Skip to main content
Log in

Differentiation of North African foxes and population genetic dynamics in the desert—insights into the evolutionary history of two sister taxa, Vulpes rueppellii and Vulpes vulpes

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

The effects of Pleistocene glaciations on moulding biodiversity have been extensively investigated within temperate biomes, yet arid ecosystems are largely neglected. A clear example comes from North Africa and the successive range of expansion/contraction cycles of the Sahara desert. This study focuses on North African foxes (genus Vulpes), in particular two sister taxa, Vulpes rueppellii and Vulpes vulpes, but also Vulpes zerda and Vulpes pallida. A set of two mitochondrial markers (Cyt-b and D-loop) and 31–33 autosomal microsatellites were used to conduct phylogenetic and population analyses, as well as to investigate the possible occurrence of hybridisation events. Phylogenetic analysis revealed V. rueppellii to be more closely related to North African V. vulpes than the latter with Eurasian V. vulpes, along with the occurrence of two sub-clades of V. vulpes within the Maghreb. In contrast, microsatellite analysis identified V. rueppellii and V. vulpes as clearly separate entities, and no sign of population structure was observed for both species within North Africa. Both mitochondrial and nuclear markers separated North African and Eurasian V. vulpes in two distinct groups. We propose two explanatory scenarios, both influenced by past climatic shifts: (1) past introgression of V. vulpes mitochondrial genome into V. rueppellii and (2) V. rueppellii represents an arid ecotype of V. vulpes trapped in the Sahara during a humid/arid transition. The successive expansions/contractions of the Sahara were also likely responsible for the mitochondrial structure of North African V. vulpes. We unveil intriguing insights on the genetic structure of carnivore species in North Africa, suggesting that further integrative research is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anthelme, F., Waziri Mato, M., & Maley, J. (2008). Elevation and local refuges ensure persistence of mountain specific vegetation in the Nigerien Sahara. Journal of Arid Environments, 72(12), 2232–2242. doi:10.1016/j.jaridenv.2008.07.003.

    Article  Google Scholar 

  • Aouraghe, H. (2000). Les carnivores fossiles d’El Harhoura 1, Temara, Maroc. L'Anthropologie, 104(1), 147–171. doi:10.1016/S0003-5521(00)90007-4.

    Article  Google Scholar 

  • Arnason, U., Gullberg, A., Janke, A., Kullberg, M., Lehman, N., Petrov, E. A., & Väinölä, R. (2006). Pinniped phylogeny and a new hypothesis for their origin and dispersal. Molecular Phylogenetics and Evolution, 41(2), 345–354. doi:10.1016/j.ympev.2006.05.022.

    Article  PubMed  Google Scholar 

  • Bärmann, E. V., Wronski, T., Lerp, H., Azanza, B., Börner, S., Erpenbeck, D., et al. (2013). A morphometric and genetic framework for the genus Gazella de Blainville, 1816 (Ruminantia: Bovidae) with special focus on Arabian and Levantine mountain gazelles. Zoological Journal of the Linnean Society, 169(3), 673–696. doi:10.1111/zoj.12066.

    Article  Google Scholar 

  • Begon, M., Townsend, C. R., & Harper, J. L. (2006). Ecology: from individuals to ecosystems (4th ed.). Oxford: Wiley-Blackwell.

    Google Scholar 

  • Björnerfeldt, S., Webster, M. T., & Vilà, C. (2006). Relaxation of selective constraint on dog mitochondrial DNA following domestication. Genome Research, 16(8), 990–994. doi:10.1101/gr.5117706.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bohling, J. H., & Waits, L. P. (2011). Assessing the prevalence of hybridization between sympatric Canis species surrounding the red wolf (Canis rufus) recovery area in North Carolina. Molecular Ecology, 20(10), 2142–2156. doi:10.1111/j.1365-294X.2011.05084.x.

    Article  PubMed  Google Scholar 

  • Boratyński, Z., Brito, J. C., & Mappes, T. (2012). The origin of two cryptic species of African desert jerboas (Dipodidae: Jaculus). Biological Journal of the Linnean Society, 105(2), 435–445. doi:10.1111/j.1095-8312.2011.01791.x.

    Article  Google Scholar 

  • Brito, J. C., Acosta, A. L., Álvares, F., & Cuzin, F. (2009). Biogeography and conservation of taxa from remote regions: an application of ecological-niche based models and GIS to North-African canids. Biological Conservation, 142(12), 3020–3029. doi:10.1016/j.biocon.2009.08.001.

    Article  Google Scholar 

  • Brito, J. C., Godinho, R., Martínez-Freiría, F., Pleguezuelos, J. M., Rebelo, H., Santos, X., et al. (2014). Unravelling biodiversity, evolution and threats to conservation in the Sahara-Sahel. Biological Reviews, 89(1), 215–231. doi:10.1111/brv.12049.

    Article  PubMed  Google Scholar 

  • Carmichael, L. E., Krizan, J., Nagy, J. A., Fuglei, E., Dumond, M., Johnson, D., et al. (2007). Historical and ecological determinants of genetic structure in arctic canids. Molecular Ecology, 16(16), 3466–3483. doi:10.1111/j.1365-294X.2007.03381.x.

    Article  CAS  PubMed  Google Scholar 

  • Carranza, S., Arnold, E. N., Geniez, P., Roca, J., & Mateo, J. A. (2008). Radiation, multiple dispersal and parallelism in the skinks, Chalcides and Sphenops (Squamata: Scincidae), with comments on Scincus and Scincopus and the age of the Sahara Desert. Molecular Phylogenetics and Evolution, 46(3), 1071–1094. doi:10.1016/j.ympev.2007.11.018.

    Article  CAS  PubMed  Google Scholar 

  • Clement, M., Posada, D., & Crandall, K. A. (2000). TCS: a computer program to estimate gene genealogies. Molecular Ecology, 9(10), 1657–1659. http://www.ncbi.nlm.nih.gov/pubmed/11050560.

    Article  CAS  PubMed  Google Scholar 

  • Clutton-Brock, J., Corbet, G. G., & Hills, M. (1976). A review of the family Canidae, with a classification by numerical methods. Bulletin of the British Museum (Natural History), 29(3), 117–199. doi:10.1016/0305-4403(77)90106-6.

    Article  Google Scholar 

  • Coulthard, T., Ramirez, J., & Barton, N. (2013). Were rivers flowing across the Sahara during the last interglacial? Implications for human migration through Africa. PLoS ONE, 8(9), e74834. doi:10.1371/journal.pone.0074834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cronin, M. A., & MacNeil, M. D. (2012). Genetic relationships of extant brown bears (Ursus arctos) and polar bears (Ursus maritimus). Journal of Heredity, 103(6), 873–881. doi:10.1093/jhered/ess090.

    Article  PubMed  Google Scholar 

  • Cuzin, F. (2003). Les Grands Mammiferes du Maroc Meridional (Haut Atlas, Anti Atlas et Sahara): Distribution, écologie et conservation. PhD thesis. Laboratoire de Biogéographie et Écologie des Vertébrés. EPHE, Université Montpellier II.

  • Dalén, L., Fuglei, E., Hersteinsson, P., Kapel, C. M. O., Roth, J. D., Samelius, G., et al. (2005). Population history and genetic structure of a circumpolar species: the arctic fox. Biological Journal of the Linnean Society, 84(1), 79–89. doi:10.1111/j.1095-8312.2005.00415.x.

    Article  Google Scholar 

  • Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9(8), 772. doi:10.1038/nmeth.2109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobigny, G., Tatard, C., Gauthier, P., Ba, K., Duplantier, J.-M., Granjon, L., & Kergoat, G. J. (2013). Mitochondrial and nuclear genes-based phylogeography of Arvicanthis niloticus (Murinae) and Sub-Saharan open habitats Pleistocene history. PLoS ONE, 8(11), e77815. doi:10.1371/journal.pone.0077815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobson, M., & Wright, A. (2000). Faunal relationships and zoogeographical affinities of mammals in North-West Africa. Journal of Biogeography, 27(2), 417–424. doi:10.1046/j.1365-2699.2000.00384.x.

    Article  Google Scholar 

  • Douady, C. J., Catzeflis, F., Raman, J., Springer, M. S., & Stanhope, M. J. (2003). The Sahara as a vicariant agent, and the role of Miocene climatic events, in the diversification of the mammalian order Macroscelidea (elephant shrews). Proceedings of the National Academy of Sciences, 100(14), 8325–8330. doi:10.1073/pnas.0832467100.

    Article  CAS  Google Scholar 

  • Dragoo, J. W., & Wayne, R. K. (2003). Systematics and population genetics of swift and kit foxes. In M. A. Sovada & L. Carbyn (Eds.), The swift Fox: ecology and conservation of swift foxes in a changing world (pp. 207–222). Regina, Saskatchewan: Canadian Plains Research Center, University of Regina.

    Google Scholar 

  • Drake, N. A., Blench, R. M., Armitage, S. J., Bristow, C. S., & White, K. H. (2011). Ancient watercourses and biogeography of the Sahara explain the peopling of the desert. Proceedings of the National Academy of Sciences, 108(2), 458–462. doi:10.1073/pnas.1012231108.

    Article  CAS  Google Scholar 

  • Drummond, A. J., Suchard, M. A., Xie, D., & Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29(8), 1969–1973. doi:10.1093/molbev/mss075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durant, S. M., Pettorelli, N., Bashir, S., Woodroffe, R., Wacher, T., Ornellas, P. D. E., et al. (2012). Forgotten biodiversity in desert ecosystems. Science, 336(6087), 1379–1380. doi:10.1126/science.336.6087.1379.

    Article  CAS  PubMed  Google Scholar 

  • Earl, D. A., & vonHoldt, B. M. (2011). STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4(2), 359–361. doi:10.1007/s12686-011-9548-7.

    Article  Google Scholar 

  • Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792–1797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards, C. J., Soulsbury, C. D., Statham, M. J., Ho, S. Y. W., Wall, D., Dolf, G., et al. (2012). Temporal genetic variation of the red fox, Vulpes vulpes, across western Europe and the British Isles. Quaternary Science Reviews, 57, 95–104. doi:10.1016/j.quascirev.2012.10.010.

    Article  PubMed  PubMed Central  Google Scholar 

  • Esri. (2011). ArcGIS Desktop: Release 10. Redlands: Environmental Systems Research Institute.

    Google Scholar 

  • Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14(8), 2611–2620. doi:10.1111/j.1365-294X.2005.02553.x.

    Article  CAS  PubMed  Google Scholar 

  • Falush, D., Stephens, M., & Pritchard, J. K. (2003). Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics, 164(4), 1567–1587. doi:10.1111/j.1471-8286.2007.01758.x.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frati, F., Hartl, G. B. B., Lovari, S., Delibes, M., & Markov, G. (1998). Quaternary radiation and genetic structure of the red fox Vulpes vulpes in the Mediterranean Basin, as revealed by allozymes and mitochondrial DNA. Journal of Zoology, 245(1), 43–51. doi:10.1111/j.1469-7998.1998.tb00070.x.

    Article  Google Scholar 

  • Funk, D. J., & Omland, K. E. (2003). Species-level paraphyly and polyphyly: frequency, and consequences, with insights from animal mitochondrial DNA. Annual Review of Ecology and Systematics, 34(1), 397–423. doi:10.1146/annurev.ecolsys.34.011802.132421.

    Article  Google Scholar 

  • Galov, A., Sindičić, M., Andreanszky, T., Čurković, S., Dežđek, D., Slavica, A., et al. (2014). High genetic diversity and low population structure in red foxes (Vulpes vulpes) from Croatia. Mammalian Biology - Zeitschrift für Säugetierkunde, 79(1), 77–80. doi:10.1016/j.mambio.2013.10.003.

    Article  Google Scholar 

  • Gaubert, P., Godoy, J. A., Cerro, I., & Palomares, F. (2009). Early phases of a successful invasion: mitochondrial phylogeography of the common genet (Genetta genetta) within the Mediterranean Basin. Biological Invasions, 11(3), 523–546. doi:10.1007/s10530-008-9268-4.

    Article  Google Scholar 

  • Gaubert, P., Machordom, A., Morales, A., López-Bao, J. V., Veron, G., Amin, M., et al. (2011). Comparative phylogeography of two African carnivorans presumably introduced into Europe: disentangling natural versus human-mediated dispersal across the Strait of Gibraltar. Journal of Biogeography, 38(2), 341–358. doi:10.1111/j.1365-2699.2010.02406.x.

    Article  Google Scholar 

  • Gaubert, P., Bloch, C., Benyacoub, S., Abdelhamid, A., Pagani, P., Djagoun, C. A. M. S., et al. (2012). Reviving the African wolf Canis lupus lupaster in North and West Africa: a mitochondrial lineage ranging more than 6,000 km wide. PLoS ONE, 7(8), e42740. doi:10.1371/journal.pone.0042740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geffen, E., Mercure, A., Girman, D. J., Macdonald, D. W., & Wayne, R. K. (1992). Phylogenetic relationships of the fox-like canids: mitochondrial DNA restriction fragment, site and cytochrome b sequence analyses. Journal of Zoology, 228(1), 27–39. doi:10.1111/j.1469-7998.1992.tb04430.x.

    Article  Google Scholar 

  • Geraads, D. (2011). A revision of the fossil Canidae (Mammalia) of North-Western Africa. Palaeontology, 54(2), 429–446. doi:10.1111/j.1475-4983.2011.01039.x.

    Article  Google Scholar 

  • Godinho, R., Llaneza, L., Blanco, J. C., Lopes, S., Álvares, F., García, E. J., et al. (2011). Genetic evidence for multiple events of hybridization between wolves and domestic dogs in the Iberian Peninsula. Molecular Ecology, 20(24), 5154–5166. doi:10.1111/j.1365-294X.2011.05345.x.

    Article  PubMed  Google Scholar 

  • Godinho, R., Abáigar, T., Lopes, S., Essalhi, A., Ouragh, L., Cano, M., & Ferrand, N. (2012). Conservation genetics of the endangered Dorcas gazelle (Gazella dorcas spp.) in Northwestern Africa. Conservation Genetics, 13(4), 1003–1015. doi:10.1007/s10592-012-0348-8.

    Article  Google Scholar 

  • Godinho, R., López-Bao, J. V., Castro, D., Llaneza, L., Lopes, S., Silva, P., & Ferrand, N. (2015). Real-time assessment of hybridization between wolves and dogs: combining noninvasive samples with ancestry informative markers. Molecular Ecology Resources, 15(2), 317–328. doi:10.1111/1755-0998.12313.

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves, D. V., Brito, J. C., Crochet, P.-A., Geniez, P., Padial, J. M., & Harris, D. J. (2012). Phylogeny of North African Agama lizards (Reptilia: Agamidae) and the role of the Sahara desert in vertebrate speciation. Molecular Phylogenetics and Evolution, 64(3), 582–591. doi:10.1016/j.ympev.2012.05.007.

    Article  PubMed  Google Scholar 

  • Gottelli, D., Sillero-Zubiri, C., Applebaum, G. D., Roy, M. S., Girman, D. J., Garcia-Moreno, J., et al. (1994). Molecular genetics of the most endangered canid: the Ethiopian wolf Canis simensis. Molecular Ecology, 3(4), 301–312. http://www.ncbi.nlm.nih.gov/pubmed/7921357.

    Article  CAS  PubMed  Google Scholar 

  • Goudet, J. (1995). FSTAT (version 1.2): a computer program to calculate F-statistics. Journal of Heredity, 86(6), 485–486. doi:10.1093/jhered/est020.

    Google Scholar 

  • Guillaumet, A., Crochet, P.-A., & Pons, J.-M. (2008). Climate-driven diversification in two widespread Galerida larks. BMC Evolutionary Biology, 8, 32. doi:10.1186/1471-2148-8-32.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guiller, A., Coutellec-Vreto, M. A., Madec, L., & Deunff, J. (2001). Evolutionary history of the land snail Helix aspersa in the Western Mediterranean: preliminary results inferred from mitochondrial DNA sequences. Molecular Ecology, 10(1), 81–87. doi:10.1046/j.1365-294X.2001.01145.x.

    Article  CAS  PubMed  Google Scholar 

  • Guo, S. W., & Thompson, E. A. (1992). Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics, 48(2), 361–372. doi:10.2307/2532296.

    Article  CAS  PubMed  Google Scholar 

  • Hailer, F., Kutschera, V. E., Hallström, B. M., Klassert, D., Fain, S. R., Leonard, J. A., et al. (2012). Nuclear genomic sequences reveal that polar bears are an old and distinct bear lineage. Science, 336(6079), 344–347. doi:10.1126/science.1216424.

    Article  CAS  PubMed  Google Scholar 

  • Husemann, M., Schmitt, T., Zachos, F. E., Ulrich, W., & Habel, J. C. (2014). Palaearctic biogeography revisited: evidence for the existence of a North African refugium for Western Palaearctic biota. Journal of Biogeography, 41(1), 81–94. doi:10.1111/jbi.12180.

    Article  Google Scholar 

  • Huson, D. H., & Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution, 23(2), 254–267. doi:10.1093/molbev/msj030.

    Article  CAS  PubMed  Google Scholar 

  • Inoue, T., Nonaka, N., Mizuno, A., Morishima, Y., Sato, H., Katakura, K., & Oku, Y. (2007). Mitochondrial DNA phylogeography of the red fox (Vulpes vulpes) in Northern Japan. Zoological Science, 24(12), 1178–1186. doi:10.2108/zsj.24.1178.

    Article  CAS  PubMed  Google Scholar 

  • Jobb, G. (2011). TREEFINDER version of March 2011. Munich, Germany. Distributed by the author at http://www.treefinder.de.

  • Kays, R., Curtis, A., & Kirchman, J. J. (2010). Rapid adaptive evolution of northeastern coyotes via hybridization with wolves. Biology Letters, 6(1), 89–93. doi:10.1098/rsbl.2009.0575.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., et al. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12), 1647–1649. doi:10.1093/bioinformatics/bts199.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kocher, T. D., Thomas, W. K., Meyer, A., Edwards, S. V., Pääbo, S., Villablanca, F. X., & Wilson, A. C. (1989). Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proceedings of the National Academy of Sciences of the United States of America, 86(16), 6196–6200. doi:10.1073/pnas.86.16.6196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kröpelin, S., Verschuren, D., Lézine, A.-M., Eggermont, H., Cocquyt, C., Francus, P., et al. (2008). Climate-driven ecosystem succession in the Sahara: the past 6000 years. Science, 320(5877), 765–768. doi:10.1126/science.1154913.

    Article  PubMed  Google Scholar 

  • Kutschera, V. E., Lecomte, N., Janke, A., Selva, N., Sokolov, A. A., Haun, T., et al. (2013). A range-wide synthesis and timeline for phylogeographic events in the red fox (Vulpes vulpes). BMC Evolutionary Biology, 13(1), 114. doi:10.1186/1471-2148-13-114.

    Article  PubMed  PubMed Central  Google Scholar 

  • Langella, O. (2002). POPULATIONS 1.2.32. Population genetic software (individuals or populations distances, phylogenetic trees). http://bioinformatics.org/~tryphon/populations/.

  • Le Houérou, H. N. (1997). Climate, flora and fauna changes in the Sahara over the past 500 million years. Journal of Arid Environments, 37(4), 619–647. doi:10.1006/jare.1997.0315.

    Article  Google Scholar 

  • Lerp, H., Wronski, T., Pfenninger, M., & Plath, M. (2011). A phylogeographic framework for the conservation of Saharan and Arabian Dorcas gazelles (Artiodactyla: Bovidae). Organisms Diversity & Evolution, 11(4), 317–329. doi:10.1007/s13127-011-0057-z.

    Article  Google Scholar 

  • Librado, P., & Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11), 1451–1452. doi:10.1093/bioinformatics/btp187.

    Article  CAS  PubMed  Google Scholar 

  • Lindblad-Toh, K., Wade, C. M., Mikkelsen, T. S., Karlsson, E. K., Jaffe, D. B., Kamal, M., et al. (2005). Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature, 438(7069), 803–819. doi:10.1038/nature04338.

    Article  CAS  PubMed  Google Scholar 

  • Macdonald, D. W., Courtenay, O., Forbes, S., & Mathews, F. (1999). The red fox (Vulpes vulpes) in Saudi Arabia: loose-knit groupings in the absence of territoriality. Journal of Zoology, 249(4), 383–391. doi:10.1017/S0952836999009899.

    Article  Google Scholar 

  • Metallinou, M., Arnold, E. N., Crochet, P.-A., Geniez, P., Brito, J. C., Lymberakis, P., et al. (2012). Conquering the Sahara and Arabian deserts: systematics and biogeography of Stenodactylus geckos (Reptilia: Gekkonidae). BMC Evolutionary Biology, 12(1), 1–17. doi:10.1186/1471-2148-12-258.

    Article  Google Scholar 

  • Musiani, M., Leonard, J. A., Cluff, H. D., Gates, C. C., Mariani, S., Paquet, P. C., et al. (2007). Differentiation of tundra/taiga and boreal coniferous forest wolves: genetics, coat colour and association with migratory caribou. Molecular Ecology, 16(19), 4149–4170. doi:10.1111/j.1365-294X.2007.03458.x.

    Article  CAS  PubMed  Google Scholar 

  • Nei, M., Tajima, F., & Tateno, Y. (1983). Accuracy of estimated phylogenetic trees from molecular data—II. Gene frequency data. Journal of Molecular Evolution, 19(2), 153–170.

    Article  CAS  PubMed  Google Scholar 

  • Norén, K., Carmichael, L., Dalén, L., Hersteinsson, P., Samelius, G., Fuglei, E., et al. (2011). Arctic fox Vulpes lagopus population structure: circumpolar patterns and processes. Oikos, 120(6), 873–885. doi:10.1111/gcb.12922.

    Article  Google Scholar 

  • Nyakatura, K., & Bininda-Emonds, O. (2012). Updating the evolutionary history of Carnivora (Mammalia): a new species-level supertree complete with divergence time estimates. BMC Biology, 10(1), 1–31. doi:10.1186/1741-7007-10-12.

    Article  Google Scholar 

  • Oishi, T., Uraguchi, K., Takahashi, K., & Masuda, R. (2011). Population structures of the red fox (Vulpes vulpes) on the Hokkaido Island, Japan, revealed by microsatellite analysis. Journal of Heredity, 102(1), 38–46. doi:10.1093/jhered/esq091.

    Article  PubMed  Google Scholar 

  • Osborn, D. J., & Helmy, I. (1980). The contemporary land mammals of Egypt (including Sinai) (vol. 7). Chicago: Field Museum of Natural History. http://www.biodiversitylibrary.org/item/20753.

  • Palumbi, S., Romano, S., Mcmillan, W. O., & Grabowski, G. (1991). The simple fool’s guide to PCR. University of Hawaii (vol. 96822). Honolulu: Department of Zoology and Kewalo Marine Laboratory. University of Hawaii.

    Google Scholar 

  • Palumbi, S., Martin, A., Romano, S., McMillan, W. O., Stice, L., & Grabowski, G. (2002). The simple fool’s guide to PCR version 2.0. University of Hawaii (vol. 96822). Honolulu, Hawaii: Department of Zoology and Kewalo Marine Laboratory. University of Hawaii.

    Google Scholar 

  • Peakall, R., & Smouse, P. E. (2006). GENEALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6(1), 288–295. doi:10.1111/j.1471-8286.2005.01155.x.

    Article  Google Scholar 

  • Pompanon, F., Bonin, A., Bellemain, E., & Taberlet, P. (2005). Genotyping errors: causes, consequences and solutions. Nature Reviews Genetics, 6(11), 847–859. doi:10.1038/nrg1707.

    Article  CAS  PubMed  Google Scholar 

  • Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155(2), 945–959. doi:10.1111/j.1471-8286.2007.01758.x.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Randi, E., & Lucchini, V. (2002). Detecting rare introgression of domestic dog genes into wild wolf (Canis lupus) populations by Bayesian admixture analyses of microsatellite variation. Conservation Genetics, 3(1), 31–45. doi:10.1016/j.earscirev.2006.09.002.

    Article  CAS  Google Scholar 

  • Raymond, M., & Rousset, F. (1995). GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. Journal of Heredity, 86(3), 248–249.

    Google Scholar 

  • Rice, W. R. (1989). Analyzing tables of statistical tests. Evolution, 43(1), 223–225. doi:10.2307/2409177.

    Article  Google Scholar 

  • Rosevear, D. R., Parsons, R., Wolseley, P., & Shaffer, M. (1974). The carnivores of West Africa. London: Trustees of the British Museum (Natural History).

  • Rousset, F. (2008). GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Molecular Ecology Resources, 8(1), 103–106. doi:10.1111/j.1471-8286.2007.01931.x.

    Article  PubMed  Google Scholar 

  • Rueness, E. K., Asmyhr, M. G., Sillero-Zubiri, C., Macdonald, D. W., Bekele, A., Atickem, A., & Stenseth, N. C. (2011). The cryptic African wolf: Canis aureus lupaster is not a golden jackal and is not endemic to Egypt. PLoS ONE, 6(1), e16385. doi:10.1371/journal.pone.0016385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sacks, B. N., Statham, M. J., Perrine, J. D., Wisely, S. M., & Aubry, K. B. (2010). North American montane red foxes: expansion, fragmentation, and the origin of the Sacramento Valley red fox. Conservation Genetics, 11(4), 1523–1539. doi:10.1007/s10592-010-0053-4.

    Article  Google Scholar 

  • Sacks, B. N., Moore, M., Statham, M. J., & Wittmer, H. U. (2011). A restricted hybrid zone between native and introduced red fox (Vulpes vulpes) populations suggests reproductive barriers and competitive exclusion. Molecular Ecology, 20(2), 326–341. doi:10.1111/j.1365-294X.2010.04943.x.

    Article  PubMed  Google Scholar 

  • Savolainen, P., Zhang, Y., Luo, J., Lundeberg, J., & Leitner, T. (2002). Genetic evidence for an East Asian origin of domestic dogs. Science, 298(5598), 1610–1613. doi:10.1126/science.1073906.

    Article  CAS  PubMed  Google Scholar 

  • Schuster, M., Duringer, P., Vignaud, P., Ghienne, J.-F., Mackaye, H. T., Likius, A., & Brunet, M. (2006). The age of the Sahara Desert. Science, 311(5762), 821. doi:10.1126/science.1120161.

    Article  CAS  PubMed  Google Scholar 

  • Sillero-Zubiri, C., Hoffmann, M., & Macdonald, D. W. (2004). Canids: foxes, wolves, jackals and dogs. Status survey and conservation action plan. (C. Sillero-Zubiri, M. Hoffmann, & D. Macdonald, Eds.) IUCNSSC Action Plans. Gland, Switzerland and Cambridge, UK: IUCN/SSC Canid Specialist Group.

  • Sommer, R., & Benecke, N. (2005). Late-Pleistocene and early Holocene history of the canid fauna of Europe (Canidae). Mammalian Biology - Zeitschrift für Säugetierkunde, 70(4), 227–241. doi:10.1016/j.mambio.2004.12.001.

    Article  Google Scholar 

  • Soulsbury, C. D., Baker, P. J., Iossa, G., & Harris, S. (2010). Red foxes (Vulpes vulpes). In S. D. Gehrt, S. P. D. Riley, & B. L. Cypher (Eds.), Urban carnivores. Ecology, conflict, and conservation (pp. 63–75). Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • Sousa, P., Froufe, E., Harris, D., & Alves, P. (2011). Genetic diversity of Maghrebian Hottentotta (Scorpiones: Buthidae) scorpions based on CO1: new insights on the genus phylogeny and distribution. African Invertebrates, 52(1), 135–143. http://www.bioone.org/doi/abs/10.5733/afin.052.0106. Accessed 7 Jul 2012

  • Statham, M. J., Murdoch, J., Janecka, J., Aubry, K. B., Edwards, C. J., Soulsbury, C. D., et al. (2014). Range-wide multilocus phylogeography of the red fox reveals ancient continental divergence, minimal genomic exchange and distinct demographic histories. Molecular Ecology, 23(19), 4813–4830. doi:10.1111/mec.12898.

    Article  PubMed  Google Scholar 

  • Swezey, C. S. (2009). Cenozoic stratigraphy of the Sahara, Northern Africa. Journal of African Earth Sciences, 53(3), 89–121. doi:10.1016/j.jafrearsci.2008.08.001.

    Article  Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10), 2731–2739. doi:10.1093/molbev/msr121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tannerfeldt, M., Elmhagen, B., & Angerbjörn, A. (2002). Exclusion by interference competition? The relationship between red and arctic foxes. Oecologia, 132(2), 213–220. doi:10.1007/s00442-002-0967-8.

    Article  Google Scholar 

  • Teacher, A. G., Thomas, J. A., & Barnes, I. (2011). Modern and ancient red fox (Vulpes vulpes) in Europe show an unusual lack of geographical and temporal structuring, and differing responses within the carnivores to historical climatic change. BMC Evolutionary Biology, 11(1), 1–10. doi:10.1186/1471-2148-11-214.

    Article  Google Scholar 

  • Trucchi, E., & Sbordoni, V. (2009). Unveiling an ancient biological invasion: molecular analysis of an old European alien, the crested porcupine (Hystrix cristata). BMC Evolutionary Biology, 9, 109. doi:10.1186/1471-2148-9-109.

    Article  PubMed  PubMed Central  Google Scholar 

  • Velo-Antón, G., Godinho, R., Campos, J. C., & Brito, J. C. (2014). Should I stay or should I go? Dispersal and population structure in small, isolated desert populations of West African crocodiles. PLoS ONE, 9(4), e94626. doi:10.1371/journal.pone.0094626.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wayne, R. K., Geffen, E., Girman, D. J., Koepfli, K. P., Lau, L. M., & Marshall, C. R. (1997). Molecular systematics of the Canidae. Systematic Biology, 46(4), 622–653. http://sysbio.oxfordjournals.org/cgi/doi/10.1093/sysbio/46.4.622

  • Williams, J. B., Lenain, D., Ostrowski, S., Tieleman, B. I., & Seddon, P. J. (2002). Energy expenditure and water flux of Rüppell’s foxes in Saudi Arabia. Physiological and Biochemical Zoology, 75(5), 479–488. doi:10.1086/344490.

    Article  PubMed  Google Scholar 

  • Williams, J. B., Muñoz-Garcia, A., Ostrowski, S., & Tieleman, B. I. (2004). A phylogenetic analysis of basal metabolism, total evaporative water loss, and life-history among foxes from desert and mesic regions. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 174(1), 29–39. doi:10.1007/s00360-003-0386-0.

    Article  CAS  PubMed  Google Scholar 

  • Yom-Tov, Y., & Mendelssohn, H. (1988). Changes in the distribution and abundance of vertebrates in Israel during the 20th century. In Y. Yom-Tov & E. Tchernov (Eds.), The zoogeography of Israel (pp. 515–547). Dordrecht: D. W. J. Publishers.

    Google Scholar 

  • Zrzavy, J., & Ricankova, V. (2004). Phylogeny of Recent Canidae (Mammalia, Carnivora): relative reliability and utility of morphological and molecular datasets. Zoologica Scripta, 33(4), 311–333. doi:10.1111/j.0300-3256.2004.00152.x.

    Article  Google Scholar 

Download references

Acknowledgments

Samples for this study were collected with partial support of grants from the National Geographic Society (Commission on Research and Exploration, grants 7629-04 and 8412-08), Mohammed bin Zayed Species Conservation Fund (projects 11052709, 11052707 and 11052499) and a project from FCT, Fundação para a Ciência e Tecnologia (PTDC/BIA-BEC/099934/2008) through EU Programme COMPETE. Logistic support for fieldwork was given by Pedro Santos Lda (Trimble GPS), Off Road Power Shop, L.O. Yarba (Parc National du Banc d’Arguin), A. Araújo (MAVA-Fondation pour la Nature) and S.M. Ould Lehlou (Ministère de l’Environnement et du Développement Durable of Mauritania). We are thankful to A. Kaliontzopoulou, A. Van der Meijden, F. Martínez-Freiría, H. Yusefi, J. Maia, K. de Smet, M. Carretero, P. Sousa, S. Ferreira and S. Larbes for generously providing additional samples. We acknowledge all members of the BIODESERTS research group from CIBIO/InBIO that helped in the West Africa field work. We are also grateful to D. Castro, P. Ribeiro, S. Lopes and S. Mourão for assistance in the lab. Analyses were done at the CITES registered laboratory: 13PT0065/S. We gratefully acknowledge Mark. J. Statham and an anonymous reviewer for detailed commentaries that considerably improved the quality of this manuscript. We also acknowledge Mark J. Statham for assistance with geographical location of samples from his work. Analyses were carried out by using the resources available on Bioportal (https://www.bioportal.uio.no/) at the University of Oslo, funded by MLS and USIT and also at the Evolutionary Genetics Core Facility and the Cornell Biological Resource Centre. GVA, JCB and RG are supported by IF Research contracts from FCT (IF/01425/2014, IF/00459/2013 and IF/00564/2012, respectively).

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval

No animal was sacrificed and there were no animal husbandry, experimentation and care/welfare concerns. All applicable international, national and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to João Vasco Leite or Raquel Godinho.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 194 kb)

ESM 2

(PDF 196 kb)

ESM 3

(PDF 237 kb)

ESM 4

(PDF 267 kb)

ESM 5

(PDF 492 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leite, J.V., Álvares, F., Velo-Antón, G. et al. Differentiation of North African foxes and population genetic dynamics in the desert—insights into the evolutionary history of two sister taxa, Vulpes rueppellii and Vulpes vulpes . Org Divers Evol 15, 731–745 (2015). https://doi.org/10.1007/s13127-015-0232-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-015-0232-8

Keywords

Navigation