Organisms Diversity & Evolution

, Volume 17, Issue 1, pp 11–28 | Cite as

Climatic niche evolution in the Andean genus Menonvillea (Cremolobeae: Brassicaceae)

  • Diego L. Salariato
  • Fernando O. Zuloaga
Original Article


The study of how climatic niches change over evolutionary time has recently attracted the interest of many researchers. Different methodologies have been employed principally to analyze the temporal dynamics of the niche and specially to test for the presence of phylogenetic niche conservatism. Menonvillea, a genus of Brassicaceae including 24 species, is distributed primarily along the Andes of Argentina and Chile, with some taxa growing in southern Patagonia and others in the Atacama Desert and the Chilean Matorral. The genus is highly diversified morphologically but also presents a remarkably wide ecological range, growing from the high Andean elevations, to the dry coastal deserts in Chile, or the Patagonia Steppe in Argentina. In this study, we used molecular phylogenies together with climatic data to study climatic niche evolution in the genus. The results show that the main climatic niche shifts in Menonvillea occurred between the sections Cuneata-Scapigera and sect. Menonvillea throughout the Mid-Late Miocene, and associated with the two main geographical distribution centers of the genus: the highlands of the central-southern Andes and the Atacama Desert-Chilean Matorral, respectively. Climatic niches in these lineages were mainly differentiated by the aridity and potential evapotranspiration, the minimum temperatures of the coldest month, and the temperature annual range and seasonality. Niche evolution in Menonvillea deviated from a Brownian motion process, with most of the climatic dimension best-fitting to an Ornstein-Uhlenbeck model of multiple adaptive peaks. Our results also indicated that higher aridity levels and lower annual temperature ranges were associated with the evolution of the annual habit, as exemplified by the distribution of sect. Menonvillea. Finally, the results suggested that climatic niche evolution in Menonvillea exhibited some degree of phylogenetic niche conservatism, fundamentally within the two main lineages (sect. Menonvillea and sects. Cuneata-Scapigera).


Andes Atacama Desert Cruciferae Patagonian steppe Phylogenetic niche conservatism Species distribution modeling 



This work was funded by ANPCyT (Agencia Nacional de Promoción Científica y Tecnológica) grant PICT-2013-1042, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas) grants D4541-12 and PIP-112-201301-00124CO, and the National Geographic Society grant #9398-13, for which we are profoundly grateful. Fieldwork and visits to herbaria were also supported by the Myndel Botanical Foundation grants 2011 and 2012. Our deep gratitude goes to Dr. Ihsan A. Al-Shehbaz for the critical review of this work and his valuable support, guidance, and suggestions in the study of South American Brassicaceae over the years. We thank Fabiana Cantarell for the help in the processing of the collection permits for the National Parks of Argentina (APN project No. 1103), and the directors, curators, and collection managers of the herbaria listed.

Data archiving

Data used in this paper are archived in TreeBase ( and Dryad (doi: 10.5061/dryad.c5271).

Supplementary material

13127_2016_291_MOESM1_ESM.pdf (1.7 mb)
Fig. S1 Values for the main variables associated to the first five principal components in the studied area. A. PC1: Potential Evapo-transpiration (PET) and Aridity index (IA). B. Min Temperature of Coldest Month (BIO6), Altitude (ALT). C. PC3: Precipitation Seasonality (BIO15), Isothermality (BIO3). D. PC4: Temperature Annual Range (BIO7), Temperature Seasonality (BIO4). E. PC5: Mean Temperature of Driest Quarter (BIO9), Precipitation of Warmest Quarter (BIO18). F. Distribution of Menonvillea in South America and studied area represents by the minimum convex polygons. Red, black, and blue dots correspond to species of sects. Cuneata, Scapigera, and Menonvillea, respectively. (PDF 1780 kb)
13127_2016_291_MOESM2_ESM.pdf (357 kb)
Fig. S2 Climatic niche of Menonvillea species included in sects. Cuneata and Scapigera, produced by the two main axes of the PCA-env. For each section, the grey-to-black shading represents the grid cell density of the species occurrence (black being the highest density). The first dashed line represents the 50 % of the available environment and the solid line represents the 100 %. Lower three taxa are included in the sect. Scapigera, the remaining species belong to sect. Cuneata. (PDF 356 kb)
13127_2016_291_MOESM3_ESM.pdf (297 kb)
Fig. S3 Climatic niche of Menonvillea species included in sect. Menonvillea, produced by the two main axes of the PCA-env. For each section, the grey-to-black shading represents the grid cell density of the species occurrence (black being the highest density). The first dashed line represents the 50 % of the available environment and the solid line represents the 100 %. (PDF 297 kb)
13127_2016_291_MOESM4_ESM.pdf (642 kb)
Fig. S4 Predicted suitable climatic conditions (logistic output) from the MaxEnt model for species included in Menonvillea sects. Cuneata and Scapigera using the five first principal components as climatic variables. (PDF 642 kb)
13127_2016_291_MOESM5_ESM.pdf (478 kb)
Fig. S5 Predicted suitable climatic conditions (logistic output) from the MaxEnt model for species included in Menonvillea sect. Menonvillea using the five first principal components as climatic variables. (PDF 478 kb)
13127_2016_291_MOESM6_ESM.pdf (31 kb)
Fig. S6 Maximum clade credibility tree (MCCT) estimated from nuclear ribosomal ITS and three chloroplast DNA regions (trnL-F, trnH-psbA, rps16 intron) using the concatenated method implemented in BEAST, uncorrelated log-normal relaxed clock model, and two secondary calibrations under normal prior distributions. Shaded horizontal bars show the 95 % highest posterior densities of divergence times and stars indicate nodes used for secondary calibration. Bayesian posterior support values >50 % are given at each node. (PDF 31 kb)
13127_2016_291_MOESM7_ESM.pdf (52 kb)
Fig. S7 Ancestral state reconstructions of main climatic PCs for Menonvillea. X-axis represents divergence times (My) and the y-axis represents the reconstructed character values based on PC scores. Species of sects. Cuneata, Scapigera, and Menonvillea are colored in red, green, and blue, respectively. (PDF 51 kb)
13127_2016_291_MOESM8_ESM.docx (20 kb)
ESM 1 (DOCX 20 kb)
13127_2016_291_MOESM9_ESM.docx (18 kb)
ESM 2 (DOCX 18 kb)
13127_2016_291_MOESM10_ESM.xlsx (99 kb)
ESM 3 (XLSX 99 kb)


  1. Ackerly, D. (2003). Community assembly, niche conservatism, and adaptative evolution in changing environments. International Journal of Plant Sciences, 164, S165–S184.CrossRefGoogle Scholar
  2. Ackerly, D. (2009). Conservatism and diversification of plant functional traits: evolutionary rates versus phylogenetic signal. Proceedings of the National Academy of Sciences, 106(Supplement 2), 19699–19706.CrossRefGoogle Scholar
  3. Ahmadzadeh, F., Flecks, M., Carretero, M. A., Böhme, W., Ilgaz, C., Engler, J. O., Harris, D. J., Üzüm, N., & Rödder, D. (2013). Rapid lizard radiation lacking niche conservatism: ecological diversification within a complex landscape. Journal of Biogeography, 40(9), 1807–1818.CrossRefGoogle Scholar
  4. Algar, A. C., & Mahler, D. L. (2015). Area, climate heterogeneity, and the response of climate niches to ecological opportunity in island radiations of Anolis lizards. Global Ecology and Biogeography. doi: 10.1111/geb.12327.Google Scholar
  5. Angelis, K., & Dos Reis, M. (2015). The impact of ancestral population size and incomplete lineage sorting on Bayesian estimation of species divergence times. Current Zoology, 61(5), 874–885.CrossRefGoogle Scholar
  6. Armesto, J. J., Arroyo, M. T. K., & Hinojosa, L. F. (2007). The Mediterranean environment of central Chile. In T. T. Veblen, K. R. Young, & A. Orme (Eds.), The physical geography of South America (pp. 184–199). New York: Oxford University Press.Google Scholar
  7. Beaulieu, J. M., Jhwueng, D. C., Boettiger, C., & O’Meara, B. C. (2012). Modeling stabilizing selection: expanding the Ornstein–Uhlenbeck model of adaptive evolution. Evolution, 66(8), 2369–2383.PubMedCrossRefGoogle Scholar
  8. Bivand, R. S., & Lewin-Koh, N. (2015). maptools: tools for reading and handling spatial objects. R package version 0.8-36. = maptoolsGoogle Scholar
  9. Bivand, R. S., Pebesma, E., & Gomez-Rubio, V. (2013). Applied spatial data analysis with R (2nd ed.). New York: Springer.CrossRefGoogle Scholar
  10. Blisniuk, P. M., Stern, L. A., Chamberlain, C. P., Idleman, B., & Zeitler, P. K. (2005). Climatic and ecologic changes during Miocene surface uplift in the Southern Patagonian Andes. Earth and Planetary Science Letters, 230, 125–142.CrossRefGoogle Scholar
  11. Boucher, F. C., Thuiller, W., Roquet, C., Douzet, R., Aubert, S., Alvarez, N., & Lavergne, S. (2012). Reconstructing the origins of high-alpine niches and cushion life form in the genus Androsace s.l. (Primulaceae). Evolution, 66(4), 1255–1268.PubMedCrossRefGoogle Scholar
  12. Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C. H., Xie, D., Suchard, M. A., Rambaut, A., & Drummond, A. J. (2014). BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 10(4), e1003537. doi: 10.1371/journal.pcbi.1003537.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bowman, A. W., & Azzalini, A. (2014). R package ‘sm’: nonparametric smoothing methods (version 2.2-5.4).
  14. Broennimann, O., Fitzpatrick, M. C., Pearman, P. B., Petitpierre, B., Pellissier, L., Yoccoz, N. G., Thuiller, W., Fortin, M., Randin, C., Zimmermann, N. E., Graham, C. H., & Guisan, A. (2012). Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 21(4), 481–497.CrossRefGoogle Scholar
  15. Broennimann, O., Petitpierre, B., Randin, C., Engler, R., Di Cola, V., Breiner, F., D’Amen, M., Pellissier, L., Pottier, J., Pio, D., Mateo, R.G., Hordijk, W., Dubuis, A., Scherrer, D., Salamin, N. & Guisan, A. (2015). ecospat: spatial ecology miscellaneous methods. R package version 1.1.
  16. Butler, M. A., & King, A. A. (2004). Phylogenetic comparative analysis: a modeling approach for adaptive evolution. The American Naturalist, 164(6), 683–695.CrossRefGoogle Scholar
  17. Cabrera, A., & Willink, A. (1973). Biogeografía de América Latina. Washington: Monografías OEA.Google Scholar
  18. Calenge, C. (2006). The package adehabitat for the R software: a tool for the analysis of space and habitat use by animals. Ecological Modelling, 197, 516–519.CrossRefGoogle Scholar
  19. Chacón, J., de Assis, M. C., Meerow, A. W., & Renner, S. S. (2012). From East Gondwana to Central America: historical biogeography of the Alstroemeriaceae. Journal of Biogeography, 39, 1806–1818.CrossRefGoogle Scholar
  20. Cole, L. C. (1954). The population consequences of life history phenomena. Quarterly Review of Biology, 29, 103–137.PubMedCrossRefGoogle Scholar
  21. Cooper, N., Jetz, W., & Freckleton, R. P. (2010). Phylogenetic comparative approaches for studying niche conservatism. Journal of Evolutionary Biology, 23(12), 2529–2539.PubMedCrossRefGoogle Scholar
  22. R Core Team. (2015). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Scholar
  23. Drummond, C. S., Eastwood, R. J., Miotto, S. T., & Hughes, C. E. (2012). Multiple continental radiations and correlates of diversification in Lupinus (Leguminosae): testing for key innovation with incomplete taxon sampling. Systematic Biology, 61, 443–460.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Duran, A., Meyer, A. L., & Pie, M. R. (2013). Climatic niche evolution in New World monkeys (Platyrrhini). Plos One, 8, e83684. doi: 10.1371/journal.pone.0083684.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Elith, J., & Leathwick, J. R. (2009). Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40(1), 677–697.CrossRefGoogle Scholar
  26. Encinas, A., Zambrano, P. A., Finger, K. L., Valencia, V., Buatois, L. A., & Duhart, P. (2013). Implications of deep-marine Miocene deposits on the evolution of the North Patagonian Andes. The Journal of Geology, 121, 215–238.CrossRefGoogle Scholar
  27. Evans, M. E., Hearn, D. J., Hahn, W. J., Spangle, J. M., & Venable, D. L. (2005). Climate and life-history evolution in evening primroses (Oenothera, Onagraceae): a phylogenetic comparative analysis. Evolution, 59(9), 1914–1927.PubMedCrossRefGoogle Scholar
  28. Evans, M. E., Smith, S. A., Flynn, R. S., & Donoghue, M. J. (2009). Climate, niche evolution, and diversification of the “bird-cage” evening primroses (Oenothera, sections Anogra and Kleinia). The American Naturalist, 173(2), 225–240.PubMedCrossRefGoogle Scholar
  29. Felsenstein, J. (1985). Phylogenies and the comparative method. American Naturalist, 125, 1–15.CrossRefGoogle Scholar
  30. Franzke, A., Koch, M. A., & Mummenhoff, K. (2016). Turnip time travels: age estimates in Brassicaceae. Trends in Plant Science. doi: 10.1016/j.tplants.2016.01.024
  31. Garzione, C. N., Hoke, G. D., Libarkin, J. C., Withers, S., MacFadden, B., Eiler, J., Ghosh, P., & Mulch, A. (2008). Rise of the Andes. Science, 320, 1304–1307.PubMedCrossRefGoogle Scholar
  32. Graham, A. (2009). The Andes: a geological overview from a biological perspective. Annals of the Missouri Botanical Garden, 96, 371–385.CrossRefGoogle Scholar
  33. Graham, A., Gregory-Wodzicki, K. M., & Wright, K. L. (2001). Studies in Neotropical Paleobotany. XV. A Mio-Pliocene palynoflora from the Eastern Cordillera, Bolivia: implications for the uplift history of the Central Andes. American Journal of Botany, 88, 1545–1557.PubMedCrossRefGoogle Scholar
  34. Gregory-Wodzicki, K. M. (2000). Uplift history of the Central and Northern Andes: a review. Geological Society of America Bulletin, 112, 1091–1105.CrossRefGoogle Scholar
  35. Guisan, A., & Thuiller, W. (2005). Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8(9), 993–1009.CrossRefGoogle Scholar
  36. Guisan, A., & Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling, 135(2), 147–186.CrossRefGoogle Scholar
  37. Guisan, A., Tingley, R., Baumgartner, J. B., Naujokaitis-Lewis, I., Sutcliffe, P. R., Tulloch, A. I., Regan, T. J., Brotons, L., McDonald-Madden, E., Mantyka-Pringle, C., Martin, T. G., Rhodes, J. R., Maggini, R., Setterfield, S. A., Elith, J., Schwartz, M. W., Wintle, B. A., Broennimann, O., Austin, M., Ferrier, S., Kearney, M. R., Possingham, H. P., & Buckley, Y. M. (2013). Predicting species distributions for conservation decisions. Ecology Letters, 16(12), 1424–1435.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Hansen, T. F. (1997). Stabilizing selection and the comparative analysis of adaptation. Evolution, 51(5), 1341–1351.CrossRefGoogle Scholar
  39. Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E., & Challenger, W. (2008). GEIGER: investigating evolutionary radiations. Bioinformatics, 24, 129–131.PubMedCrossRefGoogle Scholar
  40. Harmon, L. J., Losos, J. B., Davies, T. J., Gillespie, R. G., Gittleman, J. L., Bryan Jennings, W., Kozak, K. H., McPeek, M. A., Moreno-Roark, F., Near, T. J., Purvis, A., Ricklefs, R. E., Schluter, D., Schulte, J. A., II, Seehausen, O., Sidlauskas, B. L., Torres-Carvajal, O., Weir, J. T., & Mooers, A. Ø. (2010). Early bursts of body size and shape evolution are rare in comparative data. Evolution, 64(8), 2385–2396.PubMedGoogle Scholar
  41. Hartley, A. J., Chong, G., Houston, J., & Mather, A. E. (2005). 150 million years of climatic stability: evidence from the Atacama Desert, northern Chile. Journal of the Geological Society, 162(3), 421–424.CrossRefGoogle Scholar
  42. Harvey, P. H., & Pagel, M. D. (1991). The comparative method in evolutionary biology (Vol. 239). Oxford: Oxford University Press.Google Scholar
  43. Haselton, K., Hilley, G., & Strecker, M. R. (2002). Average Pleistocene climatic patterns in the southern Central Andes: controls on mountain glaciation and paleoclimate implications. The Journal of Geology, 110(2), 211–226.CrossRefGoogle Scholar
  44. Heibl, C., & Calenge, C. (2013). phyloclim: integrating phylogenetics and climatic niche modeling. R package version 0.9-4. = phyloclimGoogle Scholar
  45. Heikkinen, R. K., Luoto, M., Araújo, M. B., Virkkala, R., Thuiller, W., & Sykes, M. T. (2006). Methods and uncertainties in bioclimatic envelope modelling under climate change. Progress in Physical Geography, 30(6), 751–777.CrossRefGoogle Scholar
  46. Heled, J., & Drummond, A. J. (2010). Bayesian inference of species trees from multilocus data. Molecular Biology and Evolution, 27(3), 570–580.PubMedCrossRefGoogle Scholar
  47. Hijmans, R. J. (2015). raster: geographic data analysis and modeling. R package version 2.3-40. = rasterGoogle Scholar
  48. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978.CrossRefGoogle Scholar
  49. Hijmans, R. J., Guarino, L., & Mathur, P. 2012. DIVA-GIS. Version 7.5. Manual. Available at:
  50. Ho, L. S. T., & Ané, C. (2014). A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Systematic Biology, 63(3), 397–408.PubMedCrossRefGoogle Scholar
  51. Hoffmann, M. H. (2005). Evolution of the realized climatic niche in the genus Arabidopsis (Brassicaceae). Evolution, 59(7), 1425–1436.PubMedGoogle Scholar
  52. Houston, J., & Hartley, A. J. (2003). The central Andean west-slope rainshadow and its potential contribution to the origin of hyper-aridity in the Atacama Desert. International Journal of Climatology, 23(12), 1453–1464.CrossRefGoogle Scholar
  53. Hunt, G. (2012). Measuring rates of phenotypic evolution and the inseparability of tempo and mode. Paleobiology, 38(3), 351–373.CrossRefGoogle Scholar
  54. Hutchinson, G. E. (1978). An introduction to population ecology. New Haven: Yale University Press.Google Scholar
  55. Hutter, C. R., Guayasamin, J. M., & Wiens, J. J. (2013). Explaining Andean megadiversity: the evolutionary and ecological causes of glassfrog elevational richness patterns. Ecology Letters, 16(9), 1135–1144.PubMedCrossRefGoogle Scholar
  56. Ingram, T., & Mahler, D. L. (2013). SURFACE: detecting convergent evolution from comparative data by fitting Ornstein-Uhlenbeck models with stepwise AIC. Methods in Ecology and Evolution, 4, 416–425. doi: 10.1111/2041-210X.12034.CrossRefGoogle Scholar
  57. Ives, A. R., & Garland, T. (2010). Phylogenetic logistic regression for binary dependent variables. Systematic Biology, 59(1), 9–26.PubMedCrossRefGoogle Scholar
  58. Jara-Arancio, P., Arroyo, M. T., Guerrero, P. C., Hinojosa, L. F., Arancio, G., & Méndez, M. A. (2013). Phylogenetic perspectives on biome shifts in Leucocoryne (Alliaceae) in relation to climatic niche evolution in western South America. Journal of Biogeography, 41(2), 328–338.CrossRefGoogle Scholar
  59. Joly, S., Heenan, P. B., & Lockhart, P. J. (2013). Species radiation by niche shifts in New Zealand’s rockcresses (Pachycladon, Brassicaceae). Systematic Biology, 63(2), 192–202.PubMedCrossRefGoogle Scholar
  60. Jordan, T. E., Burns, W. M., Veiga, R., Pángaro, F., Copeland, P., Kelley, S., & Mpodozis, C. (2001). Extension and basin formation in the southern Andes caused by increased convergence rate: a Mid-Cenozoic trigger for the Andes. Tectonics, 20, 308–324.CrossRefGoogle Scholar
  61. Kamilar, J. M., & Cooper, N. (2013). Phylogenetic signal in primate behaviour, ecology and life history. Philosophical Transactions of the Royal Society, B: Biological Sciences, 368, 1618. doi: 10.1098/rstb.2012.0341.CrossRefGoogle Scholar
  62. Knouft, J. H., Losos, J. B., Glor, R. E., & Kolbe, J. J. (2006). Phylogenetic analysis of the evolution of the niche in lizards of the Anolis sagrei group. Ecology, 87(Supplement 7), S29–S38.PubMedCrossRefGoogle Scholar
  63. Leier, A., McQuarrie, N., Garzione, C., & Eiler, J. (2013). Stable isotope evidence for multiple pulses of rapid surface uplift in the Central Andes, Bolivia. Earth and Planetary Science Letters, 371, 49–58.CrossRefGoogle Scholar
  64. Lo Presti, R. M., & Oberprieler, C. (2009). Evolutionary history, biogeography and eco-climatological differentiation of the genus Anthemis L. (Compositae, Anthemideae) in the circum-Mediterranean area. Journal of Biogeography, 36, 1313–1332.CrossRefGoogle Scholar
  65. Losos, J. B. (2008). Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecology Letters, 11(10), 995–1003.PubMedCrossRefGoogle Scholar
  66. Löytynoja, A. (2014). Phylogeny-aware alignment with PRANK. In D. J. Russel (Ed.), Multiple sequence alignment methods (pp. 155–170). New York: Humana.CrossRefGoogle Scholar
  67. Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., Hornik, K. (2015). cluster: cluster analysis basics and extensions. R package version 2.0.3.
  68. McCormack, J. E., Heled, J., Delaney, K. S., Peterson, A. T., & Knowles, L. L. (2011). Calibrating divergence times on species trees versus gene trees: implications for speciation history of Aphelocoma jays. Evolution, 65(1), 184–202.PubMedCrossRefGoogle Scholar
  69. Münkemüller, T., Lavergne, S., Bzeznik, B., Dray, S., Jombart, T., Schiffers, K., & Thuiller, W. (2012). How to measure and test phylogenetic signal. Methods in Ecology and Evolution, 3(4), 743–756.CrossRefGoogle Scholar
  70. Münkemüller, T., Boucher, F. C., Thuiller, W., & Lavergne, S. (2015). Phylogenetic niche conservatism—common pitfalls and ways forward. Functional Ecology, 29(5), 627–639.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Nyári, Á. S., & Reddy, S. (2013). Comparative phyloclimatic analysis and evolution of ecological niches in the scimitar babblers (Aves: Timaliidae: Pomatorhinus). PLoS ONE, 8(2), e55629. doi: 10.1371/journal.pone.0055629.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos P., Stevens, M. H.H., & Wagner, H. (2015). vegan: community ecology package. R package version 2.3-0. = veganGoogle Scholar
  73. O’Meara, B. C., Ané, C., Sanderson, M. J., & Wainwright, P. C. (2006). Testing for different rates of continuous trait evolution using likelihood. Evolution, 60(5), 922–933.PubMedCrossRefGoogle Scholar
  74. Özüdoğru, B., Akaydın, G., Erik, S., Al-Shehbaz, I. A., & Mummenhoff, K. (2015). Phylogenetic perspectives, diversification, and biogeographic implications of the eastern Mediterranean endemic genus Ricotia L. (Brassicaceae). Taxon, 64, 727–740.CrossRefGoogle Scholar
  75. Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature, 401(6756), 877–884.PubMedCrossRefGoogle Scholar
  76. Pearman, P. B., Guisan, A., Broennimann, O., & Randin, C. F. (2008). Niche dynamics in space and time. Trends in Ecology & Evolution, 23(3), 149–158.CrossRefGoogle Scholar
  77. Peterson, A. T. (2011). Ecological niche conservatism: a time-structured review of evidence. Journal of Biogeography, 38(5), 817–827.CrossRefGoogle Scholar
  78. Peterson, A. T., Soberón, J., & Sánchez-Cordero, V. (1999). Conservatism of ecological niches in evolutionary time. Science, 285(5431), 1265–1267.PubMedCrossRefGoogle Scholar
  79. Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3), 231–259.CrossRefGoogle Scholar
  80. Plummer, M., Best, N., Cowles, K., & Vines, K. (2006). CODA: convergence diagnosis and output analysis for MCMC. R News, 6, 7–11.Google Scholar
  81. Rabassa, J., Coronato, A., & Martinez, O. (2011). Late Cenozoic glaciations in Patagonia and Tierra del Fuego: an updated review. Biological Journal of the Linnean Society, 103(2), 316–335.CrossRefGoogle Scholar
  82. Rabosky, D. L. (2014). Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS ONE, 9(2), e89543. doi: 10.1371/journal.pone.0089543.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Rabosky, D. L., Santini, F., Eastman, J., Smith, S. A., Sidlauskas, B., Chang, J., & Alfaro, M. E. (2013). Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation. Nature Communications, 4, 1958. doi: 10.1038/ncomms2958.PubMedCrossRefGoogle Scholar
  84. Rabosky, D. L., Donnellan, S. C., Grundler, M., & Lovette, I. J. (2014). Analysis and visualization of complex macroevolutionary dynamics: an example from Australian scincid lizards. Systematic Biology, 63(4), 610–627.PubMedCrossRefGoogle Scholar
  85. Rabosky, D., Grundler, M., Title, P., Anderson, C., Shi, J., Brown, J., & Huang, H. (2015). BAMMtools: analysis and visualization of macroevolutionary dynamics on phylogenetic trees. R package version 2.0.5. = BAMMtoolsGoogle Scholar
  86. Rambaut, A., Suchard, M. A., Xie, D., & Drummond, A. J. (2013). Tracer v1.6.0. Scholar
  87. Rato, C., Harris, D. J., Perera, A., Carvalho, S. B., Carretero, M. A., & Rödder, D. (2015). A Combination of divergence and conservatism in the niche evolution of the Moorish Gecko, Tarentola mauritanica (Gekkota: Phyllodactylidae). PLoS ONE, 10(5), e0127980. doi: 10.1371/journal.pone.0127980.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Reich, M., Palacios, C., Vargas, G., Luo, S., Cameron, E. M., Leybourne, M. I., Parada, M. A., Zuñiga, A., & You, C. F. (2009). Supergene enrichment of copper deposits since the onset of modern hyperaridity in the Atacama Desert, Chile. Mineralium Deposita, 44, 497–504.CrossRefGoogle Scholar
  89. Revell, L. J. (2012). phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3(2), 217–223. doi: 10.1111/j.2041-210X.2011.00169.x.CrossRefGoogle Scholar
  90. Rollins, R. C. (1955). A revisionary study of the genus Menonvillea (Cruciferae). Contributions from the Gray Herbarium of Harvard University, 177, 3–57.Google Scholar
  91. Rundel, P. W., Dillon, M. O., Palma, B., Mooney, H. A., Gulmon, S. L., & Ehleringer, J. R. (1991). The phytogeography and ecology of the coastal Atacama and Peruvian deserts. Aliso, 13(1), 1–49.Google Scholar
  92. Salariato, D. L., Zuloaga, F. O., & Al-Shehbaz, I. A. (2013). Molecular phylogeny of Menonvillea and recognition of the new genus Aimara (Brassicaceae: Cremolobeae). Taxon, 62, 1220–1234.CrossRefGoogle Scholar
  93. Salariato, D. L., Zuloaga, F. O., & Al-Shehbaz, I. A. (2014). A revision of the genus Menonvillea (Cremolobeae, Brassicaceae). Phytotaxa, 162(5), 241–298.CrossRefGoogle Scholar
  94. Salariato, D. L., Zuloaga, F. O., Cano, A., & Al-Shehbaz, I. A. (2015). Molecular phylogenetics of tribe Eudemeae (Brassicaceae) and implications for its morphology and distribution. Molecular Phylogenetics and Evolution, 82, 43–59.PubMedCrossRefGoogle Scholar
  95. Salariato, D. L., Zuloaga, F. O., Franzke, A., Mummenhoff, K., & Al-Shehbaz, I. A. (2016). Diversification patterns of the CES clade (tribes Cremolobeae, Eudemeae, Schizopetaleae: Brassicaceae) along Andean South America. Botanical Journal of the Linnean Society. doi: 10.1111/boj.12430.
  96. Schaffer, W. M., & Gadgil, M. (1975). Selection for optimal life histories in plants. In M. Cody & J. Diamond (Eds.), The ecology and evolution of communities (pp. 142–157). Cambridge: Harvard University Press.Google Scholar
  97. Schlunegger, F., Kober, F., Zeilinger, G., & von Rotz, R. (2010). Sedimentology-based reconstructions of paleoclimate changes in the Central Andes in response to the uplift of the Andes, Arica region between 19° and 21° S latitude, northern Chile. International Journal of Earth Sciences, 99, 123–137.CrossRefGoogle Scholar
  98. Schnitzler, J., Graham, C. H., Dormann, C. F., Schiffers, K., & Linder, P. H. (2012). Climatic niche evolution and species diversification in the Cape flora, South Africa. Journal of Biogeography, 39(12), 2201–2211.CrossRefGoogle Scholar
  99. Schoener, T. W. (1970). Nonsynchronous spatial overlap of lizards in patchy habitats. Ecology, 51, 408–418.CrossRefGoogle Scholar
  100. Smith, S. A., & Donoghue, M. J. (2010). Combining historical biogeography with niche modeling in the Caprifolium clade of Lonicera (Caprifoliaceae, Dipsacales). Systematic Biology, 59(3), 322–341.PubMedCrossRefGoogle Scholar
  101. Soberón, J. (2007). Grinnellian and Eltonian niches and geographic distributions of species. Ecology Letters, 10(12), 1115–1123.PubMedCrossRefGoogle Scholar
  102. Thiers, B. (2015). Index Herbariorum: a global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium.
  103. Title, P. O., & Burns, K. J. (2015). Rates of climatic niche evolution are correlated with species richness in a large and ecologically diverse radiation of songbirds. Ecology Letters, 18(5), 433–440.PubMedCrossRefGoogle Scholar
  104. Toro-Núñez, O., Mort, M. E., Ruiz-Ponce, E., & Al-Shehbaz, I. A. (2013). Phylogenetic relationships of Mathewsia and Schizopetalon (Brassicaceae) inferred from nrDNA and cpDNA regions: taxonomic and evolutionary insights from an Atacama Desert endemic lineage. Taxon, 62, 343–356.CrossRefGoogle Scholar
  105. Trabucco, A., & Zomer, R.J. (2009). Global aridity index (global-aridity) and global potential evapo-transpiration (global-PET) geospatial database. CGIAR Consortium for Spatial Information. Published online, available from the CGIAR-CSI GeoPortal at:
  106. Vieites, D. R., Nieto-Román, S., & Wake, D. B. (2009). Reconstruction of the climate envelopes of salamanders and their evolution through time. Proceedings of the National Academy of Sciences, 106(Supplement 2), 19715–19722.CrossRefGoogle Scholar
  107. Warren, D. L., Glor, R. E., & Turelli, M. (2008). Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution, 62(11), 2868–2883.PubMedCrossRefGoogle Scholar
  108. Wiens, J. J. (2008). Commentary on Losos (2008): niche conservatism deja vu. Ecology Letters, 11(10), 1004–1005.PubMedCrossRefGoogle Scholar
  109. Wiens, J. J., & Graham, C. H. (2005). Niche conservatism: integrating evolution, ecology, and conservation biology. Annual Review of Ecology, Evolution, and Systematics, 36, 519–539.CrossRefGoogle Scholar
  110. Wiens, J. J., Ackerly, D. D., Allen, A. P., Anacker, B. L., Buckley, L. B., Cornell, H. V., Damschem, E. I., Davies, T. J., Grytnes, J., Harrison, S. P., Hawkins, B. A., Holt, C. M., & Stephens, P. R. (2010). Niche conservatism as an emerging principle in ecology and conservation biology. Ecology Letters, 13(10), 1310–1324.PubMedCrossRefGoogle Scholar
  111. Zachos, J., Pagani, M., Sloan, L., Thomas, E., & Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292(5517), 686–693.PubMedCrossRefGoogle Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2016

Authors and Affiliations

  1. 1.Instituto de Botánica Darwinion (CONICET–ANCEFN)San IsidroArgentina

Personalised recommendations