, E. C. (2011). The model marine diatom Thalassiosira pseudonana likely descended from a freshwater ancestor in the genus Cyclotella. BMC Evolutionary Biology, 11, 125.

  • Burki, F. (2014). The eukaryotic tree of life from a global phylogenomic perspective. Cold Spring Harbor Perspectives in Biology, 6, a016147.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chesnick, J. M., Kooistra, W. H. C. F., Wellbrock, U., & Medlin, L. K. (1997). Ribosomal RNA analysis indicates a benthic pennate diatom ancestry for the endosymbionts of the dinoflagellates Peridinium foliaceum and Peridinium balticum (Pyrrhophyta). Journal of Eukaryotic Microbiology, 44, 314–320.

    Article  CAS  PubMed  Google Scholar 

  • Dodge, J. D. (1966). The Dinophyceae. In M. B. E. Godward (Ed.), The chromosomes of the algae (pp. 96–115). New York: St. Martin’s Press.

    Google Scholar 

  • Dodge, J. D. (1971). A dinoflagellate with both a mesokaryotic and a eukaryotic nucleus. I. Fine structure of the nuclei. Protoplasma, 73, 145–157.

  • Dodge, J. D. (1983). The functional and phylogenetic significance of dinoflagellate eyespots. Biosystems, 16, 259–267.

    Article  PubMed  Google Scholar 

  • Dodge, J. D. (1989). Phylogenetic relationship of dinoflagellates and their plastids. In J. C. Green, B. S. C. Leadbeater, & W. L. Diver (Eds.), The chromophyte algae. Problems and perspectives (pp. 205–227). Oxford: Clarendon Press.

  • Dorrell, R. G., & Howe, C. J. (2015). Integration of plastids with their hosts: lessons learned from dinoflagellates. Proceedings of the National Academy of Science of the United States of America, 112, 10247–10254.

    Article  CAS  Google Scholar 

  • Drummond, A. J., Suchard, M. A., Xie, D., & Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29, 1969–1973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fensome, R. A., MacRae, R. A., Moldowan, J. M., Taylor, F. J. R., & Williams, G. L. (1996). The early Mesozoic radiation of dinoflagellates. Paleobiology, 22, 329–338.

    Article  Google Scholar 

  • Fensome, R. A., Saldarriaga, J. F., & Taylor, F. J. R. (1999). Dinoflagellate phylogeny revisited: reconciling morphological and molecular based phylogenies. Grana, 38, 66–80.

    Article  Google Scholar 

  • Figueroa, R. I., Bravo, I., Fraga, S., Garces, E., & Llaveria, G. (2009). The life history and cell cycle of Kryptoperidinium foliaceum, a dinoflagellate with two eukaryotic nuclei. Protist, 160, 285–300.

    Article  PubMed  Google Scholar 

  • Gagat, P., Bodył, A., Mackiewicz, P., & Stiller, J. W. (2014). Tertiary plastid endosymbioses in dinoflagellates. In Löffelhardt (Ed.), Endosymbiosis (pp. 233–290). Vienna: Springer.

  • Garcia-Cuetos, L., Moestrup, Ø., Hansen, P. J., & Daugbjerg, N. (2010). The toxic dinoflagellate Dinophysis acuminata harbors permanent chloroplasts of cryptomonad origin, not kleptochloroplasts. Harmful Algae, 9, 25–38.

    Article  Google Scholar 

  • Gast, R. J., Moran, D. M., Dennett, M. R., & Caron, D. A. (2007). Kleptoplasty in an Antarctic dinoflagellate: caught in evolutionary transition? Environmental Microbiology, 9, 39–45.

    Article  CAS  PubMed  Google Scholar 

  • Gottschling, M., & McLean, T. I. (2013). New home for tiny symbionts: dinophytes determined as Zooxanthella are Peridiniales and distantly related to Symbiodinium. Molecular Phylogenetics and Evolution, 67, 217–222.

    Article  CAS  PubMed  Google Scholar 

  • Gottschling, M., Renner, S. S., Meier, K. J. S., Willems, H., & Keupp, H. (2008). Timing deep divergence events in calcareous dinoflagellates. Journal of Phycology, 44, 429–438.

    Article  CAS  PubMed  Google Scholar 

  • Gottschling, M., & Söhner, S. (2013). An updated list of generic names in the Thoracosphaeraceae. Microorganisms, 1, 122–136.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gottschling, M., Söhner, S., Zinßmeister, C., John, U., Plötner, J., Schweikert, M., Aligizaki, K., & Elbrächter, M. (2012). Delimitation of the Thoracosphaeraceae (Dinophyceae), including the calcareous dinoflagellates, based on large amounts of ribosomal RNA sequence data. Protist, 163, 15–24.

    Article  PubMed  Google Scholar 

  • Gouy, M., Guindon, S., & Gascuel, O. (2010). SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution, 27, 221–224.

    Article  CAS  PubMed  Google Scholar 

  • Gu, H., Kirsch, M., Zinßmeister, C., Söhner, S., Meier, K. J. S., Liu, T., & Gottschling, M. (2013). Waking the dead: morphological and molecular characterization of extant †Posoniella tricarinelloides (Thoracosphaeraceae, Dinophyceae). Protist, 164, 583–597.

    Article  CAS  PubMed  Google Scholar 

  • Händeler, K., Wägele, H., Wahrmund, U., Rüdinger, M., & Knoop, V. (2010). Slugs’ last meals: molecular identification of sequestered chloroplasts from different algal origins in Sacoglossa (Opisthobranchia, Gastropoda). Molecular Ecology Resources, 10, 968–978.

    Article  PubMed  Google Scholar 

  • Hansen, G., Daugbjerg, N., & Henriksen, P. (2003). Comparative study of Gymnodinium mikimotoi and Gymnodinium aureolum, comb. nov. (= Gyrodinium aureolum) based on morphology, pigment composition, and molecular data. Journal of Phycology, 36, 394–410.

    Article  Google Scholar 

  • Harper, J. T., Waanders, E., & Keeling, P. J. (2005). On the monophyly of chromalveolates using a six-protein phylogeny of eukaryotes. International Journal of Systematic and Evolutionary Microbiology, 55, 487–496.

    Article  CAS  PubMed  Google Scholar 

  • Hehenberger, E., Imanian, B., Burki, F., & Keeling, P. J. (2014). Evidence for the retention of two evolutionary distinct plastids in dinoflagellates with diatom endosymbionts. Genome Biology and Evolution, 6, 2321–2334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horiguchi, T., Kawai, H., Kubota, M., Takahashi, T., & Watanabe, M. (1999). Phototactic responses of four marine dinoflagellates with different types of eyespot and chloroplast. Phycological Research, 47, 101–107.

    Article  Google Scholar 

  • Horiguchi, T., & Pienaar, R. N. (1994). Ultrastructure and ontogeny of a new type of eyespot in dinoflagellates. Protoplasma, 179, 142–150.

    Article  Google Scholar 

  • Horiguchi, T., & Takano, Y. (2006). Serial replacement of a diatom endosymbiont in the marine dinoflagellate Peridinium quinquecorne (Peridiniales, Dinophyceae). Phycological Research, 54, 193–200.

    Article  Google Scholar 

  • Imanian, B., & Keeling, P. J. (2007). The dinoflagellates Durinskia baltica and Kryptoperidinium foliaceum retain functionally overlapping mitochondria from two evolutionarily distinct lineages. BMC Evolutionary Biology, 7, 172.

    Article  PubMed  PubMed Central  Google Scholar 

  • Imanian, B., Pombert, J. F., Dorrell, R. G., Burki, F., & Keeling, P. J. (2012). Tertiary endosymbiosis in two dinotoms has generated little change in the mitochondrial genomes of their dinoflagellate hosts and diatom endosymbionts. PLoS One, 7, e43763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imanian, B., Pombert, J. F., & Keeling, P. J. (2010). The complete plastid genomes of the two ‘dinotoms’ Durinskia baltica and Kryptoperidinium foliaceum. PLoS One, 5, e10711.

    Article  PubMed  PubMed Central  Google Scholar 

  • Inagaki, Y., Dacks, J. B., Doolittle, W. F., Watanabe, K. I., & Ohama, T. (2000). Evolutionary relationship between dinoflagellates bearing obligate diatom endosymbionts: insight into tertiary endosymbiosis. International Journal of Systematic and Evolutionary Microbiology, 50, 2075–2081.

  • Janouškovec, J., Gavelis, G. S., Burki, F., Dinh, D., Bachvaroff, T. S., Gornik, S. G., et al. (2017). Major transitions in dinoflagellate evolution unveiled by phylotranscriptomics. Proceedings of the National Academy of Science of the United States of America, 114, 171–180.

    Article  Google Scholar 

  • Jeffrey, S. W. (1989). Chlorophyll c pigments and their distribution in the chromophyte algae. In J. C. Green, B. S. C. Leadbeater, & W. L. Diver (Eds.), The chromophyte algae. Problems and perspectives (pp. 13–36). Oxford: Clarendon Press.

    Google Scholar 

  • Kamikawa, R., Tanifuji, G., Kawachi, M., Miyashita, H., Hashimoto, T., & Inagaki, Y. (2015). Plastid genome-based phylogeny pinpointed the origin of the green-colored plastid in the dinoflagellate Lepidodinium chlorophorum. Genome Biology and Evolution, 7, 1133–1140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keeling, P. J. (2004). Diversity and evolutionary history of plastids and their hosts. American Journal of Botany, 91, 1481–1493.

    Article  PubMed  Google Scholar 

  • Keeling, P. J. (2010). The endosymbiotic origin, diversification and fate of plastids. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 729–748.

    Article  CAS  Google Scholar 

  • Keeling, P. J., Burki, F., Wilcox, H. M., Allam, B., Allen, E. E., Amaral-Zettler, L. A., et al. (2014). The marine microbial eukaryote transcriptome sequencing project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biology, 12, e1001889.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kempton, J. W., Wolny, J., Tengs, T., Rizzo, P., Morris, R., Tunnell, J., et al. (2002). Kryptoperidinium foliaceum blooms in South Carolina: a multi-analytical approach to identification. Harmful Algae, 1, 383–392.

    Article  CAS  Google Scholar 

  • Keupp, H. (1984). Revision der kalkigen Dinoflagellaten-Zysten G. Deflandres 1948. Palaeontologische Zeitschrift, 58, 9–31.

    Article  Google Scholar 

  • Keupp, H., & Ilg, A. (1989). Die kalkigen Dinoflagellaten im Ober-Callovium und Oxfordium der Normandie/Frankreich. Berliner Geowissenschaftliche Abhandlungen, A106, 165–206.

    Google Scholar 

  • Kretschmann, J., Žerdoner Čalasan, A., Gottschling, M. (in press). Molecular phylogenetics of dinophytes harboring diatoms as endosymbionts (Kryptoperidiniaceae, Peridiniales), with evolutionary interpretations and a focus on the identity of Durinskia oculata from Prague. Molecular Phylogenetics and Evolution.

  • Leander, B. S., & Keeling, P. J. (2004). Early evolutionary history of dinoflagellates and apicomplexans (Alveolata) as inferred from hsp90 and actin phylogenies. Journal of Phycology, 40, 341–350.

    Article  CAS  Google Scholar 

  • Lee, J. J., McEnery, M. E., Ter Kuile, B., Erez, J., Röttger, R., Rockwell, R. F., et al. (1989). Identification and distribution of endosymbiotic diatoms in larger foraminifera. Micropaleontology, 35, 353–366.

    Article  Google Scholar 

  • Lee, J. J., Morales, J., Symons, A., & Hallock, P. (1995). Diatom symbionts in larger foraminifera from Caribbean hosts. Marine Micropaleontology, 26, 99–105.

    Article  Google Scholar 

  • Lee, M. A., Faria, D. G., Han, M. S., Lee, J., & Ki, J. S. (2013). Evaluation of nuclear ribosomal RNA and chloroplast gene markers for the DNA taxonomy of centric diatoms. Biochemical Systematics and Ecology, 50, 163–174.

    Article  Google Scholar 

  • Li, C. L., Ashworth, M. P., Witkowski, A., Dabek, P., Medlin, L. K., Kooistra, W. H. C. F., et al. (2015). New insights into Plagiogrammaceae (Bacillariophyta) based on multigene phylogenies and morphological characteristics with the description of a new genus and three new species. PLoS One, 10, e0139300.

    Article  PubMed  PubMed Central  Google Scholar 

  • Litchman, E., Klausmeier, C. A., & Yoshiyama, K. (2009). Contrasting size evolution in marine and freshwater diatoms. Proceedings of the National Academy of Science of the United States of America, 106, 2665–2670.

    Article  CAS  Google Scholar 

  • Lücking, R., Lawrey, J. D., Sikaroodi, M., Gillevet, P. M., Chaves, J. L., Sipman, H. J., & Bungartz, F. (2009). Do lichens domesticate photobionts like farmers domesticate crops? Evidence from a previously unrecognized lineage of filamentous cyanobacteria. American Journal of Botany, 96, 1409–1418.

    Article  PubMed  Google Scholar 

  • McEwan, M. L., & Keeling, P. J. (2004). HSP90, tubulin and actin are retained in the tertiary endosymbiont genome of Kryptoperidinium foliaceum. Journal of Eukaryotic Microbiology, 51, 651–659.

    Article  CAS  PubMed  Google Scholar 

  • Medlin, L. K. (2015). A timescale for diatom evolution based on four molecular markers: reassessment of ghost lineages and major steps defining diatom evolution. Vie et Milieu, 65, 219–238.

    Google Scholar 

  • Medlin, L. K., & Fensome, R. A. (2013). Dinoflagellate macroevolution: some considerations based on an integration of molecular, morphological and fossil evidence. In J. M. Lewis, F. Marret, & L. Bradley (Eds.), Biological and geological perspectives of dinoflagellates (pp. 263–274). Geological Society: London.

    Chapter  Google Scholar 

  • Moestrup, Ø., & Daugbjerg, N. (2007). On dinoflagellate phylogeny and classification. In J. Brodie & J. Lewis (Eds.), Unravelling the algae, the past, present, and future of algal systematics (pp. 215–230). CRC Press: Boca Raton.

    Chapter  Google Scholar 

  • Morden, C. W., & Sherwood, A. R. (2002). Continued evolutionary surprises among dinoflagellates. Proceedings of the National Academy of Science of the United States of America, 99, 11558–11560.

    Article  CAS  Google Scholar 

  • Moreno Díaz de la Espina, S., Alverca, E., Cuadrado, A., & Franca, S. (2005). Organization of the genome and gene expression in a nuclear environment lacking histones and nucleosomes: the amazing dinoflagellates. European Journal of Cell Biology, 84, 137–149.

    Article  PubMed  Google Scholar 

  • Morris, R. L., Fuller, C. B., & Rizzo, P. J. (1993). Nuclear basic proteins from the binucleate dinoflagellate Peridinium foliaceum (Pyrrophyta). Journal of Phycology, 29, 342–347.

    Article  CAS  Google Scholar 

  • Nosenko, T., Lidie, K. L., Van Dolah, F. M., Lindquist, E., Cheng, J. F., & Bhattacharya, D. (2006). Chimeric plastid proteome in the Florida “red tide” dinoflagellate Karenia brevis. Molecular Biology and Evolution, 23, 2026–2038.

    Article  CAS  PubMed  Google Scholar 

  • Okamoto, N., & Keeling, P. J. (2014). A comparative overview of the flagellar apparatus of dinoflagellate, perkinsids and colpodellids. Microorganisms, 2, 73–91.

    Article  PubMed  PubMed Central  Google Scholar 

  • Patron, N. J., Waller, R. F., & Keeling, P. J. (2006). A tertiary plastid uses genes from two endosymbionts. Journal of Molecular Biology, 357, 1373–1382.

    Article  CAS  PubMed  Google Scholar 

  • Pienaar, R. N., Sakai, H., & Horiguchi, T. (2007). Description of a new dinoflagellate with a diatom endosymbiont, Durinskia capensis sp. nov. (Peridiniales, Dinophyceae) from South Africa. Journal of Plant Research, 120, 247–258.

    Article  PubMed  Google Scholar 

  • Pochon, X., Putnam, H. M., Burki, F., & Gates, R. D. (2012). Identifying and characterizing alternative molecular markers for the symbiotic and free-living dinoflagellate genus Symbiodinium. PLoS One, 7, e29816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price, D. C., & Bhattacharya, D. (2017). Robust Dinoflagellata phylogeny inferred from public transcriptome databases. Journal of Phycology, 53, 725–729.

    Article  PubMed  Google Scholar 

  • Qiu, D., Huang, L., & Lin, S. (2016). Cryptophyte farming by symbiotic ciliate host detected in situ. Proceedings of the National Academy of Science of the United States of America, 113, 12208–12213.

    Article  CAS  Google Scholar 

  • Rill, R. L., Livolant, F., Aldrich, H. C., & Davidson, M. W. (1989). Electron microscopy of liquid crystalline DNA: direct evidence for cholesteric-like organization of DNA in dinoflagellate chromosomes. Chromosoma, 98, 280–286.

    Article  CAS  PubMed  Google Scholar 

  • Rines, J. E. B., & Hargraves, P. E. (1988). The Chaetoceros Ehrenberg (Bacillariophyceae) flora of Narragansett Bay, Rhode Island, U.S.A. Bibliotheca Phycologica, 79, 1–196.

    Google Scholar 

  • Rizzo, P. J. (2003). Those amazing dinoflagellate chromosomes. Cell Research, 13, 215–217.

    Article  CAS  PubMed  Google Scholar 

  • Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Hohna, S., et al. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schnepf, E., & Elbrächter, M. (1988). Cryptophycean-like double membranebound chloroplast in the dinoflagellate, Dinophysis Ehrenb.: Evolutionary, phylogenetic and toxicological implications. Botanica Acta, 101, 196–203.

  • Schnepf, E., & Elbrächter, M. (1999). Dinophyte chloroplasts and phylogeny—a review. Grana, 38, 81–97.

    Article  Google Scholar 

  • Sorhannus, U. (2007). A nuclear-encoded small-subunit ribosomal RNA timescale for diatom evolution. Marine Micropaleontology, 65, 1–12.

    Article  Google Scholar 

  • Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30, 1312–1313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoecker, D. K. (1999). Mixotrophy among dinoflagellates. Journal of Eukaryotic Microbiology, 46, 397–401.

    Article  Google Scholar 

  • Streng, M., Hildebrand-Habel, T., & Willems, H. (2004). A proposed classification of archeopyle types in calcareous dinoflagellate cysts. Journal of Paleontology, 78, 456–483.

    Article  Google Scholar 

  • Takano, Y., Hansen, G., Fujita, D., & Horiguchi, T. (2008). Serial replacement of diatom endosymbionts in two freshwater dinoflagellates, Peridiniopsis spp. (Peridiniales, Dinophyceae). Phycologia, 47, 41–53.

    Article  CAS  Google Scholar 

  • Takano, Y., Yamaguchi, H., Inouye, I., Moestrup, Ø., & Horiguchi, T. (2014). Phylogeny of five species of Nusuttodinium gen. nov. (Dinophyceae), a genus of unarmoured kleptoplastidic dinoflagellates. Protist, 165, 759–778.

    Article  PubMed  Google Scholar 

  • Tamura, M., Shimada, S., & Horiguchi, T. (2005). Galeidinium rugatum gen. et sp. nov. (Dinophyceae), a new coccoid dinoflagellate with a diatom endosymbiont. Journal of Phycology, 41, 658–671.

    Article  CAS  Google Scholar 

  • Taylor, F. J. R. (1980). On dinoflagellate evolution. Biosystems, 13, 65–108.

    Article  CAS  PubMed  Google Scholar 

  • Taylor, F. J. R., Hoppenrath, M., & Saldarriaga, J. F. (2008). Dinoflagellate diversity and distribution. Biodiversity and Conservation, 17, 407–418.

    Article  Google Scholar 

  • Theriot, E. C., Ashworth, M. P., Nakov, T., Ruck, E., & Jansen, R. K. (2015). Dissecting signal and noise in diatom chloroplast protein encoding genes with phylogenetic information profiling. Molecular Phylogenetics and Evolution, 89, 28–36.

    Article  CAS  PubMed  Google Scholar 

  • Tillmann, U., Gottschling, M., Nézan, E., Krock, B., & Bilien, G. (2014). Morphological and molecular characterization of three new Azadinium species (Amphidomataceae, Dinophyceae) from the Irminger Sea. Protist, 165, 417–444.

    Article  CAS  PubMed  Google Scholar 

  • Tomas, R., & Cox, E. (1973). Observations on symbiosis of Peridinium balticum and its intracellular alga. 1. Ultrastructure. Journal of Phycology, 9, 304–323.

    Google Scholar 

  • Whitten, D. J., & Hoyhome, B. A. (1986). Comparative electrophoretic analysis of two binucleate dinoflagellates. Journal of Phycology, 22, 348–352.

    Article  CAS  Google Scholar 

  • Wisecaver, J. H., & Hackett, J. D. (2011). Dinoflagellate genome evolution. Annual Review of Microbiology, 65, 369–387.

    Article  CAS  PubMed  Google Scholar 

  • Yamada, N., Sym, S. D., & Horiguchi, T. (2017). Identification of highly-divergent diatom derived chloroplasts in dinoflagellates, including a description of Durinskia kwazulunatalensis sp. nov. (Peridiniales, Dinophyceae). Molecular Biology and Evolution, 34, 1335–1351.

    Article  PubMed  Google Scholar 

  • You, X. J., Luo, Z. H., Su, Y. P., Gu, L., & Gu, H. (2015). Peridiniopsis jiulongensis, a new freshwater dinoflagellate with a diatom endosymbiont from China. Nova Hedwigia, 101, 313–326.

  • Zhang, Q., Liu, G.-X., & Hu, Z.-Y. (2011a). Durinskia baltica (Dinophyceae), a newly recorded species and genus from China, and its systematics. Journal of Systematics and Evolution, 49, 476–485.

    Article  Google Scholar 

  • Zhang, Q., Liu, G.-X., & Hu, Z.-Y. (2011b). Morphological differences and molecular phylogeny of freshwater blooming species, Peridiniopsis spp. (Dinophyceae) from China. European Journal of Protistology, 47, 149–160.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the Deutsche Forschungsgemeinschaft (grant GO 1549 10-1) and the Münchener Universitätsgesellschaft. We thank Nina Simanovic for improving the English text, and the Scientific Committee of the 11th International Conference on Modern and Fossil Dinoflagellates for awarding the first author of this study with the Best Young Scientist Oral Presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Gottschling.

Electronic supplementary material

ESM 1

(PDF 7754 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Žerdoner Čalasan, A., Kretschmann, J. & Gottschling, M. Absence of co-phylogeny indicates repeated diatom capture in dinophytes hosting a tertiary endosymbiont. Org Divers Evol 18, 29–38 (2018). https://doi.org/10.1007/s13127-017-0348-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-017-0348-0

Keywords

Navigation