Advertisement

Organisms Diversity & Evolution

, Volume 16, Issue 3, pp 659–677 | Cite as

Molecular data in conjunction with morphology help resolve the Hemidactylus brookii complex (Squamata: Gekkonidae)

  • Aparna LajmiEmail author
  • Varad B. Giri
  • K. Praveen Karanth
Original Article

Abstract

Molecular data are increasingly being used to resolve cryptic species complexes; however, subsequent formal species description and taxonomic revisions often remain incomplete. Given that most species are described based on morphology-based alpha taxonomy, one cannot resolve nomenclatural issues of species complexes without the aid of morphology. In this study, we examined the taxonomic status of a long-known human commensal and species complex, Hemidactylus brookii. To this end, samples of H. cf. brookii and related species were collected across India. We analyzed molecular as well as morphological data to resolve the taxonomy of this species complex. Seven deeply divergent, well-supported clades were recovered using the mitochondrial phylogeny, five of which were also retrieved in the nuclear tree. One of these consists of five morphologically distinct species of ground-dwelling Hemidactylus. The genetic distances across each clade of putative species of H. brookii sensu lato were comparable to that between morphologically distinct species of ground-dwelling Hemidactylus. Meristic characters such as number of precloacal-femoral pores, number of non-pore bearing scales interrupting the series of pored scales, dorsal pholidosis, and presence/absence of divided lamellae can be used to distinguish these putative species from each other. However, morphological characters of H. brookii sensu stricto did not correspond to any of the putative species studied. The study also revealed that the “H. brookii complex” in India includes two commensal species, Hemidactylus parvimaculatus and Hemidactylus murrayi. Furthermore, these two lineages have independently acquired adaptations that could have assisted them in exploiting human habitat. An identification key to diagnose species within this complex and rest of the Hemidactylus in India is proposed.

Keywords

Cytochrome b RAG1 Cryptic species Invasive species Phylogeny 

Notes

Acknowledgments

We would like to thank Ishan Agarwal, Aniruddha Datta-Roy, Aakarsh, Harshil Patel, Saunak Pal, Mrugank Prabhu, Pankaj Lad, Kshamata Gaikwad, Navendu Page, Ashok Kumar Mallik, Deepak Veerappan, Manjunath Reddy, Jahnavi Joshi, Diptarup Nandi, Rochishnu Dutta, Shreekant Deodhar, N P I Das, Sartaj Ghuman and Rohini Bansal for their help in sampling. Aaron Bauer and Indraneil Das for helping us find required literature. Kavita Isvaran, Diptarup Nandi, and Rittik Deb for discussions and comments regarding the statistical analyses, Navendu Page and Viraj Torsekar for their help in making figures. We are grateful to Aaron Bauer, and the anonymous reviewers for giving their valuable comments on the manuscript. Thanks to Asad R Rahmani, Bombay Natural History Society, for his support and encouragement. All the lab members of Karanth lab and staff at the Collection Department, Bombay Natural History Society. Department of Science and Technology, and Ministry of Environment and Forest for funding fieldwork and molecular work. Partial funding for fieldwork also came from National Science Foundation (U.S.A.) grants DEB 0844523 and DEB 1019443 to Aaron M. Bauer. VG would like to thank Uma Ramakrishnan (DAE Outstanding Scientist Grant to Uma Ramakrishnan) and Krushnamegh Kunte for their support.

Compliance with ethical standards

Funding

Molecular work was funded by the Department of Science and Technology, India (grant no. SR/SO/AS-57/2009). Fieldwork was mainly funded by the Ministry of Environment and Forest (India), and partly by National Science Foundation (U.S.A.) grants DEB 0844523 and DEB 1019443 to Aaron M. Bauer.

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

Supplementary material

13127_2016_271_MOESM1_ESM.pdf (60 kb)
Supplementary Table 1 Morphometric data in millimeter (PDF 60 kb)
13127_2016_271_MOESM2_ESM.docx (48 kb)
Supplementary Table 2 Tukey multiple comparisons of means across each clade with adjusted p value. The clades that were significantly different are in bold. (DOCX 47 kb)
13127_2016_271_MOESM3_ESM.pdf (125 kb)
Supplementary Table 3 Meristic data and descriptive characters for individuals within the H. brookii complex. FP (L, R) – Femoral pore (left, right); SFP – non-pore bearing scales between pored series; NDT – Number of enlarged dorsal tubercle rows; SL – Supralabials; IL – infralabials; (PDF 124 kb)
13127_2016_271_MOESM5_ESM.pdf (210 kb)
Supplementary Fig. 1 Maximum likelihood (ML) tree based on mitochondrial cyt b dataset. The values on each node represent ML bootstrap value / Bayesian posterior probability. Support values below 50 % have been denoted as ‘-’. In the case of identical sequences from multiple individuals, a single exemplar sequence was used. The sample number of the exemplar sequence is shown and the sample numbers of other identical sequences are given in parenthesis (PDF 210 kb)
13127_2016_271_MOESM6_ESM.pdf (216 kb)
Supplementary Fig. 2 Maximum likelihood (ML) tree based on nuclear RAG1 dataset. The values on each node represent ML bootstrap value / Bayesian posterior probability. Support values below 50 % have been denoted as ‘-’ (PDF 215 kb)
13127_2016_271_MOESM7_ESM.pdf (346 kb)
Supplementary Fig. 3 Haplotype network of RAG1 sequences showing clusters corresponding to each of the clades retrieved in the phylogeny (PDF 345 kb)
13127_2016_271_MOESM4_ESM.txt (2 kb)
Supplementary Material 1 Likelihood support values for each of the putative species identified by the PTP method (TXT 1 kb)

References

  1. Agarwal, I., Giri, V. B., & Bauer, A. M. (2011). A new cryptic rock-dwelling Hemidactylus (Squamata: Gekkonidae) from South India. Zootaxa, 2765, 21–37.Google Scholar
  2. Arnold, E. N. (2000). Using fossils and phylogenies to understand evolution of reptile communities on islands. Isolated Vertebrate Communities in the Tropics, 46, 309–324.Google Scholar
  3. Austin, C. C. (1999). Lizards took express train to Polynesia. Nature, 397(6715), 113–114.CrossRefGoogle Scholar
  4. Bandelt, H. J., Forster, P., & Röhl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution.Google Scholar
  5. Banks, P. B., & Hughes, N. K. (2012). A review of the evidence for potential impacts of black rats (Rattus rattus) on wildlife and humans in Australia. Wildlife Research, 39(1), 78–88.CrossRefGoogle Scholar
  6. Bansal, R., & Karanth, K. P. (2010). Molecular phylogeny of Hemidactylus geckos (Squamata: Gekkonidae) of the Indian subcontinent reveals a unique Indian radiation and an Indian origin of Asian house geckos. Molecular Phylogenetics and Evolution, 57(1), 459–465.CrossRefPubMedGoogle Scholar
  7. Bauer, A. M., de Silva, A., Greenbaum, E., & Jackman, T. (2007). A new species of day gecko from high elevation in Sri Lanka, with a preliminary phylogeny of Sri Lankan Cnemaspis (Reptilia, Squamata, Gekkonidae). Mitteilungen aus dem Museum für Naturkunde in Berlin – Zoologische Reihe, 83(S1), 22–32.Google Scholar
  8. Bauer, A. M., Jackman, T. R., Greenbaum, E., de Silva, A., Giri, V. B., & Das, I. (2010a). Molecular evidence for the taxonomic status of Hemidactylus brookii group taxa (Squamata: Gekkonidae). Herpetological Journal, 20, 129–138.CrossRefGoogle Scholar
  9. Bauer, A. M., Jackman, T. R., Greenbaum, E., Giri, V. B., & de Silva, A. (2010b). South Asia supports a major endemic radiation of Hemidactylus geckos. Molecular Phylogenetics and Evolution, 57(1), 343–352.CrossRefPubMedGoogle Scholar
  10. Beheregaray, L. B., & Caccone, A. (2007). Cryptic biodiversity in a changing world. Journal of Biology, 6(9), 5.Google Scholar
  11. Bickford, D., Lohman, D. J., Sodhi, N. S., Ng, P. K. L., Meier, R., Winker, K., et al. (2007). Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution, 22(3), 148–155.CrossRefGoogle Scholar
  12. Boulenger, G, A. (1911). Descriptions of new reptiles from the Andes of South America, preserved in the British Museum. Annals and Magazine of National History (8) 7 (37): 19–25.Google Scholar
  13. Brown, D. M., Brenneman, R. A., Koepfli, K. P., Pollinger, J. P., Milá, B., Georgiadis, N. J., et al. (2007). Extensive population genetic structure in the giraffe. BMC Biology, 5(1), 57.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Carranza, S., & Arnold, E. N. (2006). Systematics, biogeography, and evolution of Hemidactylus geckos (Reptilia: Gekkonidae) elucidated using mitochondrial DNA sequences. Molecular Phylogenetics and Evolution, 38(2), 531–545.CrossRefPubMedGoogle Scholar
  15. Cole, N. C., Jones, C. G., & Harris, S. (2005). The need for enemy-free space: the impact of an invasive gecko on island endemics. Biological Conservation, 125(4), 467–474.CrossRefGoogle Scholar
  16. Dandge, P. H., & Tiple, A. D. (2015). A new species of rupicolus gecko of the genus Hemidactylus Oken, 1817 (Reptilia: Squamata: Gekkonidae) from Maharashtra, central India. Russian Journal of Herpetology, 22(3), 233–240.Google Scholar
  17. Deraniyagala, P.E.P. (1953). A Colored Atlas of Some Vertebrates from Ceylon. Volume Two. Tetrapod Reptilia. Colombo: Ceylon National Museums.Google Scholar
  18. Fujita, M. K., & Leaché, A. D. (2011). A coalescent perspective on delimiting and naming species: a reply to Bauer et al. Proceedings: Biological Sciences, 278(1705), 493–495. doi: 10.2307/40999958?ref=no-x-route:485dbe53c149b8987adb79bba39d6dbe.Google Scholar
  19. Giri, V. B., & Bauer, A. M. (2008). A new ground-dwelling Hemidactylus (Squamata: Gekkonidae) from Maharashtra, with a key to the Hemidactylus of India. Zootaxa, 1700, 21–34.Google Scholar
  20. Gleadow, F. (1887). Description of a new lizard from the Dangs. Journal of the Bombay Natural History Society, 2, 49–51.Google Scholar
  21. Gray, J.E. (1845). Catalogue of the specimens of lizards in the collection of the British museum. London: British Museum (Natural History). xxviii + 289 pp.Google Scholar
  22. Groth, J., & Barrowclough, G. (1999). Basal divergences in birds and the phylogenetic utility of the nuclear RAG-1 gene. Molecular Phylogenetics and Evolution, 12(2), 115–123.CrossRefPubMedGoogle Scholar
  23. Hallowell, E. (1854). Description of new species of Reptilia from western Africa. Proceedings of Academy on National Science Philadelphia, 64(1852), 62–65.Google Scholar
  24. Isaac, N. (2004). Taxonomic inflation: its influence on macroecology and conservation. Trends in Ecology & Evolution, 19(9), 464–469.CrossRefGoogle Scholar
  25. Jones, E. P., Eager, H. M., Gabriel, S. I., Jóhannesdóttir, F., & Searle, J. B. (2013). Genetic tracking of mice and other bioproxies to infer human history. Trends in Genetics, 29(5), 298–308.CrossRefPubMedGoogle Scholar
  26. Kathriner, A., O’shea, M., & Kaiser, H. (2014). Re-examination of Hemidactylus tenkatei van Lidth de Jeude, 1895: populations from Timor provide insight into the taxonomy of the H. brookii Gray, 1845 complex (Squamata: Gekkonidae). Zootaxa, 3887(5), 583–599.CrossRefPubMedGoogle Scholar
  27. Keller, A. (2007). Drosophila melanogaster’s history as a human commensal. Current Biology, 17(3), R77–R81.CrossRefPubMedGoogle Scholar
  28. Kergoat, G. J., Cuda, J. P., Overholt, W. A., & Molo, R. (2014). Integrative taxonomy of Acrapex stem borers (Lepidoptera: Noctuidae: Apameini): combining morphology and poisson tree process analysesGoogle Scholar
  29. Kluge, A. G. (1969). The evolution and geographical origin of the New World Hemidactylus mabouia–brookii complex (Gekkonidae, Sauria). Miscellaneous Publications of the Museum of Zoology, University of Michigan, 138, 1–78.Google Scholar
  30. Lanfear, R., Calcott, B., Ho, S. Y. W., & Guindon, S. (2012). Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29(6), 1695–1701.CrossRefPubMedGoogle Scholar
  31. López, P., & Martín, J. (2002). Chemical rival recognition decreases aggression levels in male Iberian wall lizards, Podarcis hispanica. Behavioral Ecology and Sociobiology, 51(5), 461–465.CrossRefGoogle Scholar
  32. López, P., Muñoz, A., & Martín, J. (2002). Symmetry, male dominance and female mate preferences in the Iberian rock lizard, Lacerta monticola. Behavioral Ecology and Sociobiology, 52(4), 342–347.CrossRefGoogle Scholar
  33. López, P., Aragon, P., & Martín, J. (2003). Responses of female lizards, Lacerta monticola, to males’ chemical cues reflect their mating preference for older males. Behavioral Ecology and Sociobiology, 55(1), 73–79.CrossRefGoogle Scholar
  34. Mahony, S. (2009). A new species of gecko of the genus Hemidactylus (Reptilian: Gekkonidae) from Andhra Pradesh, India. Russian Journal of Herpetology, 16(1), 27–34.Google Scholar
  35. Mahony, S. (2011). Taxonomic revision of Hemidactylus brookii Gray: a re-examination of the type series and some Asian synonyms, and a discussion of the obscure species Hemidactylus subtriedrus Jerdon (Reptilia: Gekkonidae). Zootaxa, 3042, 37–67.Google Scholar
  36. Martín, J., & López, P. (2000). Chemoreception, symmetry and mate choice in lizards. Proceedings. Biological sciences / The Royal Society, 267(1450), 1265–1269.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Martín, J., Moreira, P. L., & López, P. (2007a). Status-signalling chemical badges in male Iberian rock lizards. Functional Ecology, 21(3), 568–576.CrossRefGoogle Scholar
  38. Martín, J., Civantos, E., Amo, L., & López, P. (2007b). Chemical ornaments of male lizards Psammodromus algirus may reveal their parasite load and health state to females. Behavioral Ecology and Sociobiology, 62(2), 173–179.CrossRefGoogle Scholar
  39. Meerwarth, H. (1901). Die westindischen Reptilien und Batrachier des naturhistorischen Museums In Hamburg. Mitt Naturhist Museum Hamburg, 18, 1–41.Google Scholar
  40. Mirza, Z. A., & Sanap, R. V. (2014). A new cryptic species of gecko of the genus Hemidactylus Oken, 1817 (Reptilia: Gekkonidae) from southern India. Taprobanica, 6(1), 12–20.CrossRefGoogle Scholar
  41. Murray, J. A. (1884). Additions to the reptilian fauna of Sind. Annals and Magazine of Natural History, 14(5), 97–106.CrossRefGoogle Scholar
  42. Murthy, B. H. C. K., Bauer, A., Lajmi, A., Agarwal, I., & Giri, V. B. (2015). A new rock dwelling Hemidactylus (Squamata: Gekkonidae) from Chhattisgarh, India. Zootaxa, 4021(2), 334–350.CrossRefPubMedGoogle Scholar
  43. Olivieri, G., Zimmermann, E., Randrianambinina, B., Rasoloharijaona, S., Rakotondravony, D., Guschanski, K., & Radespiel, U. (2007). The ever-increasing diversity in mouse lemurs: three new species in north and northwestern Madagascar. Molecular Phylogenetics and Evolution, 43(1), 309–327.CrossRefPubMedGoogle Scholar
  44. Pfenninger, M., & Schwenk, K. (2007). Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evolutionary Biology, 7(1), 121.CrossRefPubMedPubMedCentralGoogle Scholar
  45. R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.Google Scholar
  46. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., et al. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3), 539–542.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Sambrook, J., & Russell, D. (2001). Preparation of genomic DNA from mouse tails and other small samples. Molecular cloning: A laboratory manual (pp. 6.23–6.27). Cold Spring Harbor: Cold Spring Harbor Laboratory Press.Google Scholar
  48. Schlick-Steiner, B. C., Seifert, B., Stauffer, C., Christian, E., Crozier, R. H., & Steiner, F. M. (2007). Without morphology, cryptic species stay in taxonomic crypsis following discovery. Trends in Ecology & Evolution, 22(8), 391–392.CrossRefGoogle Scholar
  49. Shimodaira, H., & Hasegawa, M. (1999). Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Molecular Biology and Evolution, 16, 1114–1116.CrossRefGoogle Scholar
  50. Silvestro, D., & Michalak, I. (2012). raxmlGUI: a graphical front-end for RAxML - Springer. Organisms Diversity & Evolution, 12(4), 335–337.CrossRefGoogle Scholar
  51. Smith, M. A. (1935). The fauna of British India, including Ceylon and Burma. In: Reptilia and Amphibia. vol. II. – Sauria. London: Taylor and Francis.Google Scholar
  52. Swofford, D. L. (2003). PAUP*. Phylogenetic analysis using parsimony (*and other methods). version 4.Google Scholar
  53. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10), 2731–2739.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Zhnag, J., Kapli, P., Pavlidis, P., & Stamatakis, A. (2013). A general species delimitation method with applications to phylogenetic placements. Bioinformatics (Oxford, England), 29(22), 2869–2876.CrossRefGoogle Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2016

Authors and Affiliations

  • Aparna Lajmi
    • 1
    Email author
  • Varad B. Giri
    • 2
    • 3
  • K. Praveen Karanth
    • 1
  1. 1.Centre for Ecological SciencesIndian Institute of ScienceBangaloreIndia
  2. 2.National Centre for Biological SciencesTIFRBangaloreIndia
  3. 3.Bombay Natural History SocietyWestern Ghats Regional StationKolhapurIndia

Personalised recommendations