Organisms Diversity & Evolution

, Volume 17, Issue 2, pp 375–391 | Cite as

A new giant egg-laying onychophoran (Peripatopsidae) reveals evolutionary and biogeographical aspects of Australian velvet worms

  • Ivo de Sena Oliveira
  • Georg MayerEmail author
Original Article


Representatives of Ooperipatellus (Peripatopsidae) are among the smallest onychophorans known, commonly varying between 10 and 20 mm in length. Herein, we present a peculiar new species of Ooperipatellus from Tasmania that can exceed twice the length of other representatives of this taxon. Ooperipatellus nickmayeri sp. nov. is comprehensively described based on morphological, molecular, karyological and slime protein profile data. Morphological analyses expose a set of novel features in this species, including a swollen area covered with a modified integument on the posterior border of the male genital pad, modified papillae on the female ovipositor and the presence of pseudoplicae in the dorsal integument. The evolutionary significance of pseudoplicae remains unclear, but similarities between O. nickmayeri sp. nov. and Plicatoperipatus jamaicensis, the only species from which these structures were previously known, suggest they evolved due to functional constraints of the onychophoran integument. Our karyological investigation further revealed that the new species has the largest karyotype known within Peripatopsidae (2n = 50, XY). Finally, the results of our molecular phylogenetic analyses support the recognition of O. nickmayeri sp. nov. and shed light on previously unclear aspects of the biogeographical history of Ooperipatellus in Southern Australia, Tasmania and New Zealand.


Biogeography Onychophora Ooperipatellus Peripatopsidae Tasmania 



The authors are thankful to Lars Hering for his help with phylogenetic analyses, members of GM’s research group for their help with animal cultures and Vladimir Gross for proofreading the language. Two anonymous reviewers provided useful comments, which helped to improve the manuscript. The Department of Primary Industries, Parks, Water and Environment (Tasmania, Australia) is gratefully acknowledged for providing permits. This study was supported by grants from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq Brazil: 290029/2010-4) to ISO and the German Research Foundation (DFG: Ma 4147/3-1) to GM.

Authors contribution

ISO and GM conceived and designed the work and wrote the first draft of the manuscript. ISO performed the experiments. ISO and GM analysed the data, discussed the results, prepared and approved the final manuscript.

Supplementary material

13127_2016_321_Fig11_ESM.gif (723 kb)
Figure S1

Arrangement of dermal papillae along the dorsal midline in Ooperipatellus nickmayeri sp. nov. Scanning electron micrographs. In all images, the anterior orientation is at the top of the figure, with posterior at the bottom. (A) Overview of dorsal integument. Arrows point to pseudoplicae composed solely of accessory papillae. (B) Detail of the same image as in A, artificially coloured. Pseudoplicae are represented in purple, primary papillae in blue, and accessory papillae in orange. The pattern formed by primary and accessory papillae repeats along the entire dorsal midline (dotted line), irrespective of whether or not pseudoplicae are present. Abbreviations: ac, accessory papilla; pp., primary papilla. (GIF 723 kb)

13127_2016_321_MOESM1_ESM.tif (9.1 mb)
High resolution image (TIFF 9331 kb)
13127_2016_321_Fig12_ESM.gif (54 kb)
Figure S2

Phylogenetic relationships among representative onychophorans, including Ooperipatellus nickmayeri sp. nov. Maximum likelihood topology combining the 12S rRNA, 16S rRNA, 18S rRNA and 28S rRNA nucleotide sequences with translated amino acids of COI sequences. Four species of Peripatidae were used as outgroup taxa. Bootstrap values are provided above the branches. Asterisks indicate maximum bootstrap support values (=100). (GIF 53 kb)

13127_2016_321_MOESM2_ESM.tif (187 kb)
High resolution image (TIFF 186 kb)
13127_2016_321_Fig13_ESM.gif (53 kb)
Figure S3

Phylogenetic relationships among representative onychophorans, including Ooperipatellus nickmayeri sp. nov. Maximum likelihood topology combining the 12S rRNA, 16S rRNA, 18S rRNA and 28S rRNA nucleotide sequences with COI nucleotide sequences. Four species of Peripatidae were used as outgroup taxa. Bootstrap values are provided above the branches. Asterisks indicate maximum bootstrap support values (=100). (GIF 53 kb)

13127_2016_321_MOESM3_ESM.tif (188 kb)
High resolution image (TIFF 187 kb)


  1. Abascal, F., Zardoya, R., & Posada, D. (2005). ProtTest: selection of best-fit models of protein evolution. Bioinformatics, 21, 2104–2105.CrossRefPubMedGoogle Scholar
  2. Abascal, F., Zardoya, R., & Telford, M. J. (2010). TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Research, 38, W7–W13.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Abràmoff, M. D., Magalhães, P. J., & Ram, J. S. (2004). Image processing with ImageJ. Biophotonics International, 11, 36–42.Google Scholar
  4. Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B. N. Petrov & F. Csaki (Eds.), Second international symposium on information theory (pp. 267–281). Japan: Akademiai Kiado.Google Scholar
  5. Allwood, J., Gleeson, D., Mayer, G., Daniels, S., Beggs, J. R., & Buckley, T. R. (2010). Support for vicariant origins of the New Zealand Onychophora. Journal of Biogeography, 37, 669–681.CrossRefGoogle Scholar
  6. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Baehr, M. (1976). Beiträge zur Verbreitung und Ökologie tasmanischer Reptilien. Stuttgarter Beitraege zur Naturkunde Serie A (Biologie), 292, 1–24.Google Scholar
  8. Baehr, M. (1977). Über einige Onychophoren aus Australien und Tasmanien mit Beschreibung einer neuen Art und Anmerkung zur Stellung von Ooperipatus paradoxus Bouvier, 1915. Zoologische Jahrbücher, Abteilung für Systematik, Geographie und Biologie der Tiere, 104, 9–19.Google Scholar
  9. Baer, A., & Mayer, G. (2012). Comparative anatomy of slime glands in Onychophora (velvet worms). Journal of Morphology, 273, 1079–1088.CrossRefPubMedGoogle Scholar
  10. Baer, A., Oliveira, I. S., Steinhagen, M., Beck-Sickinger, A. G., & Mayer, G. (2014). Slime protein profiling: a non-invasive tool for species identification in Onychophora (velvet worms). Journal of Zoological Systematics and Evolutionary Research, 52, 265–272.CrossRefGoogle Scholar
  11. Blanchard, E. (1847). Recherches sur l’organisation des Vers. Annales des Sciences Naturelles [3e Série], 8, 119–149.Google Scholar
  12. Bouvier, E. L. (1898). Note préliminaire sur la distribution géographique et l’évolution des Péripates. Comptes Rendus Hebdomadaires des Seances de l’Academie des Sciences, 126, 1358–1361.Google Scholar
  13. Bouvier, E. L. (1905). Monographie des Onychophores. Annales des Sciences Naturelles Zoologie et Biologie Animale [9e Série], 2, 1–383.Google Scholar
  14. Briscoe, D. A., & Tait, N. N. (1993). Peripatus or velvet worms. In S. Smith & L. Gilfedder (Eds.), Tasmanian wilderness world heritage values (pp. 136–138). Hobart: Royal Society of Tasmania.Google Scholar
  15. Brockmann, C. (2007). Die oviparen Peripatopsidae Tasmaniens (Onychophora): Revision von Ooperipatellus und Bemerkungen zur Phylogenie. Hamburg: Universität Hamburg.Google Scholar
  16. Cockerell, T. D. A. (1913). Ooperipatus spenceri, nom. nov. Proceedings of the Biological Society of Washington, 26, 19.Google Scholar
  17. Daniels, S., Dambire, C., Klaus, S., & Sharma, P. P. (2016). Unmasking alpha diversity, cladogenesis and biogeographicalpatterning in an ancient panarthropod lineage (Onychophora: Peripatopsidae: Opisthopatus cinctipes) with the description of five novel species. Cladistics, 32, 506–537.CrossRefGoogle Scholar
  18. Daniels, S. R., Picker, M. D., Cowlin, R. M., & Hamer, M. L. (2009). Unravelling evolutionary lineages among south African velvet worms (Onychophora: Peripatopsis) provides evidence for widespread cryptic speciation. Biological Journal of the Linnean Society, 97, 200–216.CrossRefGoogle Scholar
  19. Dendy, A. (1890). Preliminary account of a new Australian Peripatus. Victorian Naturalist, 6, 173–176.Google Scholar
  20. Dendy, A. (1894). Additions to the cryptozoic fauna of New Zealand. Annals and Magazine of Natural History [Series 6], 14, 393–401.Google Scholar
  21. Dendy, A. (1902). On the oviparous species of Onychophora. Quarterly Journal of Microscopical Science, 179, 363–415.Google Scholar
  22. Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39, 783–791.CrossRefGoogle Scholar
  23. Fletcher, J. J. (1895). On the specific identity of the Australian Peripatus, usually supposed to be P. leuckarti, Saenger. Proceedings of the Linnean Society of New South Wales , 10, 172–194.2nd SeriesCrossRefGoogle Scholar
  24. Grube, E. (1866). Peripatus capensis. Jahresbericht der Schlesischen Gesellschaft für Vaterländische Cultur, 43, 65–66.Google Scholar
  25. Jackson J, Taylor R (1994) North-west velvet worm. Threatened fauna manual for production forests in Tasmania (pp. 167–171).Google Scholar
  26. Jukes, T. H., & Cantor, C. R. (1969). Evolution of protein molecules. In H. N. Munro (Ed.), Mammalian protein metabolism (pp. 21–132). New York: Academic Press.CrossRefGoogle Scholar
  27. Katoh, K., Kuma, K., Toh, H., & Miyata, T. (2005). MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Research, 33, 511–518.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120.CrossRefPubMedGoogle Scholar
  29. Mayer, G. (2007). Metaperipatus inae sp. nov. (Onychophora: Peripatopsidae) from Chile with a novel ovarian type and dermal insemination. Zootaxa, 1440, 21–37.CrossRefGoogle Scholar
  30. Mayer, G., Franke, F. A., Treffkorn, S., Gross, V., & Oliveira, I. S. (2015). Onychophora. In A. Wanninger (Ed.), Evolutionary developmental biology of invertebrates (pp. 53–98). Berlin: Springer.CrossRefGoogle Scholar
  31. McDonald, D. E., Ruhberg, H., & Daniels, S. (2012). Two new Peripatopsis species (Onychophora: Peripatopsidae) from the western cape province, South Africa. Zootaxa, 3380, 55–68.Google Scholar
  32. Mesibov, R., & Ruhberg, H. (1991). Ecology and conservation of Tasmanipatus barretti and T. anopthalmus, parapatric onychophorans (Onychophora: Peripatopsidae) from northeastern Tasmania. Papers and Proceedings of the Royal Society of Tasmania, 125, 11–16.Google Scholar
  33. Murienne, J., Daniels, S., Buckley, T. R., Mayer, G., & Giribet, G. (2014). A living fossil tale of Pangean biogeography. Proceedings of the Royal Society B: Biological Sciences, 281, 20132648.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Oliveira, I. S., Wieloch, A. H., & Mayer, G. (2010). Revised taxonomy and redescription of two species of the Peripatidae (Onychophora) from Brazil: a step towards consistent terminology of morphological characters. Zootaxa, 2493, 16–34.Google Scholar
  35. Oliveira, I. S., Read, V. M. S. J., & Mayer, G. (2012a). A world checklist of Onychophora (velvet worms), with notes on nomenclature and status of names. ZooKeys, 211, 1–70.CrossRefGoogle Scholar
  36. Oliveira, I. S., Franke, F. A., Hering, L., Schaffer, S., Rowell, D. M., Weck-Heimann, A., Monge-Nájera, J., Morera-Brenes, B., & Mayer, G. (2012b). Unexplored character diversity in Onychophora (velvet worms): a comparative study of three peripatid species. PloS One, 7, 1–20.Google Scholar
  37. Oliveira, I. S., & Mayer, G. (2013). Apodemes associated with limbs support serial homology of claws and jaws in Onychophora (velvet worms). Journal of Morphology, 274, 1180–1190.CrossRefGoogle Scholar
  38. Oliveira, I. S., Schaffer, S., Kvartalnov, P. V., Galoyan, E. A., Palko, I. V., Weck-Heimann, A., Geissler, P., Ruhberg, H., & Mayer, G. (2013). A new species of Eoperipatus (Onychophora) from Vietnam reveals novel morphological characters for the south-east Asian Peripatidae. Zoologischer Anzeiger, 252, 495–510.CrossRefGoogle Scholar
  39. Oliveira, I. S., Lüter, C., Wolf, K. W., & Mayer, G. (2014). Evolutionary changes in the integument of the onychophoran Plicatoperipatus jamaicensis (Peripatidae). Invertebrate Biology, 133, 274–280.CrossRefGoogle Scholar
  40. Oliveira, I. S., Lacorte, G. A., Weck-Heimann, A., Cordeiro, L. M., Wieloch, A. H., & Mayer, G. (2015). A new and critically endangered species and genus of Onychophora (Peripatidae) from the Brazilian savannah — a vulnerable biodiversity hotspot. Systematics and Biodiversity, 13, 211–233.CrossRefGoogle Scholar
  41. Oliveira, I. S., Bai, M., Jahn, H., Gross, V., Martin, C., Hammel, J. U., Zhang, W., & Mayer, G. (2016). Earliest onychophoran in amber reveals gondwanan migration patterns. Current Biology, 26, 2594–2601.CrossRefPubMedGoogle Scholar
  42. Paradis, E., Claude, J., & Strimmer, K. (2004). APE: analyses of Phylogenetics and evolution in R language. Bioinformatics (Oxford), 20, 289–290.CrossRefGoogle Scholar
  43. Reid, A. L. (1996). Review of the Peripatopsidae (Onychophora) in Australia, with comments on peripatopsid relationships. Invertebrate Taxonomy, 10, 663–936.CrossRefGoogle Scholar
  44. Reid, A. L. (2000). Descriptions of Lathropatus nemorum, gen. Et sp. nov., and six new Ooperipatus Dendy (Onychophora: Peripatopsidae) from South-Eastern Australia. Proceedings of the Royal Society of Victoria, 112, 153–184.Google Scholar
  45. Robson, E. A., Lockwood, A. P. M., & Ralph, R. (1966). Composition of the blood in Onychophora. Nature, 209, 533.CrossRefGoogle Scholar
  46. Rowell, D. M., Higgins, A. V., Briscoe, A. V., & Tait, N. N. (1995). The use of chromosomal data in the systematics of viviparous onychophorans from Australia (Onychophora: Peripatopsidae). Zoological Journal of the Linnean Society, 114, 139–153.CrossRefGoogle Scholar
  47. Rowell, D. M., Lim, S. L., & Grutzner, F. (2011). Chromosome analysis in invertebrates and vertebrates. In V. Orgogozo & M. V. Rockman (Eds.), Molecular methods for evolutionary genetics (pp. 13–35). New York: Humana Press.Google Scholar
  48. Rowell, D. M., Rockman, M. V., & Tait, N. N. (2002). Extensive Robertsonian rearrangement: implications for the radiation and biogeography of Planipapillus Reid (Onychophora: Peripatopsidae). Journal of Zoology, 257, 171–179.CrossRefGoogle Scholar
  49. Ruhberg, H. (1985). Die Peripatopsidae (Onychophora). Systematik, Ökologie, Chorologie und phylogenetische Aspekte. Zoologica, 137, 1–183.Google Scholar
  50. Ruhberg, H., & Mesibov, R. (1996). Some observations on the onychophoran fauna of Tasmania. Acta Myriapodologica, 169, 139–150.Google Scholar
  51. Ruhberg, H., Mesibov, R., Briscoe, D. A., & Tait, N. N. (1991). Tasmanipatus barretti gen. Nov., sp. nov. and T. anophthalmus sp. nov.: two new and unusual onychophorans (Onychophora: Peripatopsidae) from northeastern Tasmania. Papers and Proceedings of the Royal Society of Tasmania, 125, 7–10.Google Scholar
  52. Sakamoto Y, Zacaro AA (2009) Levan tutorial - step by step. Viçosa.Google Scholar
  53. Spencer, B. (1909). Description of a new species of Peripatoides from West Australia. Proceedings of the Royal Society of Victoria, 21, 420–422.Google Scholar
  54. Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics (Oxford), 30, 1312–1313.CrossRefGoogle Scholar
  55. Storch, V., & Ruhberg, H. (1977). Fine structure of the sensilla of Peripatopsis moseleyi (Onychophora). Cell & Tissue Research, 177, 539–553.CrossRefGoogle Scholar
  56. Storch, V., & Ruhberg, H. (1993). Onychophora. In F. W. Harrison & M. E. Rice (Eds.), Microscopic anatomy of invertebrates (pp. 11–56). New York: Wiley-Liss.Google Scholar
  57. Tamura, K., & Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10, 512–526.PubMedGoogle Scholar
  58. Wood-Mason, J. (1879). Morphological notes bearing on the origin of insects. Transactions of the Entomological Society of London, 2, 145–167.Google Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2017

Authors and Affiliations

  1. 1.Department of Zoology, Institute of BiologyUniversity of KasselKasselGermany
  2. 2.Departamento de Zoologia, Instituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations