Organisms Diversity & Evolution

, Volume 17, Issue 2, pp 421–445 | Cite as

From Eastern Arc Mountains to extreme sexual dimorphism: systematics of the enigmatic assassin bug genus Xenocaucus (Hemiptera: Reduviidae: Tribelocephalinae)

  • C. Weirauch
  • M. Forthman
  • V. Grebennikov
  • P. Baňař
Original Article

Abstract

The Eastern Arc Mountains (EAM) have long been recognized as an area of extraordinary endemic biodiversity but have remained understudied compared to other biodiversity hotspots. The tribelocephaline assassin bug genus Xenocaucus China & Usinger, 1949, currently comprises two species known from the Uluguru Mountains of the EAM and Bioko Island in the Gulf of Guinea. Both species are based on single apterous and apparently eyeless female specimens. Based on collections resulting from extensive leaf litter sampling in Tanzania and Ethiopia, we here describe six new species, five based on females (Xenocaucus chomensis, n. sp., Xenocaucus kimbozensis, n. sp., Xenocaucus nguru, n. sp., Xenocaucus rubeho, n. sp., and Xenocaucus uluguru, n. sp.) and Xenocaucus ethiopiensis, n. sp., for which we discovered a macropterous male with well-developed eyes in addition to the apterous females. Molecular phylogenetic analyses indicate that Xenocaucus ethiopiensis, n. sp., is the sister taxon to the Tanzanian clade and support morphology-based species concepts. Divergence dating shows that diversification in the Tanzanian clade started ∼15 mya, with the youngest species-level split occurring ∼8 mya. Three species occur across multiple mountain ranges in the EAM or occur also on Mt. Hanang, and biogeographic analyses suggest a complex history of Xenocaucus in East Africa.

Keywords

Phylogeny Biogeography Divergence dating Tropical montane forest Biodiversity Afrotropical region 

Supplementary material

13127_2016_314_MOESM1_ESM.xlsx (12 kb)
Online Resource 1.Uncorrected pairwise distances for the D2 region of 28S rDNA for species of Xenocaucus; the male of X. ethiopiensis is selected as the reference taxon (XLSX 12 kb)
13127_2016_314_MOESM2_ESM.jpg (232 kb)
Online Resource 2.Divergence dates based on the BEAST2 analysis showing 95% HPDs (JPEG 231 kb)
13127_2016_314_MOESM3_ESM.pptx (9.3 mb)
Online Resource 3.Alternative biogeographic reconstructions for Xenocaucus using BioGeoBEARS and RASP DIVA (PPTX 9525 kb)

References

  1. Axelrod, D. I., & Raven, P. H. (1978). Late Cretaceous and Tertiary vegetation history of Africa. In M. J. A. Werger (Ed.), Biogeography and ecology of Southern Africa (pp. 77–130). Netherlands: Springer http://link.springer.com/chapter/10.1007/978-94-009-9951-0_5. Accessed 12 May 2016.CrossRefGoogle Scholar
  2. Beresford, P., Fjeldså, J., & Kiure, J. (2004). A new species of akalat (sheppardia) narrowly endemic in the eastern arc of Tanzania. The Auk, 121(1), 23–34. doi:10.1642/0004-8038(2004)121[0023:ANSOAS]2.0.CO;2.CrossRefGoogle Scholar
  3. Blackburn, D. C., & Measey, G. J. (2009). Dispersal to or from an African biodiversity hotspot? Molecular Ecology, 18(9), 1904–1915. doi:10.1111/j.1365-294X.2009.04156.x.CrossRefPubMedGoogle Scholar
  4. Bocák, L., Grebennikov, V. V., & Sklenarova, K. (2014). Cautires apterus, a new species and the first record of wingless male Lycidae (Coleoptera) discovered in the North Pare Mountains, Tanzania. Annales Zoologici, 64(1), 1–7. doi:10.3161/000345414X680500.CrossRefGoogle Scholar
  5. Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.-H., Xie, D., et al. (2014). BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 10(4), e1003537. doi:10.1371/journal.pcbi.1003537.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bowie, R. C., Fjeldså, J., Hackett, S. J., Crowe, T. M., & Fleischer, R. C. (2004). Systematics and biogeography of double-collared sunbirds from the Eastern Arc Mountains, Tanzania. The Auk, 121(3), 660–681.CrossRefGoogle Scholar
  7. Bowie, R. C. K., Fjeldså, J., Hackett, S. J., Bates, J. M., & Crowe, T. M. (2006). Coalescent models reveal the relative roles of ancestral polymorphism, vicariance, and dispersal in shaping phylogeographical structure of an African montane forest robin. Molecular Phylogenetics and Evolution, 38(1), 171–188. doi:10.1016/j.ympev.2005.06.001.CrossRefPubMedGoogle Scholar
  8. Burgess, N. D., Butynski, T. M., Cordeiro, N. J., Doggart, N. H., Fjeldsa, J., Howell, K. M., et al. (2007). The biological importance of the Eastern Arc Mountains of Tanzania and Kenya. Biological Conservation, 134(2), 209–231.CrossRefGoogle Scholar
  9. China, W. E., & Usinger, R. L. (1949). A new genus of Tribelocephalinae from Fernando Poo (Hemiptera Reduviidae). Annali del Museo Civico di Storia Naturale di Genova, 64, 43–47.Google Scholar
  10. Couvreur, T. L., Chatrou, L. W., Sosef, M. S., & Richardson, J. E. (2008). Molecular phylogenetics reveal multiple tertiary vicariance origins of the African rain forest trees. BMC Biology, 6, 54. doi:10.1186/1741-7007-6-54.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Davis, A. L. V., Scholtz, C. H., & Harrison, J. D. G. (2001). Cladistic, phenetic and biogeographical analysis of the flightless dung beetle genus, Gyronotus van Lansberge (Scarabaeidae: Scarabaeinae), in threatened eastern Afrotropical forests. Journal of Natural History, 35(11), 1607–1625. doi:10.1080/002229301317092351.CrossRefGoogle Scholar
  12. Davis, C. C., Bell, C. D., Fritsch, P. W., & Mathews, S. (2002). Phylogeny of Acridocarpus-Brachylophon (Malpighiaceae): implications for tertiary tropical floras and Afroasian biogeography. Evolution; International Journal of Organic Evolution, 56(12), 2395–2405.CrossRefPubMedGoogle Scholar
  13. Dimitrov, D., Nogués-Bravo, D., & Scharff, N. (2012). Why do tropical mountains support exceptionally high biodiversity? The Eastern Arc mountains and the drivers of Saintpaulia diversity. PloS One, 7(11), e48908. doi:10.1371/journal.pone.0048908.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fjeldså, J., & Bowie, R. C. K. (2008). New perspectives on the origin and diversification of Africa’s forest avifauna. African Journal of Ecology, 46(3), 235–247. doi:10.1111/j.1365-2028.2008.00992.x.CrossRefGoogle Scholar
  15. Forero, D., Berniker, L., & Weirauch, C. (2013). Phylogeny and character evolution in the bee-assassins (Insecta: Heteroptera: Reduviidae). Molecular Phylogenetics and Evolution, 66(1), 283–302. doi:10.1016/j.ympev.2012.10.002.CrossRefPubMedGoogle Scholar
  16. Forthman, M., & Weirauch, C. (2016). Phylogenetics and biogeography of the endemic Madagascan millipede assassin bugs (Hemiptera: Reduviidae: Ectrichodiinae). Molecular Phylogenetics and Evolution, 100, 219–233.CrossRefPubMedGoogle Scholar
  17. Forthman, M., Chłond, D., & Weirauch, C. (2016). Taxonomic monograph of the endemic millipede assassin bug fauna of Madagascar (Hemiptera: Reduviidae: Ectrichodiinae). Bulletin of the American Museum of Natural History, 400, 1–152. doi:10.1206/amnb-928-00-01.1.CrossRefGoogle Scholar
  18. Gizaw, A., Brochmann, C., Nemomissa, S., Wondimu, T., Masao, C. A., Tusiime, F. M., et al. (2016). Colonization and diversification in the African “sky islands”: insights from fossil-calibrated molecular dating of Lychnis (Caryophyllaceae). The New Phytologist, 211(2), 719–734. doi:10.1111/nph.13937.CrossRefPubMedGoogle Scholar
  19. Gordon, E. R. L., & Weirauch, C. (2016). Efficient capture of natural history data reveals prey conservatism of cryptic termite predators. Molecular Phylogenetics and Evolution, 94(Pt A), 65–73. doi:10.1016/j.ympev.2015.08.015.CrossRefPubMedGoogle Scholar
  20. Gravlund, P. (2002). Molecular phylogeny of Tornier’s cat snake (Crotaphopeltis tornieri), endemic to East African mountain forests: biogeography, vicariance events and problematic species boundaries. Journal of Zoological Systematics and Evolutionary Research, 40, 46–56.CrossRefGoogle Scholar
  21. Grebennikov, V. V. (2015). Wingless Paocryptorrhinus (Coleoptera: Curculionidae) rediscovered in Tanzania: synonymy, four new species and a mtdnA phylogeography. Bonn zoological Bulletin, 64, 1–15.Google Scholar
  22. Hemp, C., Heller, K.-G., Warchalowska-Sliwa, E., & Hemp, A. (2013). The genus Aerotegmina (Orthoptera, Tettigoniidae, Hexacentrinae): chromosomes, morphological relations, phylogeographical patterns and description of a new species. Organisms Diversity & Evolution, 13(4), 521–530. doi:10.1007/s13127-013-0133-7.CrossRefGoogle Scholar
  23. Hemp, C., Heller, K.-G., Warchałowska-Śliwa, E., Grzywacz, B., & Hemp, A. (2014). Ecology, acoustics and chromosomes of the East African genus Afroanthracites Hemp & Ingrisch (Orthoptera, Tettigoniidae, Conocephalinae, Agraeciini) with the description of new species. Organisms Diversity & Evolution, 15(2), 351–368. doi:10.1007/s13127-014-0194-2.CrossRefGoogle Scholar
  24. Hwang, W. S., & Weirauch, C. (2012). Evolutionary history of assassin bugs (Insecta: Hemiptera: Reduviidae): insights from divergence dating and ancestral state reconstruction. PloS One, 7(9), e45523. doi:10.1371/journal.pone.0045523.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Ishikawa, T., Cai, W., & Tomokuni, M. (2015). The assassin bug subfamily Tribelocephalinae (Hemiptera: Heteroptera: Reduviidae) from Japan, with descriptions of eight new species in the genera Opistoplatys and Abelocephala. Zootaxa, 3936(2), 151–180.CrossRefPubMedGoogle Scholar
  26. Jacobs, B. F., Kingston, J. D., & Jacobs, L. L. (1999). The origin of grass-dominated ecosystems. Annals of the Missouri Botanical Garden, 86(2), 590–643. doi:10.2307/2666186.CrossRefGoogle Scholar
  27. Jeannel, R. (1919). Insectes Hemipteres, iii. Henicocephalidae et Reduviidae. In: Voyage de Ch. Alluaud et R. Jeannel en Africa Orientale (1911–1912) (Vol. Insectes Hemipteres, 3, pp. 133–313). Paris.Google Scholar
  28. Jon Fjeldså, J. K. (2010). Distribution of highland forest birds across a potential dispersal barrier in the Eastern Arc Mountains of Tanzania. Steenstrupia, 32(1), 1–43.Google Scholar
  29. Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30(4), 772–780. doi:10.1093/molbev/mst010.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Lawson, L. P. (2010). The discordance of diversification: evolution in the tropical-montane frogs of the Eastern Arc Mountains of Tanzania. Molecular Ecology, 19(18), 4046–4060.CrossRefPubMedGoogle Scholar
  31. Loader, S. P., Sara Ceccarelli, F., Menegon, M., Howell, K. M., Kassahun, R., Mengistu, A. A., et al. (2014). Persistence and stability of Eastern Afromontane forests: evidence from brevicipitid frogs. Journal of Biogeography, 41(9), 1781–1792. doi:10.1111/jbi.12331.CrossRefGoogle Scholar
  32. Loader, S. P., Lawson, L. P., Portik, D. M., & Menegon, M. (2015). Three new species of spiny throated reed frogs (Anura: Hyperoliidae) from evergreen forests of Tanzania. BMC Research Notes, 8, 167. doi:10.1186/s13104-015-1050-y.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lovett, J. C., Wasser, S. K., et al. (2008). Biogeography and ecology of the rain forests of eastern Africa. Cambridge: Cambridge University Press http://www.cabdirect.org/abstracts/20093194721.html. Accessed 24 August 2015.Google Scholar
  34. Lovett, J. C., Marchant, R., Taplin, J., & Kuper, W. (2005). The oldest rainforests in Africa: stability or resilience for survival and diversity? In J. L. Gittleman (Ed.), Phylogeny and conservation. Cambridge: Cambridge University Press. doi:10.1017/CBO9780511614927.009.Google Scholar
  35. Maldonado, J. (1990). Systematic catalogue of the Reduviidae of the World. Mayagüez: Caribbean Journal of Science, Special publication No. 1, University of Puerto Rico.Google Scholar
  36. Maldonado, J. (1996). New taxa and key to the tribes and genera in Tribelocephalinae Stål 1866 (Heteroptera: Reduviidae). Proceedings of the Entomological Society of Washington, 98(1), 138–144.Google Scholar
  37. Marshall, S. A. (2014). A review of the Afrotropical genus Aristobatina Verbeke (Diptera: Micropezidae: Taeniapterinae), with descriptions of four new species from the Eastern Arc Mountains of Tanzania. African Invertebrates, 55(1), 143–155. doi:10.5733/afin.055.0108.CrossRefGoogle Scholar
  38. Matzke, N. J. (2014). Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades. Systematic Biology, 63, 951–970. doi:10.1093/sysbio/syu056.CrossRefPubMedGoogle Scholar
  39. Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853–858.CrossRefPubMedGoogle Scholar
  40. Pócs, T. (1998). Bryophyte diversity along the eastern arc. Journal of East African Natural History, 87(1), 75–84. doi:10.2982/0012-8317(1998)87[75:BDATEA]2.0.CO;2.CrossRefGoogle Scholar
  41. Rédei, D. (2007). A new genus of tribelocephaline assassin bugs from Borneo (Hemiptera: Heteroptera: Reduviidae). Zootaxa, 1465, 47–53.Google Scholar
  42. Ronquist, F. (1997). Dispersal-vicariance analysis: a new approach to the quantification of historical biogeography. Systematic Biology, 46(1), 195–203. doi:10.1093/sysbio/46.1.195.CrossRefGoogle Scholar
  43. Roy, M. S. (1997). Recent diversification in African greenbuls (Pycnonotidae: Andropadus) supports a montane speciation model. Proceedings of the Royal Society B: Biological Sciences, 264(1386), 1337–1344. doi:10.1098/rspb.1997.0185.CrossRefPubMedCentralGoogle Scholar
  44. Schuh, R. T., & Slater, J. A. (1995). True bugs of the world (Hemiptera: Heteroptera): classification and natural history. In: True bugs of the world (p. i–xii, 1–336). Comstock Publishing Associates, Cornell University Press. ://ZOOREC:ZOOR13200000618.Google Scholar
  45. Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312–1313. doi:10.1093/bioinformatics/btu033.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Štys, P., & Baňař, P. (2013). Eastern Arc Mountains in Tanzania: Hic sunt Aenictopecheidae. The first genus and species of Afrotropical Aenictopecheidae (Hemiptera: Heteroptera: Enicocephalomorpha). European Journal of Entomology, 110(4), 677–688. doi:10.14411/eje.2013.091.CrossRefGoogle Scholar
  47. Vaidya, G., Lohman, D. J., & Meier, R. (2011). SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics, 27(2), 171–180. doi:10.1111/j.1096-0031.2010.00329.x.CrossRefGoogle Scholar
  48. Villiers, A. (1943). Morphologie et systématic des Tribelocephalitae africains. Revue Francaise d’Entomologie, 10, 1–28.Google Scholar
  49. Villiers, A. (1948). Hemipteres Re-duviides de l’Afrique Noire. Faune de l’Empire Francais, 9, 1–488.Google Scholar
  50. Villiers, A. (1960). Hemiptera Reduviidae Tribelocephalinae et Emesinae. Mission zoologique de l’I.R.S.A.C. en Afrique orientale (P. Basilewsky et N. Leleup, 1957). Annales du Musee du Congo Belge Tervuren Ser 8vo Sci Zool, 81, 453–458.Google Scholar
  51. Weirauch, C. (2008). Cladistic analysis of Reduviidae (Heteroptera: Cimicomorpha) based on morphological characters. Systematic Entomology, 33(2), 229–274. doi:10.1111/j.1365-.CrossRefGoogle Scholar
  52. Weirauch, C. (2010). Tribelocodia ashei, new genus and new species of Reduviidae (Insecta: Hemiptera), has implications on character evolution in Ectrichodiinae and Tribelocephalinae. Insect Systematics & Evolution, 41, 103–122.CrossRefGoogle Scholar
  53. Weirauch, C., & Munro, J. B. (2009). Molecular phylogeny of the assassin bugs (Hemiptera: Reduviidae), based on mitochondrial and nuclear ribosomal genes. Molecular Phylogenetics and Evolution, 53(1), 287–299. doi:10.1016/j.ympev.2009.05.039.CrossRefPubMedGoogle Scholar
  54. Weirauch, C., Bérenger, J. M., Berniker, L., Forero, D., Forthman, M., Frankenberg, S., et al. (2014). An illustrated identification key to assassin bug subfamilies and tribes (Hemiptera: Reduviidae). Canadian Journal of Arthropod Identification, 26, 1–115.Google Scholar
  55. Wygodzinsky, P. (1966). A monograph of the Emesinae (Reduviidae, Hemiptera). Bulletin of the American Museum of Natural History, 133, 1–614.Google Scholar
  56. Yessoufou, K., Daru, B. H., & Davies, T. J. (2012). Phylogenetic patterns of extinction risk in the eastern arc ecosystems, an African biodiversity hotspot. PloS One, 7(10), e47082. doi:10.1371/journal.pone.0047082.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Yu, Y., Harris, A. J., Blair, C., & He, X. (2015). RASP (reconstruct ancestral state in phylogenies): a tool for historical biogeography. Molecular Phylogenetics and Evolution, 87, 46–49. doi:10.1016/j.ympev.2015.03.008.CrossRefPubMedGoogle Scholar
  58. Zhang, G., & Weirauch, C. (2011). Matching dimorphic sexes and immature stages with adults: resolving the systematics of the Bekilya group of Malagasy assassin bugs (Hemiptera: Reduviidae: Peiratinae). Systematic Entomology, 36(1), 115–138. doi:10.1111/j.1365-3113.2010.00551.x.CrossRefGoogle Scholar
  59. Zhang, J., Weirauch, C., Zhang, G., & Forero, D. (2015). Molecular phylogeny of Harpactorinae and Bactrodinae uncovers complex evolution of sticky trap predation in assassin bugs (Heteroptera: Reduviidae). Cladistics. doi:10.1111/cla.12140.Google Scholar
  60. Trauth, M. H., Larrasoana, J. C., & Mudelsee, M. (2009). Trends, rhythms, and events, in Plio-Pleistocene African climate. Quaternary Science Reviews, 28, 399–411.Google Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2016

Authors and Affiliations

  1. 1.Department of EntomologyUniversity of CaliforniaRiversideUSA
  2. 2.Entomology and Nematology DepartmentUniversity of FloridaGainesvilleUSA
  3. 3.Canadian Food Inspection AgencyOttawaCanada
  4. 4.Department of EntomologyMoravian MuseumBrnoCzech Republic

Personalised recommendations