Organisms Diversity & Evolution

, Volume 16, Issue 1, pp 299–314 | Cite as

Functional morphology of the cave bear (Ursus spelaeus) mandible: a 3D geometric morphometric analysis

  • Anneke H. van Heteren
  • Ann MacLarnon
  • Christophe Soligo
  • Todd C. Rae
Original Article


The diet of the fossil cave bears (Ursus spelaeus group) has been debated extensively. Thought traditionally to be herbivorous, more recent studies have proposed more meat in the cave bear diet. To test this, the mandibular morphology of cave bears was analysed using 3D geometric morphometrics and compared to that of extant Ursidae. Landmarks for 3D digitisation of the mandible were chosen to reflect functional morphology relating to the temporalis and masseter muscles. Extant and extinct Pleistocene Ursidae were digitised with a MicroScribe G2. Generalised Procrustes superimposition was performed, and data were allometrically and phylogenetically corrected. Principal component analysis (PCA), two-block partial least squares analysis (2B-PLS), regression analysis and discriminant function analysis were performed. PCA and 2B-PLS differentiate between known dietary niches in extant Ursidae. The lineage of the cave bear runs parallel to that of the panda (Ailuropoda melanoleuca) in morphospace, implying the development of morphological adaptations for eating foliage. A regression of shape onto foliage content in the diet and a discriminant function analysis also indicate that the cave bear diet consisted primarily of foliage.


Ursidae Pleistocene Geometric morphometrics Functional morphology Diet 



Specimens were studied in the following museums: Haus der Natur, Salzburg, Austria; Musée de Préhistoire de Tautavel; Museum für Naturkunde, Leibnitz-Institut für Evolutions- und Biodiversitätsforschung and der Humboldt Universtität, Berlin, Germany; Landesmuseum Joanneum, Graz, Austria; Museum of Zoology and Natural History “La Specola”, Firenze, Italy; Natural History Museum, London, United Kingdom; Natural History Museum, University of Oslo, Oslo, Norway; Naturhistorisches Museum Wien, Vienna, Austria; Royal Belgian Institute of Natural Sciences, Brussels, Belgium; Staatliches Museum für Naturkunde Stuttgart, Museum am Löwentor, Germany; Universität Tübingen, Tübingen, Germany; Universität Wien, Vienna, Austria; Université de Liège, Liège, Belgium. The authors would like to thank the curators at these institutions for granting permission to study the fossils. The authors are also grateful to G. Rabeder, E. Heiss and two anonymous reviewers for helpful comments on earlier versions of this manuscript, as well as C. Meloro and J. Smaers for advice on statistics. This research received support from the SYNTHESYS Project which is financed by European Community Research Infrastructure Action under the FP6 ‘Structuring the European Research Area’ Programme. This research was partly funded by internal grant 37913 and a 3-year bursary from the University of Roehampton.

Supplementary material

13127_2015_238_MOESM1_ESM.pdf (286 kb)
Supplementary Information 1 List of specimens used in the analyses. (PDF 285 kb)
13127_2015_238_MOESM2_ESM.pdf (337 kb)
Supplementary Information 2 Statistics pertaining to the allometric correction. (PDF 337 kb)
13127_2015_238_MOESM3_ESM.pdf (352 kb)
Supplementary Information 3 Form spaces. (PDF 351 kb)


  1. Adams, D. C. (2014). A generalized K statistic for estimating phylogenetic signal from shape and other high-dimensional multivariate data. Systematic Biology, 63(5), 685–697.PubMedCrossRefGoogle Scholar
  2. Anyonge, W., & Baker, A. (2006). Craniofacial morphology and feeding behavior in Canis dirus, the extinct Pleistocene dire wolf. Journal of Zoology, 269(3), 309–316.CrossRefGoogle Scholar
  3. Arribas, A., & Palmqvist, P. (1999). On the ecological connection between sabre-tooths and hominids: faunal dispersal events in the Lower Pleistocene and a review of the evidence for the first human arrival in Europe. Journal of Archaeological Science, 26(5), 571–585.CrossRefGoogle Scholar
  4. Athen, K. (2006). Biostatistical investigation of long bones and metapodial bones of Ursus spelaeus and Ursus deningeri. Scientific Annals, School of Geology Aristotle University of Thessaloniki, 98, 159–162.Google Scholar
  5. Athen, K. (2007). Biometrische Untersuchungen des Stylopodiums, Zygopodiums und Metapodiums pleistozäner Ursiden im Hinblick auf die Evolution des Höhlenbären und die Klassifizierung des Fundmaterials Einhornhöhle/Harz. Ph. D. thesis, Eberhard-Karls-Universität, Tübingen.Google Scholar
  6. Augeri, D. M. (1995). On the biogeographic ecology of the Malayan sun bear. Cambridge: University of Cambridge.Google Scholar
  7. Azzaroli, A. (1983). Quaternary mammals and the “end-Villafranchian” dispersal event—a turning point in the history of Eurasia. Palaeogeography, Palaeoclimatology, Palaeoecology, 44(1–2), 117–139. doi: 10.1016/0031-0182(83)90008-1.CrossRefGoogle Scholar
  8. Baca, M., Stankovic, A., Stefaniak, K., Marciszak, A., Hofreiter, M., Nadachowski, A., et al. (2012). Genetic analysis of cave bear specimens from Niedźwiedzia Cave, Sudetes, Poland. Palaeontologia Electronica, 15(2), 21A.Google Scholar
  9. Bargali, H. S., Akhtar, N., & Chauhan, N. P. S. (2009). Feeding ecology of sloth bears in a disturbed area in central India. Ursus, 15(2), 212–217. doi: 10.2192/1537-6176(2004)015<0212:feosbi>;2.CrossRefGoogle Scholar
  10. Baryshnikov, G. (2007). Ursidae (Fauna of Russia and neighbouring countries, new ser. 147 ). Saint Petersburg: Nauka. (in Russian)Google Scholar
  11. Biknevicius, A. R., Van Valkenburgh, B., & Walker, J. (1996). Incisor size and shape: implications for feeding behaviors in saber-toothed “cats”. Journal of Vertebrate Paleontology, 16(3), 510–521.CrossRefGoogle Scholar
  12. Binder, W. J., & Van Valkenburgh, B. (2000). Development of bite strength and feeding behaviour in juvenile spotted hyenas (Crocuta crocuta). Journal of Zoology, 252, 273–283.CrossRefGoogle Scholar
  13. Bininda-Emonds, O. R. P., Gittleman, J. L., & Purvis, A. (1999). Building large trees by combining phylogenetic information: a complete phylogeny of the extant Carnivora (Mammalia). Biological Reviews, 74(2), 143–175.PubMedCrossRefGoogle Scholar
  14. Bocherens, H., Fizet, M., & Mariotti, A. (1994). Diet, physiology and ecology of fossil mammals as inferred from stable carbon and nitrogen isotope biogeochemistry: implications for Pleistocene bears. Palaeogeography, Palaeoclimatology, Palaeoecology, 107(3–4), 213–225.CrossRefGoogle Scholar
  15. Bocherens, H., Billiou, D., Patou-Mathis, M., Bonjean, D., Otte, M., & Mariotti, A. (1997). Paleobiological implications of the isotopic signatures (13C,15N) of fossil mammal collagen in Scladina cave (Sclayn, Belgium). Quaternary Research, 48(3), 370–380.CrossRefGoogle Scholar
  16. Bocherens, H., Stiller, M., Hobson, K. A., Pacher, M., Rabeder, G., Burns, J. A., et al. (2011). Niche partitioning between two sympatric genetically distinct cave bears (Ursus spelaeus and Ursus ingressus) and brown bear (Ursus arctos) from Austria: isotopic evidence from fossil bones. Quaternary International, 245(2), 238–248.CrossRefGoogle Scholar
  17. Bocherens, H., Bridault, A., Drucker, D. G., Hofreiter, M., Münzel, S. C., Stiller, M., et al. (2014). The last of its kind? Radiocarbon, ancient DNA and stable isotope evidence from a late cave bear (Ursus spelaeus ROSENMÜLLER, 1794) from Rochedane (France). Quaternary International, 339–340, 179–188.CrossRefGoogle Scholar
  18. Bojarska, K., & Selva, N. (2012). Spatial patterns in brown bear Ursus arctos diet: the role of geographical and environmental factors. Mammal Review, 42(2), 120–143. doi: 10.1111/j.1365-2907.2011.00192.x.CrossRefGoogle Scholar
  19. Bon, C., Caudy, N., de Dieuleveult, M., Fosse, P., Philippe, M., Maksud, F., et al. (2008). Deciphering the complete mitochondrial genome and phylogeny of the extinct cave bear in the Paleolithic painted cave of Chauvet. Proceedings of the National Academy of Sciences of the United States of America, 105(45), 17447–17452. doi: 10.1073/pnas.0806143105.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Bookstein, F. L. (1991). Morphometric tools for landmark data geometry and biology. Cambridge: Cambridge University Press.Google Scholar
  21. Bruner, E., & Costantini, D. (2009). Head morphology and degree of variation in Lacerta bilineata, Podarcis muralis and Podarcis sicula. International Journal of Morphology, 27(3), 667–676.CrossRefGoogle Scholar
  22. Cahill, J. A., Green, R. E., Fulton, T. L., Stiller, M., Jay, F., Ovsyanikov, N., et al. (2013). Genomic evidence for island population conversion resolves conflicting theories of polar bear evolution. PLoS Genetics, 9(3), e1003345.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Christiansen, P. (2007a). Canine morphology in the larger Felidae: implications for feeding ecology. Biological Journal of the Linnean Society, 91(4), 573–592.CrossRefGoogle Scholar
  24. Christiansen, P. (2007b). Comparative bite forces and canine bending strength in feline and sabretooth felids: implications for predatory ecology. Zoological Journal of the Linnean Society, 151, 423–437.CrossRefGoogle Scholar
  25. Christiansen, P. (2007c). Evolutionary implications of bite mechanics and feeding ecology in bears. Journal of Zoology, 272(4), 423–443.CrossRefGoogle Scholar
  26. Christiansen, P. (2008). Feeding ecology and morphology of the upper canines in bears (Carnivora: Ursidae). Journal of Morphology, 269(7), 896–908.PubMedCrossRefGoogle Scholar
  27. Christiansen, P., & Adolfssen, J. S. (2005). Bite forces, canine strength and skull allometry in carnivores (Mammalia, Carnivora). Journal of Zoology, 266, 133–151.CrossRefGoogle Scholar
  28. Clark, P. U., Archer, D., Pollard, D., Blum, J. D., Rial, J. A., Brovkin, V., et al. (2006). The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2. Quaternary Science Reviews, 25(23–24), 3150–3184.CrossRefGoogle Scholar
  29. Cox, P. G. (2008). A quantitative analysis of the Eutherian orbit: correlations with masticatory apparatus. Biological Reviews, 83(1), 35–69. doi: 10.1111/j.1469-185X.2007.00031.x.PubMedGoogle Scholar
  30. Davis, D. D. (1955). Masticatory apparatus in the spectacled bear. Fieldiana: Zoology, 37, 25–46.Google Scholar
  31. Desdevises, Y., Legendre, P., Azouzi, L., & Morand, S. (2003). Quantifying phylogenetically structured environmental variation. Evolution, 57(11), 2647–2652.PubMedCrossRefGoogle Scholar
  32. Emerson, S. B., & Radinsky, L. (1980). Functional-analysis of sabertooth cranial morphology. Paleobiology, 6(3), 295–312.Google Scholar
  33. Enloe, J. G., David, F., & Baryshnikov, G. (2000). Hyenas and hunters: zooarchaeological investigations at Prolom II Cave, Crimea. International Journal of Osteoarchaeology, 10(5), 310–324.CrossRefGoogle Scholar
  34. Evans, A. R., Martin, T., Fortelius, M., & Jernvall, J. (2006a). Reconstructing dental occlusion in 3D: from carnivorans to Asfaltomylos. Journal of Vertebrate Paleontology, 26(3), 59A–59A.Google Scholar
  35. Evans, A. R., Wilson, G. P., Fortelius, M., & Jernvall, J. (2006b). High-level similarity of dentitions in carnivorans and rodents. Nature, 445, 78–81.PubMedCrossRefGoogle Scholar
  36. Ewer, R. G. (1973). The carnivores. Ithaca: Cornell University Press.Google Scholar
  37. Figueirido, B., Palmqvist, P., & Pérez-Claros, J. A. (2009). Ecomorphological correlates of craniodental variation in bears and paleobiological implications for extinct taxa: an approach based on geometric morphometrics. Journal of Zoology, 277(1), 70–80.CrossRefGoogle Scholar
  38. Figueirido, B., Serrano-Alarcón, F. J., & Palmqvist, P. (2012). Geometric morphometrics shows differences and similarities in skull shape between the red and giant pandas. Journal of Zoology, 286(4), 293–302. doi: 10.1111/j.1469-7998.2011.00879.x.CrossRefGoogle Scholar
  39. Flynn, J. J., & Nedbal, M. A. (1998). Phylogeny of the Carnivora (Mammalia): congruence vs incompatibility among multiple data sets. Molecular Phylogenetics and Evolution, 9(3), 414–426. doi: 10.1006/mpev.1998.0504.PubMedCrossRefGoogle Scholar
  40. Fredriksson, G. M., Wich, S. A., & Trisno. (2006). Frugivory in sun bears (Helarctos malayanus) is linked to El Niño-related fluctuations in fruiting phenology, East Kalimantan, Indonesia. Biological Journal of the Linnean Society, 89(3), 489–508.CrossRefGoogle Scholar
  41. Fulton, T. L., & Strobeck, C. (2006). Molecular phylogeny of the Arctoidea (Carnivora): effect of missing data on supertree and supermatrix analyses of multiple gene data sets. Molecular Phylogenetics and Evolution, 41(1), 165–181. doi: 10.1016/j.ympev.2006.05.025.PubMedCrossRefGoogle Scholar
  42. Ginsburg, L., & Morales, J. (1998). Les Hemicyoninae (Ursidae, Carnivora, Mammalia) et les formes apparentées du Miocène inférieur et moyen d’Europe occidentale. Annales de Paleontologie, 84(1), 71–123. doi: 10.1016/s0753-3969(98)80003-7.CrossRefGoogle Scholar
  43. Gittleman, J. L. (1985). Carnivore body size—ecological and taxonomic correlates. Oecologia, 67(4), 540–554.CrossRefGoogle Scholar
  44. Grandal-d’Anglade, A., & Vidal Romaní, J. R. (1997). A population study on the cave bear (Ursus spelaeus Ros.-Hein.) from Cova Eirós (Triacastela, Galicia, Spain). Geobios, 30(5), 723–731.CrossRefGoogle Scholar
  45. Hänni, C., Laudet, V., Stehelin, D., & Taberlet, P. (1994). Tracking the origins of the cave bear (Ursus spelaeus) by mitochondrial DNA sequencing. Proceedings of the National Academy of Sciences of the United States of America, 91(25), 12336–12340.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Herrero, S. (1972). Aspects of evolution and adaptation in American black bears (Ursus americanus Pallus) and brown and grizzly bears (Ursus arctos Linn.) of North America. Bears - Their Biology and Management, 23, 221–231.CrossRefGoogle Scholar
  47. Hilderbrand, G. V., Farley, S. D., Robbins, C. T., Hanley, T. A., Titus, K., & Servheen, C. (1996). Use of stable isotopes to determine diets of living and extinct bears. Canadian Journal of Zoology, 74, 2080–2088.CrossRefGoogle Scholar
  48. Hofreiter, M., Capelli, C., Krings, M., Waits, L., Conard, N., Münzel, S., et al. (2002). Ancient DNA analyses reveal high mitochondrial DNA sequence diversity and parallel morphological evolution of Late Pleistocene cave bears. Molecular Biology and Evolution, 19(8), 1244–1250.PubMedCrossRefGoogle Scholar
  49. Hunt, R. M. (1999). Ursidae. In C. M. Janis, K. M. Scott, & L. L. Jacobs (Eds.), Evolution of tertiary mammals of North America (pp. 174–195). New York: Cambridge University Press.Google Scholar
  50. Hunt, R. M. (2004). A paleontologist’s perspective on the origin and relationships of the giant panda. In D. G. Lindburg & K. Baragona (Eds.), Giant pandas: biology and conservation (p. 308). Berkely: University of California Press.Google Scholar
  51. Ives, A. R., Midford, P. E., & Garland, T., Jr. (2007). Within-species measurement error in phylogenetic comparative methods. Systematic Biology, 56, 252–270.PubMedCrossRefGoogle Scholar
  52. Jin, C., Ciochon, R. L., Dong, W., Hunt, R. M., Liu, J., Jaeger, M., et al. (2007). The first skull of the earliest giant panda. Proceedings of the National Academy of Sciences of the United States of America, 104(26), 10932–10937. doi: 10.1073/pnas.0704198104.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Jin, K., Xue, C., Wu, X., Qian, J., Zhu, Y., Yang, Z., et al. (2011). Why does the giant panda eat bamboo? A comparative analysis of appetite-reward-related genes among mammals. PLoS ONE, 6(7), e22602. doi: 10.1371/journal.pone.0022602.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Joshi, A. R., Garshelis, D. L., & Smith, J. L. D. (1997). Seasonal and habitat-related diets of sloth bears in Nepal. Journal of Mammalogy, 78(2), 584–597.CrossRefGoogle Scholar
  55. Klingenberg, C. P. (2010a). MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources, 353–357, doi:10.1111/j.1755-0998.2010.02924.x.Google Scholar
  56. Klingenberg, C. P. (2010b). New Procrustes Fit. Accessed September 16th 2010.
  57. Klingenberg, C. P. (2010c). Regression. Accessed June 1st 2010.
  58. Kosintsev, P. (2007). Late Pleistocene large mammal faunas from the Urals. Quaternary International, 160, 112–120. doi: 10.1016/j.quaint.2006.09.012.CrossRefGoogle Scholar
  59. Krause, J., Unger, T., Nocon, A., Malaspinas, A.-S., Koloktronis, S.-O., Stiller, M., et al. (2008). Mitochondrial genomes reveal an explosive radiation of extinct and extant bears near the Miocene-Pliocene boundary. Evolutionary Biology, 8(220), 1–12.Google Scholar
  60. Kupczik, K., & Stynder, D. D. (2012). Tooth root morphology as an indicator for dietary specialisation in carnivores (Mammalia: Carnivora). Biological Journal of the Linnean Society, 105(2), 456–471.CrossRefGoogle Scholar
  61. Kurt, F. (1990). Malayan Sun Bear. In S. P. Parker (Ed.), Grzimek’s encyclopedia of mammals (Vol. 3, p. 504). New York: McGraw-Hill Publishing Company.Google Scholar
  62. Laurie, A., & Seidensticker, J. (1977). Behavioural ecology of the Sloth bear (Melursus ursinus). Journal of Zoology, 182(2), 187–204.CrossRefGoogle Scholar
  63. Lisiecki, L. E., & Raymo, M. E. (2007). Plio-Pleistocene climate evolution: trends and transitions in glacial cycle dynamics. Quaternary Science Reviews, 26(1–2), 56–69.CrossRefGoogle Scholar
  64. Martin, L. D. (1989). Fossil history of the terrestrial Carnivora. In J. L. Gittleman (Ed.), Carnivore behaviour, ecology and evolution (pp. 536–568). London: Chapman and Hall.CrossRefGoogle Scholar
  65. Martínez-Navarro, B., & Palmqvist, P. (1996). Presence of the African saber-toothed felid Megantereon whitei (Broom, 1937) (Mammalia, Carnivora, Machairodontinae) in Apollonia-1 (Mygdonia Basin, Macedonia, Greece). Journal of Archaeological Science, 23(6), 869–872.CrossRefGoogle Scholar
  66. Mattson, D. J. (1998). Diet and morphology of extant and recently extinct northern bears. Ursus, 10, 479–496.Google Scholar
  67. McLellan, B., & Reiner, D. C. (1994). A review of bear evolution. Bears - Their Biology and Management, 85–96.Google Scholar
  68. McNulty, K. P. (2004). A geometric morphometric assessment of hominoid crania: conservative African apes and their liberal implications. Annals of Anatomy - Anatomischer Anzeiger, 186(5–6), 429–433.PubMedCrossRefGoogle Scholar
  69. Meijaard, E. (1998). Ursus (Helarctos) malayanus, the neglected Malayan sun bear. Nederlandse Commissie voor Internationale Natuurbescherming. Mededelingen, 34, 1-62.Google Scholar
  70. Meloro, C. (2007). Plio-Pleistocene large carnivores from the Italian pensinsula: functional morphology and macroecology. Ph. D. thesis, Università degli Studi di Napoli “Federico II”, Napoli.Google Scholar
  71. Meloro, C. (2011). Feeding habits of Plio-Pleistocene large carnivores as revealed by the mandibular geometry. Journal of Vertebrate Paleontology, 31(2), 428–446.CrossRefGoogle Scholar
  72. Meloro, C., Raia, P., Piras, P., Barbera, C., & O’Higgins, P. (2008). The shape of the mandibular corpus in large fissiped carnivores: allometry, function and phylogeny. Zoological Journal of the Linnean Society, 154, 832–845.CrossRefGoogle Scholar
  73. Meloro, C., Clauss, M., & Raia, P. (2015a). Ecomorphology of Carnivora challenges convergent evolution. Organisms Diversity & Evolution, 1–10, doi: 10.1007/s13127-015-0227-5.
  74. Meloro, C., Hudson, A., & Rook, L. (2015b). Feeding habits of extant and fossil canids as determined by their skull geometry. Journal of Zoology, 295(3), 178–188.CrossRefGoogle Scholar
  75. Mutsvangwa, T. E. M., Meintjes, E. M., Viljoen, D. L., & Douglas, T. S. (2010). Morphometric analysis and classification of the facial phenotype associated with fetal alcohol syndrome in 5- and 12-year-old children. American Journal of Medical Genetics Part A, 152A, 32–41.PubMedCrossRefGoogle Scholar
  76. Nawaz, M. A. (2008). Ecology, Genetics and Conservation of Himalayan Brown Bears. Ph. D. thesis, Norwegian University of Life Sciences, Ås.Google Scholar
  77. Nelson, R. A., Folk, G. E., Pfeiffer, E. W., Craighead, J. J., Jonkel, C. J., & Steiger, D. L. (1983). Behavior, biochemistry, and hibernation in black, grizzly, and polar bears. International Conference on Bear Research and Management, 5, 284–290.Google Scholar
  78. Oldfield, C. C., McHenry, C. R., Clausen, P. D., Chamoli, U., Parr, W. C. H., Stynder, D. D., et al. (2012). Finite element analysis of ursid cranial mechanics and the prediction of feeding behaviour in the extinct giant Agriotherium. Journal of Zoology, 286(2), 163–170.CrossRefGoogle Scholar
  79. Osborn, H. F. (2010). The age of mammals in Europe, Asia and North America. New York: MacMillan Co.Google Scholar
  80. Pacher, M., & Stuart, A. J. (2008). Extinction chronology and palaeobiology of the cave bear (Ursus spelaeus). Boreas, 38, 189–206.CrossRefGoogle Scholar
  81. Palmqvist, P., Gröcke, D. R., Arribas, A., & Fariña, R. A. (2003). Paleoecological reconstruction of a Lower Pleistocene large mammal community using biogeochemical (δ13C, δ15N, δ18O, Sr: Zn) and ecomorphological approaches. Paleobiology, 29(2), 205–229.CrossRefGoogle Scholar
  82. Palmqvist, P., Pérez-Claros, J. A., Janis, C. M., Figueirido, B., Torregrosa, V., & Gröcke, D. R. (2008a). Biogeochemical and ecomorphological inferences on prey selection and resource partitioning among mammalian carnivores in an Early Pleistocene community. Palaios, 23(11), 724–737. doi: 10.2110/palo.2007.p07-073r.CrossRefGoogle Scholar
  83. Palmqvist, P., Pérez-Claros, J. A., Janis, C. M., & Gröcke, D. R. (2008b). Tracing the ecophysiology of ungulates and predator–prey relationships in an early Pleistocene large mammal community. Palaeogeography, Palaeoclimatology, Palaeoecology, 266(1–2), 95–111.CrossRefGoogle Scholar
  84. Peigné, S., Goillot, C., Germonpré, M., Blondel, C., Bignon, O., & Merceron, G. (2009). Predormancy omnivory in European cave bears evidenced by a dental microwear analysis of Ursus spelaeus from Goyet, Belgium. Proceedings of the National Academy of Sciences, 106(36), 15390–15393. doi: 10.1073/pnas.0907373106.CrossRefGoogle Scholar
  85. Pierce, G. J., Hastie, L. C., Guerra, A., Thorpe, R. S., Howard, F. G., & Boyle, P. R. (1994). Morphometric variation in Loligo forbesi and Loligo vulgaris: regional, seasonal, sex, maturity and worker differences. Fisheries Research, 21, 127–148.CrossRefGoogle Scholar
  86. Pilgrim, G. E. (1932). The fossil carnivora of India. Palaeontologia Indica, 18, 1–232.Google Scholar
  87. Pinto Llona, A. C. (2006). Comparative dental microwear analysis of cave bears Ursus spelaeus Rosenmüller, 1794 and brown bear Ursus arctos Linnaeus, 1758. Scientific Annals, School of Geology Aristotle University of Thessaloniki, 98, 103–108.Google Scholar
  88. Popowics, T. E. (2003). Postcanine dental form in the mustelidae and viverridae (Carnivora: Mammalia). Journal of Morphology, 256(3), 322–341. doi: 10.1002/jmor.10091.PubMedCrossRefGoogle Scholar
  89. Prevosti, F. J., Turazzini, G. F., Ercoli, M. D., & Hingst-Zaher, E. (2012). Mandible shape in marsupial and placental carnivorous mammals: a morphological comparative study using geometric morphometrics. Zoological Journal of the Linnean Society, 164(4), 836–855. doi: 10.1111/j.1096-3642.2011.00785.x.CrossRefGoogle Scholar
  90. Quilès, J. (2002). Les Ursidae du Pléistocène moyen et supérieur en Midi méditerranéen: Apports paléontologiques et archéozoologique. Ph. D. thesis, Muséum National d’Histoire Naturelle, Paris.Google Scholar
  91. Quilès, J., Petrea, C., Moldovan, O., Zilhao, J., Rodrigo, R., Rougier, H., et al. (2006). Cave bears (Ursus spelaeus) from the Peştera cu Oase (Banat, Romania): paleobiology and taphonomy. Comptes Rendus Palevol, 5(8), 927–934. doi: 10.1016/j.crpv.2006.09.005.CrossRefGoogle Scholar
  92. Rabal-Garcés, R., Cuenca-Bescos, G., Ignacio Canudo, J., & De Torres, T. (2012). Was the European cave bear an occasional scavenger? Lethaia, 45(1), 96–108. doi: 10.1111/j.1502-3931.2011.00260.x.CrossRefGoogle Scholar
  93. Rabeder, G., & Hofreiter, M. (2004). Der neue Stammbaum der alpinen Höhlenbären. Die Höhle, 55(1–4), 58–77.Google Scholar
  94. Rabeder, G., Hofreiter, M., Nagel, D., & Withalm, G. (2004). New taxa of Alpine cave bears (Ursidae, Carnivora). Cahiers scientifiques Muséum Lyon, 2, 49–67.Google Scholar
  95. Rabeder, G., Debeljak, I., Hofreiter, M., & Withalm, G. (2008). Morphological responses of cave bears (Ursus spelaeus group) to high-alpine habitats. Die Höhle, 59(1–4), 59–72.Google Scholar
  96. Rabeder, G., Pacher, M., & Withalm, G. (2010). Early Pleistocene bear remains from Deutsch-Altenburg (Vol. 17). Wien: Verlag der Österreichischen Akademie der Wissenschaften.Google Scholar
  97. Raia, P. (2004). Morphological correlates of tough food consumption in large land carnivores. Italian Journal of Zoology, 71(1), 45–50.CrossRefGoogle Scholar
  98. Revell, L. J. (2012). Phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3, 217–223.CrossRefGoogle Scholar
  99. Richards, M. P., Pacher, M., Stiller, M., Quilès, J., Hofreiter, M., Constantin, S., et al. (2008). Isotopic evidence for omnivory among European cave bears: Late Pleistocene Ursus spelaeus from the Peştera cu Oase, Romania. Proceedings of the National Academy of Sciences of the United States of America, 105(2), 600–604. doi: 10.1073/pnas.0711063105.
  100. Robu, M., Fortin, J. K., Richards, M. P., Schwartz, C. C., Wynn, J. G., Robbins, C. T., et al. (2013). Isotopic evidence for dietary flexibility among European Late Pleistocene cave bears (Ursus spelaeus). Canadian Journal of Zoology, 91(4), 227–234. doi: 10.1139/cjz-2012-0222.CrossRefGoogle Scholar
  101. Rohlf, F. J., & Corti, M. (2000). Use of two-block partial least squares to study covariation in shape. Systematic Biology, 49(4), 740–753.PubMedCrossRefGoogle Scholar
  102. Rossi, M., & Santi, G. (2001). Archaic and recent Ursus spelaeus forms from Lombardy and Venetia Region (North Italy). Cadernos do Laboratorio Xeolóxico de Laxe, 26, 317–323.Google Scholar
  103. Sacco, T., & Van Valkenburgh, B. (2004). Ecomorphological indicators of feeding behaviour in the bears (Carnivora: Ursidae). Journal of Zoology, 263, 41–54.CrossRefGoogle Scholar
  104. Schmitz, L., & Motani, R. (2011). Nocturnality in dinosaurs inferred from scleral ring and orbit morphology. Science, 332(6030), 705–708.PubMedCrossRefGoogle Scholar
  105. Seetah, T. K., Cardini, A., & Miracle, P. T. (2012). Can morphospace shed light on cave bear spatial-temporal variation? Population dynamics of Ursus spelaeus from Romualdova pećina and Vindija, (Croatia). Journal of Archaeological Science, 39(2), 500–510.CrossRefGoogle Scholar
  106. Senshu, T., Ohya, A., Ide, K., Mikogai, J., Morita, M., Nakao, T., et al. (2007). Studies on the digestion in the Giant Panda, Ailuropoda melanoleuca, fed feedstuffs including bamboo. Mammal Study, 32(4), 139–149. doi: 10.3106/1348-6160(2007)32[139:sotdit];2.CrossRefGoogle Scholar
  107. Slater, G. J., Dumont, E., & Van Valkenburgh, B. (2007). Implications of craniofacial form for performance of the canid skull during prey killing and feeding. Journal of Vertebrate Paleontology, 27(3), 148A–148A.Google Scholar
  108. Slater, G. J., Figueirido, B., Louis, L., Yang, P., & Van Valkenburgh, B. (2010). Biomechanical consequences of rapid evolution in the polar bear lineage. PLoS ONE, 5(11), e13870.PubMedPubMedCentralCrossRefGoogle Scholar
  109. SPSS Inc. (2009). PASW Statistics 17.0. (17.0.3 ed.). Chigago: SPSS Inc.Google Scholar
  110. Stiller, M., Molak, M., Prost, S., Rabeder, G., Baryshnikov, G., Rosendahl, W., et al. (2014). Mitochondrial DNA diversity and evolution of the Pleistocene cave bear complex. Quaternary International, 339–340, 224–231.CrossRefGoogle Scholar
  111. Stiner, M. C., Achyuthan, H., Arsebuk, G., Howell, F. C., Josephson, S. C., Juell, K. E., et al. (1998). Reconstructing cave bear paleoecology from skeletons: a cross-disciplinary study of Middle Pleistocene bears from Yarimburgaz cave, Turkey. Paleobiology, 24(1), 74–98.Google Scholar
  112. Stirling, I., & Archibald, W. R. (1977). Aspects of predation of seals by polar bears. Journal of the Fisheries Research Board of Canada, 34(8), 1126–1129. doi: 10.1139/f77-169.CrossRefGoogle Scholar
  113. Stynder, D. D., & Kupczik, K. (2013). Tooth root morphology in the early Pliocene African bear Agriotherium africanum (Mammalia, Carnivora, Ursidae) and its implications for feeding ecology. Journal of Mammalian Evolution, 20(3), 227–237.CrossRefGoogle Scholar
  114. Tagle, D. A., Miyamoto, M. M., Goodman, M., Hofmann, O., Braunitzer, G., Göltenboth, R., et al. (1986). Hemoglobin of pandas: phylogenetic relationships of carnivores as ascertained with protein sequence data. Naturwissenschaften, 73(8), 512–514.PubMedCrossRefGoogle Scholar
  115. Talbot, S. L., & Shields, G. F. (1996). A phylogeny of the bears (Ursidae) inferred from complete sequences of three mitochondrial genes. Molecular Phylogenetics and Evolution, 5(3), 567–575. doi: 10.1006/mpev.1996.0051.PubMedCrossRefGoogle Scholar
  116. Therrien, F. (2005). Mandibular force profiles of extant carnivorans and implications for the feeding behaviour of extinct predators. Journal of Zoology, 267, 249–270.CrossRefGoogle Scholar
  117. Trajano, E., & Ferrarezzi, H. (1995). A fossil bear from northeastern Brazil, with a phylogenetic analysis of the South American extinct Tremarctinae (Ursidae). Journal of Vertebrate Paleontology, 14(4), 552–561. doi: 10.1080/02724634.1995.10011577.CrossRefGoogle Scholar
  118. van Heteren, A. H., MacLarnon, A., Rae, T. C., & Soligo, C. (2009). Cave bears and their closest living relatives: a 3D geometric morphometrical approach to the functional morphology of the cave bear Ursus spelaeus. Slovenský Kras Acta Carsologica Slovaca, 47(supplement 1), 33–46.Google Scholar
  119. van Heteren, A. H., MacLarnon, A. M., Soligo, C., & Rae, T. C. (2012). 3D geometric morphometrical analyses of intraspecific variation in the mandible of Ursus spelaeus from the Alpine region. Braunschweiger Naturkundliche Schriften, 11, 111–128.Google Scholar
  120. van Heteren, A. H., MacLarnon, A. M., Soligo, C., & Rae, T. C. (2014). Functional morphology of the cave bear (Ursus spelaeus) cranium: a three-dimensional geometric morphometric analysis. Quaternary International, 339–340, 209–216.CrossRefGoogle Scholar
  121. Van Valkenburgh, B. (2007). Deja vu: the evolution of feeding morphologies in the Carnivora. Integrative and Comparative Biology, 47(1), 147–163.PubMedCrossRefGoogle Scholar
  122. Van Valkenburgh, B., & Hertel, F. (1993). Tough times at La-Brea—tooth breakage in large carnivores of the Late Pleistocene. Science, 261(5120), 456–459.CrossRefGoogle Scholar
  123. Werdelin, L. (1989). Constraint and adaptation in the bone-cracking canid Osteoborus (Mammalia, Canidae). Paleobiology, 15(4), 387–401.Google Scholar
  124. Werdelin, L., & Solounias, N. (1991). The Hyaenidae: taxonomy, systematics and evolution. Fossils and Strata, 30, 1–104.Google Scholar
  125. Wong, S. T. (2002). The ecology of Malayan sun bears (Helarctos malayanus) in the lowland tropical rainforest of Sabah, Malaysian Borneo. M. Sc. thesis, University of Montana, Montana.Google Scholar
  126. Wozencraft, W. C. (1989). Phylogeny of the recent carnivora. In J. L. Gittleman (Ed.), Carnivore behaviour, ecology and evolution (pp. 495–535). London: Chapman and Hall.CrossRefGoogle Scholar
  127. Yoganand, K., Rice, C. G., & Johnsing, A. J. T. (2012). Sloth bear. In A. J. T. Johnsing & N. Manjrekar (Eds.), Mammals of South Asia (Vol. 1, pp. 328–456). Telangana: Orient Blackswan.Google Scholar
  128. Zhang, Y.-P., & Shi, L.-M. (1991). Riddle of the giant panda. Nature, 352(6336), 573–573. doi: 10.1038/352573a0.PubMedCrossRefGoogle Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2015

Authors and Affiliations

  • Anneke H. van Heteren
    • 1
    • 2
  • Ann MacLarnon
    • 1
  • Christophe Soligo
    • 3
  • Todd C. Rae
    • 1
  1. 1.Centre for Research in Evolutionary and Environmental Anthropology, Department of Life SciencesUniversity of RoehamptonLondonUK
  2. 2.Steinmann Institut Bereich PaläontologieUniversität BonnBonnGermany
  3. 3.Department of AnthropologyUniversity College LondonLondonUK

Personalised recommendations