Skip to main content

Advertisement

Log in

Regional differentiation of felid vertebral column evolution: a study of 3D shape trajectories

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

Recent advances in geometric morphometrics provide improved techniques for extraction of biological information from shape and have greatly contributed to the study of ecomorphology and morphological evolution. However, the vertebral column remains an under-studied structure due in part to a concentration on skull and limb research, but most importantly because of the difficulties in analysing the shape of a structure composed of multiple articulating discrete units (i.e. vertebrae). Here, we have applied a variety of geometric morphometric analyses to three-dimensional landmarks collected on 19 presacral vertebrae to investigate the influence of potential ecological and functional drivers, such as size, locomotion and prey size specialisation, on regional morphology of the vertebral column in the mammalian family Felidae. In particular, we have here provided a novel application of a method—phenotypic trajectory analysis (PTA)—that allows for shape analysis of a contiguous sequence of vertebrae as functionally linked osteological structures. Our results showed that ecological factors influence the shape of the vertebral column heterogeneously and that distinct vertebral sections may be under different selection pressures. While anterior presacral vertebrae may either have evolved under stronger phylogenetic constraints or are ecologically conservative, posterior presacral vertebrae, specifically in the post-T10 region, show significant differentiation among ecomorphs. Additionally, our PTA results demonstrated that functional vertebral regions differ among felid ecomorphs mainly in the relative covariation of vertebral shape variables (i.e. direction of trajectories, rather than in trajectory size) and, therefore, that ecological divergence among felid species is reflected by morphological changes in vertebral column shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams, D. C. (2014a). A generalized K statistic for estimating phylogenetic signal from shape and other high-dimensional multivariate data. Systematic Biology, 63(5), 685–697. doi:10.1093/sysbio/syu030.

    Article  PubMed  Google Scholar 

  • Adams, D. C. (2014b). A method for assessing phylogenetic least squares models for shape and other high-dimensional multivariate data. Evolution, 68(9), 2675–2688. doi:10.1111/evo.12463.

    Article  PubMed  Google Scholar 

  • Adams, D. C., & Collyer, M. L. (2007). Analysis of character divergence along environmental gradients and other covariates. Evolution, 61(3), 510–515. doi:10.1111/j.1558-5646.2007.00063.x.

    Article  PubMed  Google Scholar 

  • Adams, D. C., & Collyer, M. L. (2009). A general framework for the analysis of phenotypic trajectories in evolutionary studies. Evolution, 63(5), 1143–1154. doi:10.1111/j.1558-5646.2009.00649.x.

    Article  PubMed  Google Scholar 

  • Adams, D. C., & Collyer, M. L. (2015). Permutation tests for phylogenetic comparative analyses of high-dimensional shape data: what you shuffle matters. Evolution and Development, 69(3), 823–829. doi:10.1111/evo.12596.

    Article  Google Scholar 

  • Adams, D. C., & Nistri, A. (2010). Ontogenetic convergence and evolution of foot morphology in European cave salamanders (Family: Plethodontidae). BMC Evolutionary Biology, 10, 216. doi:10.1186/1471-2148-10-216.

    Article  PubMed  PubMed Central  Google Scholar 

  • Adams, D. C., & Otarola-Castillo, E. (2013). geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods in Ecology and Evolution, 4, 393–399.

    Article  Google Scholar 

  • Adams, D. C., Rohlf, F. J., & Slice, D. E. (2013). A field comes of age: geometric morphometrics in the 21st century. Hystrix, 24(1), 1-10.

  • Adams, D. S., Collyer, M., & Sherrat, E. (2015). geomorph: software for geometric morphometric analyses. R package version 2.1.x. (2.1.x ed.).

  • Alvarez, A., Ercoli, M. D., & Prevosti, F. J. (2013). Locomotion in some small to medium-sized mammals: a geometric morphometric analysis of the penultimate lumbar vertebra, pelvis and hindlimbs. Zoology (Jena, Germany), 116(6), 356–371. doi:10.1016/j.zool.2013.08.007.

    Article  Google Scholar 

  • Andersson, K., & Werdelin, L. (2003). The evolution of cursorial carnivores in the Tertiary: implications of elbow-joint morphology. Proceedings of Royal Society of London B, 270(Suppl 2), S163–S165. doi:10.1098/rsbl.2003.0070.

    Article  Google Scholar 

  • Arnold, P., Forterre, F., Lang, J., & Fischer, M. S. (2016). Morphological disparity, conservatism, and integration in the canine lower cervical spine: insights into mammalian neck function and regionalization. Mammalian Biology, 81(2), 153–162. doi:10.1016/j.mambio.2015.09.004.

    Google Scholar 

  • Bell, E., Andres, B., & Goswami, A. (2011). Integration and dissociation of limb elements in flying vertebrates: a comparison of pterosaurs, birds and bats. Journal of Evolutionary Biology, 24(12), 2586–2599. doi:10.1111/j.1420-9101.2011.02381.x.

    Article  CAS  PubMed  Google Scholar 

  • Bennett, V. C., & Goswami, A. (2011). Does developmental strategy drive limb integration in marsupials and monotremes? Mammalian Biology, 76(1), 79–83. doi:10.1016/j.mambio.2010.01.004.

    Google Scholar 

  • Benoit, M. H. (2010). What’s the difference? A multiphasic allometric analysis of fossil and living lions. In A. Goswami & A. Friscia (Eds.), Carnivoran evolution: new views on phylogeny, form and function (pp. 165–188). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Böhmer, C., Rauhut, O. W., & Wörheide, G. (2015). Correlation between Hox code and vertebral morphology in archosaurs. Proceedings of the Royal Society B, 282(1810), doi:10.1098/rspb.2015.0077.

  • Boszczyk, B. M., Boszczyk, A. A., & Putz, R. (2001). Comparative and functional anatomy of the mammalian lumbar spine. Anatomical Records, 264, 157–168.

    Article  CAS  Google Scholar 

  • Breit, S., & Künzel, W. (2004). A morphometric investigation on breed‐specific features affecting sagittal rotational and lateral bending mobility in the canine cervical spine (C3–C7). Anatomia, Histologia, Embryologia, 33(4), 244–250.

    Article  CAS  PubMed  Google Scholar 

  • Buchholtz, E. A. (2001a). Swimming styles in Jurassic ichthyosaurs. Journal of Vertebrate Paleontology, 21, 61–73.

    Article  Google Scholar 

  • Buchholtz, E. A. (2001b). Vertebral osteology and swimming style in living and fossil whales (Order: Cetacea). Journal of Zoology, 253, 175–190.

    Article  Google Scholar 

  • Buchholtz, E. A. (2014). Crossing the frontier: a hypothesis for the origins of meristic constraint in mammalian axial patterning. Zoology (Jena, Germany), 117(1), 64–69. doi:10.1016/j.zool.2013.09.001.

    Article  Google Scholar 

  • Buchholtz, E. A., Bailin, H. G., Laves, S. A., Yang, J. T., Chan, M. Y., & Drozd, L. E. (2012). Fixed cervical count and the origin of the mammalian diaphragm. Evolution and Development, 14(5), 399–411. doi:10.1111/j.1525-142X.2012.00560.x.

    Article  PubMed  Google Scholar 

  • Buchholtz, E. A., Wayrynen, K. L., & Lin, I. W. (2014). Breaking constraint: axial patterning in Trichechus (Mammalia: Sirenia). Evolution and Development, 16(6), 382–393.

    Article  PubMed  Google Scholar 

  • Carbone, C., Mace, G. M., Roberts, S. C., & Macdonald, D. W. (1999). Energetic constraints on the diet of terrestrial carnivores. Nature, 402, 286–288.

    Article  CAS  PubMed  Google Scholar 

  • Carbone, C., Teacher, A., & Rowcliffe, J. M. (2007). The costs of carnivory. PLoS Biology, 5(2), e22. doi:10.1371/journal.pbio.0050022.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cardini, A., & Loy, A. (2013). On growth and form in the “computer area”: from geometric to biological morphometrics. Hystrix, 24(1), 1–5. doi:10.4404/hystrix-24.1-8749.

    Google Scholar 

  • Chatzigianni, A., & Halazonetis, D. J. (2009). Geometric morphometric evaluation of cervical vertebrae shape and its relationship to skeletal maturation. American Journal of Orthodontics and Dentofacial Orthopedics, 136(4), 481.e481–481.e489.

    Google Scholar 

  • Chen, X., Milne, N., & O’Higgins, P. (2005). Morphological variation of the thoracolumbar vertebrae in Macropodidae and its functional relevance. Journal of Morphology, 266(2), 167–181.

    Article  PubMed  Google Scholar 

  • Collyer, M. L., & Adams, D. C. (2013). Phenotypic trajectory analysis: comparison of shape change patterns in evolution and ecology. Hystrix, 24(1), 75–83. doi:10.4404/hystrix-24.1-6298.

    Google Scholar 

  • Collyer, M. L., Sekora, D. J., & Adams, D. C. (2014). A method for analysis of phenotypic change for phenotypes described by high-dimensional data. Heredity. doi:10.1038/hdy.2014.75.

    PubMed  PubMed Central  Google Scholar 

  • Cuff, A. R., Sparkes, E. L., Randau, M., Pierce, S. E., Kitchener, A. C., Goswami, A., et al. (2016a). The scaling of postcranial muscles in cats (Felidae) I: forelimb, cervical, and thoracic muscles. Journal of Anatomy, 229(1), 128–141. doi:10.1111/joa.12477.

    Article  PubMed  Google Scholar 

  • Cuff, A. R., Sparkes, E. L., Randau, M., Pierce, S. E., Kitchener, A. C., Goswami, A., et al. (2016b). The scaling of postcranial muscles in cats (Felidae) II: hindlimb and lumbosacral muscles. Journal of Anatomy, 229(1), 142–152. doi:10.1111/joa.12474.

    Article  PubMed  Google Scholar 

  • Davies, T. J., Meiri, S., Barraclough, T. G., & Gittleman, J. L. (2007). Species co-existence and character divergence across carnivores. Ecology Letters, 10(2), 146–152. doi:10.1111/j.1461-0248.2006.01005.x.

    Article  PubMed  Google Scholar 

  • Day, L. M., & Jayne, B. C. (2007). Interspecific scaling of the morphology and posture of the limbs during the locomotion of cats (Felidae). Journal of Experimental Biology, 210(4), 642–654. doi:10.1242/jeb.02703.

    Article  PubMed  Google Scholar 

  • De Iuliis, G., & Pulerà, D. (2006). The cat. In The dissection of vertebrates: a laboratory manual (1st ed., pp. 131–226). Burlington, MA USA: Academic Press.

  • Doube, M., Wiktorowicz-Conroy, A., Christiansen, P., Hutchinson, J. R., & Shefelbine, S. (2009). Three-dimensional geometric analysis of felid limb bone allometry. PloS One, 4(3), e4742. doi:10.1371/journal.pone.0004742.

    Article  PubMed  PubMed Central  Google Scholar 

  • Drake, A. G., & Klingenberg, C. P. (2010). Large-scale diversification of skull shape in domestic dogs: disparity and modularity. The American Natural, 175(3), 289–301. doi:10.1086/650372.

    Article  Google Scholar 

  • Dumont, M., Wall, C. E., Botton-Divet, L., Goswami, A., Peigne, S., & Fabre, A. C. (2015). Do functional demands associated with locomotor habitat, diet, and activity pattern drive skull shape evolution in musteloid carnivorans? Biological Journal of the Linnean Society, 117(4), 858–878. doi:10.1111/bij.12719.

    Article  Google Scholar 

  • Ercoli, M. D., Prevosti, F. J., & ÁLvarez, A. (2012). Form and function within a phylogenetic framework: locomotory habits of extant predators and some Miocene Sparassodonta (Metatheria). Zoological Journal of the Linnean Society, 165(1), 224–251. doi:10.1111/j.1096-3642.2011.00793.x.

    Article  Google Scholar 

  • Fabre, A. C., Cornette, R., Peigne, S., & Goswami, A. (2013). Influence of body mass on the shape of forelimb in musteloid carnivorans. Biological Journal of the Linnean Society, 110(1), 91–103. doi:10.1111/Bij.12103.

    Article  Google Scholar 

  • Fabre, A. C., Cornette, R., Huyghe, K., Andrade, D. V., & Herrel, A. (2014). Linear versus geometric morphometric approaches for the analysis of head shape dimorphism in lizards. Journal of Morphology, 275(9), 1016–1026. doi:10.1002/jmor.20278.

    Article  PubMed  Google Scholar 

  • Felsenstein, J. (1985). Phylogenies and the comparative method. The American Natural, 125(1), 1–15.

    Article  Google Scholar 

  • Figueirido, B., Serrano-Alarcon, F. J., Slater, G. J., & Palmqvist, P. (2010). Shape at the cross-roads: homoplasy and history in the evolution of the carnivoran skull towards herbivory. Journal of Evolutionary Biology, 23(12), 2579–2594. doi:10.1111/j.1420-9101.2010.02117.x.

    Article  CAS  PubMed  Google Scholar 

  • Finch, M., & Freedman, L. (1986). Functional-morphology of the vertebral column of Thylacoleo carnifex Owen (Thylacoleonidae, Marsupialia). Australian Journal of Zoology, 34, 1–16.

    Article  Google Scholar 

  • Foth, C., Brusatte, S. L., & Butler, R. J. (2012). Do different disparity proxies converge on a common signal? Insights from the cranial morphometrics and evolutionary history of Pterosauria (Diapsida: Archosauria). Journal of Evolutionary Biology, 25(5), 904–915. doi:10.1111/j.1420-9101.2012.02479.x.

    Article  CAS  PubMed  Google Scholar 

  • Gál, J. M. (1993). Mammalian spinal biomechanics II. Intervertebral lesion experiments and mechanisms of bending resistance. Journal of Experimental Biology, 174, 281–297.

    Article  PubMed  Google Scholar 

  • Galis, F., Carrier, D. R., van Alphen, J., van der Mije, S. D., Van Dooren, T. J., Metz, J. A., et al. (2014). Fast running restricts evolutionary change of the vertebral column in mammals. Proceedings of the National Academy of Science USA, 111(31), 11401–11406. doi:10.1073/pnas.1401392111.

    Article  CAS  Google Scholar 

  • Garland, T., Jr., Dickerman, A. W., Janis, C. M., & Jones, J. A. (1993). Phylogenetic analysis of covariance by computer simulation. Systematic Biology, 42(3), 265–292.

    Article  Google Scholar 

  • Gonyea, W. J. (1978). Functional implications of felid forelimb anatomy. Acta Anatomica (Basel), 102(2), 111–121.

    Article  CAS  Google Scholar 

  • Goswami, A. (2006). Morphological integration in the carnivoran skull. Evolution, 60(1), 15.

    Article  Google Scholar 

  • Goswami, A., & Polly, P. D. (2010). The influence of character correlations of phylogenetic analyses: a case study of the carnivoran cranium. In A. Goswami & A. Friscia (Eds.), Carnivoran evolution: new views on phylogeny, form, and function (pp. 141–164). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Goswami, A., Polly, P. D., Mock, O. B., & Sanchez-Villagra, M. R. (2012). Shape, variance and integration during craniogenesis: contrasting marsupial and placental mammals. Journal of Evolutionary Biology, 25(5), 862–872. doi:10.1111/j.1420-9101.2012.02477.x.

    Article  CAS  PubMed  Google Scholar 

  • Goswami, A., Smaers, J. B., Soligo, C., & Polly, P. D. (2014). The macroevolutionary consequences of phenotypic integration: from development to deep time. Philosophical Transactions of the Royal Society B, 369(1649), 1–15. doi:10.1098/rstb.2013.0254.

    Article  Google Scholar 

  • Gould, S. J. (1966). Allometry and size in ontogeny and phylogeny. Biological Reviews, 41, 52.

    Article  Google Scholar 

  • Gray, H., Standring, S., Ellis, H., & Berkovitz, B. (2005). Gray’s anatomy: the anatomical basis of clinical practice. (39th ed.). Edinburgh: Churchill Livingstone: Elsevier.

  • Gunz, P., Mitterœcker, P., Neubauer, S., Weber, G. W., & Bookstein, F. L. (2009). Principles for the virtual reconstruction of hominin crania. Journal of Human Evolution, 57, 48–62.

    Article  PubMed  Google Scholar 

  • Harmon, L., Weir, J., Brock, C., Glor, R., Challenger, W., Hunt, G., et al. (2014). Analysis of evolutionary diversification. (2.0.6 ed., pp. Methods for fitting macroevolutionary models to phylogenetic trees.).

  • Head, J. J., & Polly, P. D. (2015). Evolution of the snake body form reveals homoplasy in amniote Hox gene function. Nature, 520(7545), 86–89. doi:10.1038/nature14042.

    Article  CAS  PubMed  Google Scholar 

  • Hildebrand, M. (1959). Motions of the running cheetah and horse. Journal of Mammalogy, 40(4), 481–495.

    Article  Google Scholar 

  • Hua, S. (2003). Locomotion in marine mesosuchians (Crocodylia): the contribution of the ‘locomotion profiles’. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 227, 139–152.

    Google Scholar 

  • Johnson, D. R., McAndrew, T. J., & Oguz, O. (1999). Shape differences in the cervical and upper thoracic vertebrae in rats (Rattus norvegicus) and bats (Pteropus poiocephalus): can we see shape patterns derived from position in column and species membership ? Journal of Anatomy, 194(2), 249–253.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones, K. E. (2015). Evolutionary allometry of the thoracolumbar centra in felids and bovids. Journal of Morphology, 276(7), 818–831. doi:10.1002/jmor.20382.

    Article  PubMed  Google Scholar 

  • Jones, K. E., & German, R. Z. (2014). Ontogenetic allometry in the thoracolumbar spine of mammal species with differing gait use. Evolution and Development, 16(2), 110–120. doi:10.1111/ede.12069.

    Article  PubMed  Google Scholar 

  • Jones, K. E., & Pierce, S. E. (2015). Axial allometry in a neutrally buoyant environment: effects of the terrestrial-aquatic transition on vertebral scaling. Journal of Evolutionary Biology, 29(3), 594–601. doi:10.1111/jeb.12809.

    Article  Google Scholar 

  • Klingenberg, C. P., & Marugán-Lobón, J. (2013). Evolutionary covariation in geometric morphometric data: analyzing integration, modularity, and allometry in a phylogenetic context. Systematic Biology, 62(4), 591–610. doi:10.1093/sysbio/syt025.

    Article  PubMed  Google Scholar 

  • Koob, T. J., & Long, J. H. (2000). The vertebrate body axis: evolution and mechanical function. American Zoologist, 40(1), 1–18. doi:10.1668/0003-1569(2000)040[0001:Tvbaea]2.0.Co;2.

    Google Scholar 

  • Lauder, G. V. (1995). On the inference of function from structure. In J. J. Thomason (Ed.), Functional anatomy of vertebrates: an evolutionary perspective (pp. 11–18). Cambridge: Cambridge University Press.

    Google Scholar 

  • Long, J. H., Jr., Pabst, D. A., Shepherd, W. R., & McLellan, W. A. (1997). Locomotor design of dolphin vertebral columns: bending mechanics and morphology of Delphinus delphis. Journal of Experimental Biology, 200, 65–81.

    PubMed  Google Scholar 

  • Macpherson, J. M., & Fung, J. (1998). Activity of thoracic and lumbar epaxial extensors during postural responses in the cat. Experimental Brain Research, 119(3), 315–323. doi:10.1007/s002210050347.

    Article  CAS  PubMed  Google Scholar 

  • Manfreda, E., Mitterœcker, P., Bookstein, F. L., & Schæfer, K. (2006). Functional morphology of the first cervical vertebra in humans and nonhuman primates. The Anatomical Record, 289B(5), 184–194.

    Article  Google Scholar 

  • Martin-Serra, A., Figueirido, B., & Palmqvist, P. (2014). A three-dimensional analysis of morphological evolution and locomotor performance of the carnivoran forelimb. PloS One, 9(1), e85574. doi:10.1371/journal.pone.0085574.

    Article  PubMed  PubMed Central  Google Scholar 

  • Meachen, J. A., O’Keefe, F. R., & Sadleir, R. W. (2014). Evolution in the sabre-tooth cat, Smilodon fatalis, in response to Pleistocene climate change. Journal of Evolutionary Biology, 27(4), 714–723. doi:10.1111/jeb.12340.

    Article  CAS  PubMed  Google Scholar 

  • Meachen-Samuels, J., & Van Valkenburgh, B. (2009a). Craniodental indicators of prey size preference in the Felidae. Biological Journal of the Linnean Society, 96(4), 784–799. doi:10.1111/j.1095-8312.2008.01169.x.

    Article  Google Scholar 

  • Meachen-Samuels, J., & Van Valkenburgh, B. (2009b). Forelimb indicators of prey-size preference in the Felidae. Journal of Morphology, 270(6), 729–744. doi:10.1002/jmor.10712.

    Article  PubMed  Google Scholar 

  • Mitteroecker, P., & Gunz, P. (2009). Advances in geometric morphometrics. Evolutionary Biology, 36(2), 235–247. doi:10.1007/s11692-009-9055-x.

    Article  Google Scholar 

  • Mitteroecker, P., Gunz, P., Windhager, S., & Schæfer, K. (2013). A brief review of shape, form, and allometry in geometric morphometrics, with applications to human facial morphology. Hystrix, 21(1), 59–66. doi:10.4404/hystrix-24.1-6369.

    Google Scholar 

  • Molnar, J. L., Pierce, S. E., Bhullar, B.-A. S., Turner, A. H., & Hutchinson, J. R. (2015). Morphological and functional changes in the vertebral column with increasing aquatic adaptation in crocodylomorphs. Royal Society Open Science, 2, 1–22. doi:10.1098/rsos.150439.

    Article  CAS  Google Scholar 

  • Monteiro, L. R. (2013). Morphometrics and the comparative method: studying the evolution of biological shape. Hystrix, 24(1), 25–32. doi:10.4404/hystrix-24.1-6282.

    Google Scholar 

  • Müller, J., Scheyer, T. M., Head, J. J., Barrett, P. M., Werneburg, I., Ericson, P. G., et al. (2010). Homeotic effects, somitogenesis and the evolution of vertebral numbers in recent and fossil amniotes. Proceedings of the National Academy of Sciences of the United States of America, 107(5), 2118–2123. doi:10.1073/pnas.0912622107.

    Article  PubMed  PubMed Central  Google Scholar 

  • Narita, Y., & Kuratani, S. (2005). Evolution of the vertebral formulae in mammals: a perspective on developmental constraints. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 304(2), 91–106. doi:10.1002/jez.b.21029.

    Article  Google Scholar 

  • Paradis, E., Claude, J., & Strimmer, K. (2004). APE: analyses of phylogenetics and evolution in R language. Bioinformatics, 20, 289–290. doi:10.1093/bioinformatics/btg412.

    Article  CAS  PubMed  Google Scholar 

  • Pierce, S. E., Angielczyk, K. D., & Rayfield, E. J. (2008). Patterns of morphospace occupation and mechanical performance in extant crocodilian skulls: a combined geometric morphometric and finite element modeling approach. Journal of Morphology, 269(7), 840–864. doi:10.1002/jmor.10627.

    Article  PubMed  Google Scholar 

  • Pierce, S. E., Angielczyk, K. D., & Rayfield, E. J. (2009). Shape and mechanics in thalattosuchian (Crocodylomorpha) skulls: implications for feeding behaviour and niche partitioning. Journal of Anatomy, 215(5), 555–576. doi:10.1111/j.1469-7580.2009.01137.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierce, S. E., Clack, J. A., & Hutchinson, J. R. (2011). Comparative axial morphology in pinnipeds and its correlation with aquatic locomotory behaviour. Journal of Anatomy, 219(4), 502–514. doi:10.1111/j.1469-7580.2011.01406.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piras, P., Maiorino, L., Teresi, L., Meloro, C., Lucci, F., Kotsakis, T., et al. (2013). Bite of the cats: relationships between functional integration and mechanical performance as revealed by mandible geometry. Systematic Biology, 62(6), 878–900. doi:10.1093/sysbio/syt053.

    Article  PubMed  Google Scholar 

  • Polly, P. D., Lawing, A. M., Fabre, A. C., & Goswami, A. (2013). Phylogenetic principal components analysis and geometric morphometrics. Hystrix, 24(1), 33–41. doi:10.4404/hystrix-24.1-6383.

    Google Scholar 

  • R Foundation (2015). The R project for statistical computing. (3.2.3 ed.).

  • Randau, M., Goswami, A., Hutchinson, J. R., Cuff, A. R., & Pierce, S. E. (2016). Cryptic complexity in felid vertebral evolution: shape differentiation and allometry of the axial skeleton. Zoological Journal of the Linnean Society, 178(1), 183–202. doi:10.1111/zoj.12403.

    Article  Google Scholar 

  • Rudwick, M. J. S. (2005). Denizens of a former world. In M. J. S. Rudwick (Ed.), Bursting the limits of time: the reconstruction of geohistory in the age of revolution (pp. 349–416). Chicago: The University of Chicago Press.

    Chapter  Google Scholar 

  • Schilling, N., & Long, J. H., Jr. (2014). Axial systems and their actuation: new twists on the ancient body of craniates. Zoology (Jena, Germany), 117(1), 1–6. doi:10.1016/j.zool.2013.11.002.

    Article  Google Scholar 

  • Sears, K. E., Bianchi, C., Powers, L., & Beck, A. L. (2013). Integration of the mammalian shoulder girdle within populations and over evolutionary time. Journal of Evolutionary Biology, 26(7), 1536–1548. doi:10.1111/jeb.12160.

    Article  CAS  PubMed  Google Scholar 

  • Shapiro, L. (1995). Functional morphology of indrid lumbar vertebrae. American Journal of Physical Anthropology, 98(3), 323–342. doi:10.1002/ajpa.1330980306.

    Article  CAS  PubMed  Google Scholar 

  • Shapiro, L. J. (2007). Morphological and functional differentiation in the lumbar spine of lorisids and galagids. American Journal of Primatology, 69(1), 86–102. doi:10.1002/ajp.20329.

    Article  PubMed  Google Scholar 

  • Sheets, H. D., & Zelditch, M. L. (2013). Studying ontogenetic trajectories using resampling methods and landmark data. Hystrix, 24(1), 67–73. doi:10.4404/hystrix-24.1-6332.

    Google Scholar 

  • Slater, G. J., & Van Valkenburgh, B. (2008). Long in the tooth: evolution of sabertooth cat cranial shape. Paleobiology, 34(3), 403–419. doi:10.1666/07061.1.

    Article  Google Scholar 

  • Smeathers, J. E. (1981). A mechanical analysis of the mammalian lumbar spine. Thesis dissertation. University of Reading

  • Stayton, C. T. (2005). Morphological evolution of the lizard skull: a geometric morphometrics survey. Journal of Morphology, 263(1), 47–59. doi:10.1002/jmor.10288.

    Article  PubMed  Google Scholar 

  • Stayton, C. T. (2006). Testing hypotheses of convergence with multivariate data: morphological and functional convergence among herbivorous lizards. Evolution, 60(4), 824–841. doi:10.1554/04-575.1.s1.

    Article  PubMed  Google Scholar 

  • Sunquist, M., & Sunquist, F. (2002). Wild cats of the world. Chicago: University of Chicago Press.

  • Walmsley, A., Elton, S., Louys, J., Bishop, L. C., & Meloro, C. (2012). Humeral epiphyseal shape in the felidae: the influence of phylogeny, allometry, and locomotion. Journal of Morphology, 273(12), 1424–1438. doi:10.1002/jmor.20084.

    Article  PubMed  Google Scholar 

  • Ward, A. B., & Mehta, R. S. (2014). Differential occupation of axial morphospace. Zoology (Jena, Germany), 117(1), 70–76. doi:10.1016/j.zool.2013.10.006.

    Article  Google Scholar 

  • Wellik, D. M. (2007). Hox patterning of the vertebrate axial skeleton. Developmental Dynamics, 236(9), 2454–2463. doi:10.1002/dvdy.21286.

    Article  CAS  PubMed  Google Scholar 

  • Werneburg, I. (2015). Neck motion in turtles and its relation to the shape of the temporal skull region. Comptes Rendus de l’Académie des Sciences Series IIA Earth and Planetary Science, 14(6–7), 527–548. doi:10.1016/j.crpv.2015.01.007.

    Google Scholar 

  • Werneburg, I., Wilson, L. A., Parr, W. C., & Joyce, W. G. (2015). Evolution of neck vertebral shape and neck retraction at the transition to modern turtles: an integrated geometric morphometric approach. Systematic Biology, 64(2), 187–204. doi:10.1093/sysbio/syu072.

    Article  PubMed  Google Scholar 

  • Zhang, K. Y., Wiktorowicz-Conroy, A., Hutchinson, J. R., Doube, M., Klosowski, M., Shefelbine, S. J., et al. (2012). 3D Morphometric and posture study of felid scapulae using statistical shape modelling. PloS One, 7(4), 771–784. doi:10.1371/journal.pone.0034619.

    Google Scholar 

Download references

Acknowledgments

We thank the two peer reviewers for their excellent, constructive criticisms of the first draft of this paper. For access to museum collections, we thank R. Portela Miguez and R. Sabin at the Natural History Museum, London; M. Lowe and R. Asher at the University Museum of Zoology, Cambridge; C. Lefèvre at the Muséum National d’Histoire Naturelle, Paris; J. Chupasko at the Harvard Museum of Natural History, Cambridge; E. Westwig at the American Museum of Natural History, New York; W. Stanley at the Field Museum of Natural History, Chicago; and D. Lunde at the Smithsonian National Museum of Natural History, Washington D.C. This work was supported by Leverhulme Trust grant RPG 2013-124 to AG and JRH. This research received support from the SYNTHESYS project http://www.synthesys.info/ which is financed by European Community Research Infrastructure Action under the FP7 ‘Capacities’ Program. The SYNTHESYS grant was awarded to MR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcela Randau.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 224 kb)

ESM 2

(DOCX 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Randau, M., Cuff, A.R., Hutchinson, J.R. et al. Regional differentiation of felid vertebral column evolution: a study of 3D shape trajectories. Org Divers Evol 17, 305–319 (2017). https://doi.org/10.1007/s13127-016-0304-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-016-0304-4

Keywords

Navigation