Organisms Diversity & Evolution

, Volume 17, Issue 4, pp 753–766 | Cite as

Evolution of the claustrum in Cnidaria: comparative anatomy reveals that it is exclusive to some species of Staurozoa and absent in Cubozoa

  • Lucília S. MirandaEmail author
  • Jimena García-Rodríguez
  • Allen G. Collins
  • André C. Morandini
  • Antonio C. Marques
Original Article


The claustrum in Cnidaria is a tissue in the gastrovascular cavity delimited by a central layer of mesoglea surrounded by gastrodermis (i.e., gastrodermis-mesoglea-gastrodermis), without communication with epidermis. By dividing the gastrovascular cavity, the four claustra provide an additional level of complexity. The presence of claustra in Cubozoa and Staurozoa has been used as evidence supporting a close relationship between these two cnidarian classes. However, the detailed anatomy of the claustrum has never been comparatively analyzed, rendering the evolution of this character among Cnidaria and its homology in Staurozoa and Cubozoa uncertain. This study provides a comparative investigation of the internal anatomy of the claustrum in Staurozoa and Cubozoa, addressing its evolutionary history based on recent phylogenetic hypotheses for Cnidaria. We conclude that the claustrum is a character exclusive to some species of Staurozoa, with a homoplastic evolution in the class, and that the structure called the “claustrum” in Cubozoa corresponds to the valve of gastric ostium, a structure at the base of the manubrium, which is also present in Staurozoa with and without claustrum. Thus, the claustrum cannot be a synapomorphy of a hypothetical clade uniting Staurozoa and Cubozoa, nor can its hypothetical presence in enigmatic fossils be used to support cubozoan affinities.


Medusozoa Stauromedusae Stalked jellyfish Box jellyfish Histology 



The authors are grateful to Enio Mattos (IB-USP) and José Eduardo A. R. Marian (IB-USP) for their kind assistance with the histological procedures. We are also grateful to the editor Andreas Wanninger and to an anonymous reviewer whose comments helped improve the quality of the manuscript. This contribution involved the participation of scientists of NP-BioMar.


This study was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) 2010/07362-7 (LSM), 2015/23695-0 (LSM), 2010/50174-7 (ACMo), 2015/21007-9 (ACMo), 2011/50242-5 (ACMa), 2013/50484-4 (ACMa); Comissão de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) PDSE 16499/12-3 (LSM), PNPD (LSM); and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) 142270/2010-5 (LSM), 301039/2013-5 (ACMo), 304961/2016-7 (ACMo), 474672/2007-7 (ACMa), 562143/2010-6 (ACMa), 305805/2013-4 (ACMa), 445444/2014-2 (ACMa).


  1. Allman, G. I. (1860). On the structure of Carduella cyathiformis. A contribution to our knowledge of Lucernariadae. Transactions of the Microscopical Society of London, VIII, 125–128.CrossRefGoogle Scholar
  2. Bancroft, J. D., & Stevens, A. (1982). Theory and practice of histological techniques. Edinburgh: Churchill Livingstone.Google Scholar
  3. Behmer, O. A., Tolosa, E. M., & de Freitas Neto, A. G. (1976). Manual de técnicas para histologia normal e patológica. São Paulo: EDART/USP.Google Scholar
  4. Berrill, M. (1963). Comparative functional morphology of the Stauromedusae. Canadian Journal of Zoology, 41, 741–752.CrossRefGoogle Scholar
  5. Carlgren, O. (1935). Über eine neue Südafrikanische Lucernariidae, Depastromorpha africana n. gen., n. sp., nebst Bemerkungen über den Bau und die Systematik dieser Tiergruppe. Kungliga Svenska Vetenskapsakademiens Handlingar, 15, 1–24.Google Scholar
  6. Clark, H. J. (1863). Prodromus of the history, structure, and physiology of the order Lucernariae. Journal of the Boston Society of Natural History, 7, 531–567.Google Scholar
  7. Collins, A. G. (2002). Phylogeny of Medusozoa and the evolution of cnidarians life cycles. Journal of Evolutionary Biology, 15, 418–432.CrossRefGoogle Scholar
  8. Collins, A. G., & Daly, M. (2005). A new deepwater species of Stauromedusae, Lucernaria janetae (Cnidaria, Staurozoa, Lucernariidae), and a preliminary investigation of stauromedusan phylogeny based on nuclear and mitochondrial rDNA data. Biological Bulletin, 208, 221–230.CrossRefPubMedGoogle Scholar
  9. Collins, A. G., Schuchert, P., Marques, A. C., Jankowski, T., Medina, M., & Schierwater, B. (2006). Medusozoan phylogeny and character evolution clarified by large and small subunit rDNA data and an assessment of the utility of phylogenetic mixture models. Systematic Biology, 55, 97–115.CrossRefPubMedGoogle Scholar
  10. Conant, F. S. (1898). The Cubomedusae. Memoirs of the Biological Laboratory of the Johns Hopkins University, 4, 1–61.Google Scholar
  11. de Pinna, M. C. C. (1991). Concepts and tests of homology in the cladistic paradigm. Cladistics, 7, 367–394.CrossRefGoogle Scholar
  12. Gross, I. (1900). Zur Anatomie der Lucernariden. Jenaischen Zeitschrift für Naturwissenschaft, 33, 611–624.Google Scholar
  13. Haeckel, E. (1882). Das system der medusen. I, 2: System der Acraspeden. Zweite Hälfte des Systems der Medusen. Jena: Gustav Fischer.Google Scholar
  14. Haeckel, E. (1882). Report on the deep-sea medusae dredged by H.M.S. Challenger during the years 1873–1876. Report on the scientific results of the voyage H.M.S. Challenger during the years 1873–1876. Zoology, 4, 1–154.Google Scholar
  15. Han, J., Kubota, S., Li, G., Yao, X., Yang, X., Shu, D., Li, Y., Kinoshita, S., Sasaki, O., Komiya, T., & Yan, G. (2013). Early Cambrian pentamerous cubozoan embryos from South China. PloS One, 8, e70741.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Han, J., Kubota, S., Li, G., Ou, Q., Wang, X., Yao, X., Shu, D., Li, Y., Uesugi, K., Hoshino, M., Sasaki, O., Kano, H., Sato, T., & Komiya, T. (2016). Divergent evolution of medusozoan symmetric patterns: evidence from the microanatomy of Cambrian tetramerous cubozoans from South China. Gondwana Research, 31, 150–163.CrossRefGoogle Scholar
  17. Humason, G. L. (1962). Animal tissue techniques. San Francisco: W. H. Freeman and Company.CrossRefGoogle Scholar
  18. Junqueira, L. C. U. (1995). Histology revisited: technical improvement promoted by the use of hydrophilic resin embedding. Ciência e Cultura, 47, 92–95.Google Scholar
  19. Kayal, E., Roure, B., Philippe, H., Collins, A. G., & Lavrov, D. V. (2013). Cnidarian phylogenetic relationships as revealed by mitogenomics. BMC Evolutionary Biology, 13, 5.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Krumbach, T. (1925). Scyphozoa. Handbook of Zoology, 1, 522–686.Google Scholar
  21. Mahoney, R. (1966). Laboratory techniques in zoology. London: Butterworth & Co..Google Scholar
  22. Marques, A. C., & Collins, A. G. (2004). Cladistic analysis of Medusozoa and cnidarian evolution. Invertebrate Biology, 123, 32–42.Google Scholar
  23. Mayer, A. G. (1910). Medusae of the world. Volume III. Scyphomedusae. Washington: Carnegie Institution Publishing, Publication 109, III, 499–735.Google Scholar
  24. Mendoza-Becerril, M., Maronna, M. M., Pacheco, M. L. A. F., Simões, M. G., Leme, J. M., Miranda, L. S, Morandini, A. C., & Marques, A. C. (2016). An evolutionary comparative analysis of the medusozoan (Cnidaria) exoskeleton. Zoological Journal of the Linnean Society, 178, 206–225.Google Scholar
  25. Miranda, L. S., Collins, A. G., & Marques, A. C. (2013). Internal anatomy of Haliclystus antarcticus (Cnidaria, Staurozoa) with a discussion on histological features used in staurozoan taxonomy. Journal of Morphology, 274, 1365–1383.CrossRefPubMedGoogle Scholar
  26. Miranda, L. S., Hirano, Y. M., Mills, C. E., Falconer, A., Fenwick, D., Marques, A. C., & Collins, A. G. (2016a). Systematics of stalked jellyfishes (Cnidaria: Staurozoa). PeerJ, 4, e1951.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Miranda, L. S., Collins, A. G., Hirano, Y. M., Mills, C. E., & Marques, A. C. (2016b). Comparative internal anatomy of Staurozoa (Cnidaria), with functional and evolutionary inferences. PeerJ, 4, e2594.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Pearse, A. G. E. (1985). Histochemistry: theoretical and applied. Volume 2: analytical technology (Fourth ed.). Edinburgh: Churchill Livingstone.Google Scholar
  29. Thiel, H. (1966). The evolution of Scyphozoa: a review. In W. J. Rees (Ed.), The Cnidaria and their evolution (pp. 77–118). London: Academic Press.Google Scholar
  30. Uchida, T. (1929). Studies on the Stauromedusae and Cubomedusae, with special reference to their metamorphosis. Japanese Journal of Zoology, 2, 103–193.Google Scholar
  31. Uchida, T., & Hanaoka, K.-I. (1933). On the morphology of a stalked medusa, Thaumatoscyphus distinctus Kishinouye. Journal of the Faculty of Science, Hokkaido Imperial University, Series VI, Zoology, 2, 135–153.Google Scholar
  32. Van Iten, H., Leme, J. M., Simões, M. G., Marques, A. C., & Collins, A. G. (2006). Reassessment of the phylogenetic position of Conulariids (?Ediacaran-Triassic) within the subphylum Medusozoa (phylum Cnidaria). Journal of Systematic Palaeontology, 4, 109–118.CrossRefGoogle Scholar
  33. Van Iten, H., Marques, A. C., Leme, J. M., Pacheco, M. L. A. F., & Simões, M. G. (2014). Origin and early diversification of the phylum Cnidaria Verrill: major developments in the analysis of the taxon’s Proterozoic-Cambrian history. Palaeontology, 57, 677–690.CrossRefGoogle Scholar
  34. Zapata, F., Goetz, F. E., Smith, A. S., Howison, M., Siebert, S., Church, S., Sanders, S. M., Ames, C. L., McFadden, C. S., France, S. C., Daly, M., Collins, A. G., Haddock, S. H. D., Dunn, C., & Cartwright, P. (2015). Phylogenomic analyses support traditional relationships within Cnidaria. PloS One, 10, e0139068.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2017

Authors and Affiliations

  • Lucília S. Miranda
    • 1
    Email author
  • Jimena García-Rodríguez
    • 1
  • Allen G. Collins
    • 2
  • André C. Morandini
    • 1
  • Antonio C. Marques
    • 1
    • 3
  1. 1.Departamento de Zoologia, Instituto de BiociênciasUniversidade de São PauloSão PauloBrazil
  2. 2.National Systematics Laboratory, National Marine Fisheries Service (NMFS), National Museum of Natural HistorySmithsonian InstitutionWashingtonUSA
  3. 3.Centro de Biologia MarinhaUniversidade de São PauloSão SebastiãoBrazil

Personalised recommendations