Skip to main content

Advertisement

Log in

Ancient divergence and recent population expansion in a leaf frog endemic to the southern Brazilian Atlantic forest

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

The evolutionary history of Neotropical organisms has been often interpreted through broad-scale generalizations. The most accepted model of diversification for the Brazilian Atlantic forest (BAF) rely on putative historical stability of northern areas and massive past habitat replacement of its southern range. Here, we use the leaf frog Phyllomedusa distincta, endemic to the southern BAF, to better understand diversification patterns within this underexplored rainforest region. We used an integrative approach coupling fine-scale sampling and multilocus sequence data, with traditional and statistical phylogeographic (multilocus approximate Bayesian computation) methods to explore alternative hypotheses of diversification. We also employed species paleodistribution modeling to independently verify habitat stability upon a spatially explicit model. Our data support two divergent lineages with coherent geographic distribution that span throughout northern and southern ranges. Demographic estimates suggested the Southern lineage has experienced a recent population expansion, whereas the Northern lineage remained more stable. Hypothesis testing supports a scenario of ancient vicariance with recent population expansion. The paleodistribution model revealed habitat discontinuity during the Last Glacial Maximum (LGM) with one area of putative stability within the range of the Northern lineage. Evidence on genetic structure, demography, and paleodistribution of P. distincta support a historically heterogeneous landscape for the southern BAF, with both areas of forest stability and regions where forest occupation is probably recent. We also associate the southern end of the Cubatão shear zone with a phylogeographic break in the BAF. Taken together, our results argue for the idea of multiple mechanisms generating diversity in this biome and underscore the need of fine-scale data in revealing more detailed pictures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akaike, H. A. I. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716–723.

    Article  Google Scholar 

  • Alvarado-Serrano, D. F., & Knowles, L. L. (2014). Ecological niche models in phylogeographic studies: applications, advances and precautions. Molecular Ecology Resources, 14(2), 233–248. doi:10.1111/1755-0998.12184.

    Article  PubMed  Google Scholar 

  • Álvarez-Presas, M., Sánchez-Gracia, A., Carbayo, F., Rozas, J., & Riutort, M. (2014). Insights into the origin and distribution of biodiversity in the Brazilian Atlantic forest hot spot: a statistical phylogeographic study using a low-dispersal organism. Heredity, 112(6), 656–665. doi:10.1038/hdy.2014.3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Amaral, F. R., Albers, P. K., Edwards, S. V., & Miyaki, C. Y. (2013). Multilocus tests of Pleistocene refugia and ancient divergence in a pair of Atlantic Forest antbirds (Myrmeciza). Molecular Ecology, 22(15), 3996–4013. doi:10.1111/mec.12361.

    Article  Google Scholar 

  • Anderson, R. P., & Gonzalez, I. (2011). Species-specific tuning increases robustness to sampling bias in models of species distributions: an implementation with Maxent. Ecological Modelling, 222(15), 2796–2811. doi:10.1016/j.ecolmodel.2011.04.011.

    Article  Google Scholar 

  • Anderson, R. P., & Raza, A. (2010). The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: preliminary tests with montane rodents (genus Nephelomys) in Venezuela. Journal of Biogeography, 37(7), 1378–1393. doi:10.1111/j.1365-2699.2010.02290.x.

    Article  Google Scholar 

  • Behling, H. (2002). South and southeast Brazilian grasslands during Late Quaternary times: a synthesis. Palaeogeography, Palaeoclimatology, Palaeoecology, 177, 19–27.

    Article  Google Scholar 

  • Brunes, T., Sequeira, F., Haddad, C., & Alexandrino, J. (2010). Gene and species trees of a Neotropical group of treefrogs: genetic diversification in the Brazilian Atlantic Forest and the origin of a polyploid species. Molecular Phylogenetics and Evolution, 57(3), 1120–1133. doi:10.1016/j.ympev.2010.08.026.

    Article  CAS  PubMed  Google Scholar 

  • Brunes, T. O., Alexandrino, J., Baêta, D., Zina, J., Haddad, C. F. B., & Sequeira, F. (2014). Species limits, phylogeographic and hybridization patterns in Neotropical leaf frogs (Phyllomedusinae). Zoologica Scripta, 43(6), 586–604. doi:10.1111/zsc.12079.

    Article  Google Scholar 

  • Camargo, A., Morando, M., Avila, L., & Sites, J. (2012). Coalescent-based methods: a test of accuracy with simulations and an empirical example with lizards of the Liolaemus darwinii complex (Squamata: Liolaemidae). Evolution, 66(9), 2834–2849. doi:10.5061/dryad.4409k652.

    Article  PubMed  Google Scholar 

  • Camargo, A., Werneck, F. P., Morando, M., Sites, J. W., Jr., & Avila, L. J. (2013). Quaternary range and demographic expansion of Liolaemus darwinii (Squamata: Liolaemidae) in the Monte Desert of Central Argentina using Bayesian phylogeography and ecological niche modelling. Molecular Ecology, 22(15), 4038–4054. doi:10.1111/mec.12369.

    Article  CAS  PubMed  Google Scholar 

  • Carnaval, A. C., & Moritz, C. (2008). Historical climate modelling predicts patterns of current biodiversity in the Brazilian Atlantic forest. Journal of Biogeography, 35, 1187–1201. doi:10.1111/j.1365-2699.2007.01870.x.

    Article  Google Scholar 

  • Carnaval, A. C., Hickerson, M. J., Haddad, C. F. B., Rodrigues, M. T., & Moritz, C. (2009). Stability predicts genetic diversity in the Brazilian Atlantic forest hotspot. Science, 323(5915), 785–789. doi:10.1126/science.1166955.

    Article  CAS  PubMed  Google Scholar 

  • Carnaval, A. C., Waltari, E., Rodrigues, M. T., Rosauer, D., Vanderwal, J., Damasceno, R., et al. (2014). Prediction of phylogeographic endemism in an environmentally complex biome. Proceedings of the Royal Society B, 281, 20141461.

    Article  PubMed  PubMed Central  Google Scholar 

  • Collevatti, R., Terribile, L., de Oliveira, G., Lima-Ribeiro, M., Nabout, J., Rangel, T., & Diniz-Filho, J. (2013). Drawbacks to palaeodistribution modelling: the case of South American seasonally dry forests. Journal of Biogeography, 40(2), 345–358. doi:10.1111/jbi.12005.

    Article  Google Scholar 

  • Crawford, A. J. (2003). Relative rates of nucleotide substitution in frogs. Journal of Molecular Evolution, 57(6), 636–641. doi:10.1007/s00239-003-2513-7.

    Article  CAS  PubMed  Google Scholar 

  • Cruz, F. W., Burns, S. J., Karmann, I., Sharp, W. D., Vuille, M., Cardoso, A. O., et al. (2005). Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil. Nature, 434, 63–66. doi:10.1029/2003JB002684.

    Article  CAS  PubMed  Google Scholar 

  • Drummond, A. J., Suchard, M. A., Xie, D., & Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29(8), 1969–1973. doi:10.1093/molbev/mss075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Earl, D. A., & VonHoldt, B. M. (2012). STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4(2), 359–361. doi:10.1007/s12686-011-9548-7.

    Article  Google Scholar 

  • Edwards, S. V., & Beerli, P. (2000). Perspective: gene divergence, population divergence, and the variance in coalescence time in phylogeographic studies. Evolution, 54(6), 1839–1854. http://www.ncbi.nlm.nih.gov/pubmed/11209764.

    CAS  PubMed  Google Scholar 

  • Elith, J., Graham, C. H., Anderson, R. P., Dudı, M., Ferrier, S., Guisan, A., et al. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 2, 129–151.

    Article  Google Scholar 

  • Elith, J., Phillips, S. J., Hastie, T., Dudı, M., Miroslav, D., Chee, Y. E., et al. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17(1), 43–57. doi:10.1111/j.1472-4642.2010.00725.x.

    Article  Google Scholar 

  • Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14(8), 2611–2620. doi:10.1111/j.1365-294X.2005.02553.x.

    Article  CAS  PubMed  Google Scholar 

  • Faivovich, J., Haddad, C. F. B., Baêta, D., Jungfer, K.-H., Álvares, G. F. R., Brandão, R. A., et al. (2010). The phylogenetic relationships of the charismatic poster frogs, Phyllomedusinae (Anura, Hylidae). Cladistics, 26, 227–261.

    Article  Google Scholar 

  • Felsenstein J (2005) PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle

  • Flot, J.-F. (2010). Seqphase: a web tool for interconverting phase input/output files and fasta sequence alignments. Molecular Ecology Resources, 10(1), 162–166. doi:10.1111/j.1755-0998.2009.02732.x.

    Article  CAS  PubMed  Google Scholar 

  • Fu, Y.-X. (1997). Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 147, 915–925.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fusinatto, L. A., Alexandrino, J., Haddad, C. F. B., Brunes, T. O., Rocha, C. F. D., & Sequeira, F. (2013). Cryptic genetic diversity is paramount in small-bodied amphibians of the genus Euparkerella (Anura: Craugastoridae) endemic to the Brazilian Atlantic forest. PloS One, 8(11), e79504. doi:10.1371/journal.pone.0079504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glez-Peña, D., Gómez-Blanco, D., Reboiro-Jato, M., Fdez-Riverola, F., & Posada, D. (2010). ALTER: program-oriented conversion of DNA and protein alignments. Nucleic Acids Research, 38(Web Server issue), W14–W18. doi:10.1093/nar/gkq321.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grazziotin, F. G., Monzel, M., Echeverrigaray, S., & Bonatto, S. L. (2006). Phylogeography of the Bothrops jararaca complex (Serpentes: Viperidae): past fragmentation and island colonization in the Brazilian Atlantic Forest. Molecular Ecology, 15(13), 3969–3982. doi:10.1111/j.1365-294X.2006.03057.x.

    Article  CAS  PubMed  Google Scholar 

  • Gruber, S. L., Silva, A. P. Z., Haddad, C. F. B., & Kasahara, S. (2013). Cytogenetic analysis of Phyllomedusa distincta Lutz, 1950 (2n = 2x = 26), P. tetraploidea Pombal and Haddad, 1992 (2n = 4x = 52), and their natural triploid hybrids (2n = 3x = 39) (Anura, Hylidae, Phyllomedusinae). BMC Genet, 14, 75. doi:10.1186/1471-2156-14-75.

    Article  PubMed  PubMed Central  Google Scholar 

  • Haddad, C. F. B., Pombal, J. P. J., & Batistic, R. F. (1994). Natural hybridization between diploid and tetraploid species of leaf-frogs, genus Phyllomedusa (Amphibia). Journal of Herpetology, 28(4), 425–430.

    Article  Google Scholar 

  • Haddad, C. F. B., Toledo, L. F., & Prado, C. P. A. (2008). Anfíbios da Mata Atlântica: guia dos anfíbios anuros da Mata Atlântica (1° ed.). São Paulo: Neotrópica.

    Google Scholar 

  • Haffer, J. (1997). Alternative models of vertebrate speciation in Amazonia: an overview. Biodiversity and Conservation, 6, 451–476.

    Article  Google Scholar 

  • Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.

    CAS  Google Scholar 

  • Hasegawa, M., Kishino, H., & Yano, T. (1985). Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution, 22, 160–174.

    Article  CAS  PubMed  Google Scholar 

  • Heled, J., & Drummond, A. J. (2008). Bayesian inference of population size history from multiple loci. BMC Evolutionary Biology, 8, 289. doi:10.1186/1471-2148-8-289.

    Article  PubMed  PubMed Central  Google Scholar 

  • Heller, R., Chikhi, L., & Siegismund, H. R. (2013). The confounding effect of population structure on Bayesian skyline plot inferences of demographic history. PloS One, 8(5), e62992. doi:10.1371/journal.pone.0062992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hey, J. (2010). Isolation with migration models for more than two populations. Molecular Biology and Evolution, 27(4), 905–920. doi:10.1093/molbev/msp296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hey, J., & Nielsen, R. (2007). Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in population genetics. Proceedings of the National Academy of Sciences of the United States of America, 104(8), 2785–2790. doi:10.1073/pnas.0611164104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hickerson, M. J., Stahl, E., & Takebayashi, N. (2007). msBayes: pipeline for testing comparative phylogeographic histories using hierarchical approximate Bayesian computation. BMC Bioinformatics, 8, 268. doi:10.1186/1471-2105-8-268

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15), 1965–1978. doi:10.1002/joc.1276.

    Article  Google Scholar 

  • Ho, S. Y. W., & Shapiro, B. (2011). Skyline-plot methods for estimating demographic history from nucleotide sequences. Molecular Ecology Resources, 11(3), 423–434. doi:10.1111/j.1755-0998.2011.02988.x.

    Article  PubMed  Google Scholar 

  • Hudson, R. R. (2002). Generating samples under a Wright–Fisher neutral model of genetic variation. Bioinformatics, 18(2), 337–338.

    Article  CAS  PubMed  Google Scholar 

  • Huson, D. H., & Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution, 23(2), 254–267. doi:10.1093/molbev/msj030.

    Article  CAS  PubMed  Google Scholar 

  • IBGE. (2012). Mapa da área de aplicação da Lei n° 11.428 de 2006. Instituto Brasileiro de Geografia e Estatística—IBGE. http://www.ibge.gov.br/home/geociencias/recursosnaturais/mapas_doc6.shtm

  • Jakobsson, M., & Rosenberg, N. A. (2007). CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics, 23(14), 1801–1806. doi:10.1093/bioinformatics/btm233.

    Article  CAS  PubMed  Google Scholar 

  • Jeffreys, H. (1961). The theory of probability. Oxford: Oxford University Press.

    Google Scholar 

  • Joly, S., & Bruneau, A. (2006). Incorporating allelic variation for reconstructing the evolutionary history of organisms from multiple genes: an example from Rosa in North America. Systematic Biology, 55(4), 623–636. http://www.ncbi.nlm.nih.gov/pubmed/16969938.

    Article  PubMed  Google Scholar 

  • Librado, P., & Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11), 1451–1452. doi:10.1093/bioinformatics/btp187.

    Article  CAS  PubMed  Google Scholar 

  • Liu, C., Berry, P. M., Dawson, T. P., & Pearson, R. G. (2005). Selecting thresholds of occurrence in the prediction of species distributions. Ecography, 3, 385–393.

    Article  Google Scholar 

  • Lutz, B. (1950). Anfíbios anuros da coleção Adolpho Lutz. V. Locomoção e estruturadas extremidades. V.a Phyllomedusa (P.) burmeisteri distincta A. Lutz. V.b Aplastodiscus perviridis A. Lutz. Memórias do Instituto Oswaldo Cruz, 48, 599–637.

  • Martins, F. M. (2011). Historical biogeography of the Brazilian Atlantic forest and the Carnaval-Moritz model of Pleistocene refugia: what do phylogeographical studies tell us? Biological Journal of the Linnean Society, 104(3), 499–509. doi:10.1111/j.1095-8312.2011.01745.x.

    Article  Google Scholar 

  • Milne, I., Wright, F., Rowe, G., Marshall, D. F., Husmeier, D., & McGuire, G. (2004). TOPALi: software for automatic identification of recombinant sequences within DNA multiple alignments. Bioinformatics, 20(11), 1806–1807. doi:10.1093/bioinformatics/bth155.

    Article  CAS  PubMed  Google Scholar 

  • Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853–858. doi:10.1038/35002501.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen, R., & Wakeley, J. (2001). Distinguishing migration from isolation: a Markov chain Monte Carlo approach. Genetics, 158(2), 885–896.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Otto-Bliesner, B. L., Marshall, S. J., Overpeck, J. T., Miller, G. H., & Hu, A. (2006). Simulating Arctic climate warmth and icefield retreat in the last interglaciation. Science, 311(5768), 1751–1753. doi:10.1126/science.1120808.

    Article  CAS  PubMed  Google Scholar 

  • Otto-Bliesner, B. L., Hewitt, C. D., Marchitto, T. M., Brady, E., Abe-Ouchi, A., Crucifix, M., et al. (2007). Last Glacial Maximum ocean thermohaline circulation: PMIP2 model intercomparisons and data constraints. Geophysical Research Letters, 34(12), L12706. doi:10.1029/2007GL029475.

    Article  Google Scholar 

  • Pellegrino, K. C. M., Rodrigues, M. T., Waite, A. N., Morando, M., Yassuda, Y. Y., & Sites, J. W. J. (2005). Phylogeography and species limits in the Gymnodactylus darwinii complex (Gekkonidae, Squamata): genetic structure coincides with river systems in the Brazilian Atlantic Forest. Biological Journal of the Linnean Society, 85(1982), 13–26. doi:10.1016/j.ympev.2011.07.010.

    Article  Google Scholar 

  • Pelletier, T. A., & Carstens, B. C. (2014). Model choice for phylogeographic inference using a large set of models. Molecular Ecology, 23(12), 3028–3043. doi:10.1111/mec.12722.

    Article  PubMed  Google Scholar 

  • Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3–4), 231–259. doi:10.1016/j.ecolmodel.2005.03.026.

    Article  Google Scholar 

  • Porto, T. J., Carnaval, A. C., & da Rocha, P. L. B. (2013). Evaluating forest refugial models using species distribution models, model filling and inclusion: a case study with 14 Brazilian species. Diversity and Distributions, 19(3), 330–340. doi:10.1111/j.1472-4642.2012.00944.x.

    Article  Google Scholar 

  • Posada, D. (2008). jModelTest: phylogenetic model averaging. Molecular Biology and Evolution, 25(7), 1253–1256. doi:10.1093/molbev/msn083.

    Article  CAS  PubMed  Google Scholar 

  • Pritchard, J., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155, 945–959.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Radosavljevic, A., & Anderson, R. P. (2013). Making better Maxent models of species distributions: complexity, overfitting and evaluation. Journal of Biogeography, 41, 629–643. doi:10.1111/jbi.12227.

    Article  Google Scholar 

  • Ramos-Onsins, S. E., & Rozas, J. (2002). Statistical properties of new neutrality tests against population growth. Molecular Biology and Evolution, 19(12), 2092–2100. http://www.ncbi.nlm.nih.gov/pubmed/12446801.

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro, A. C. (2006). Tectonic history and the biogeography of the freshwater fishes from the coastal drainages of eastern Brazil: an example of faunal evolution associated with a divergent continental margin. Neotropical Ichthyology, 4(2), 225–246.

    Article  Google Scholar 

  • Ribeiro, M. C., Metzger, J. P., Martensen, A. C., Ponzoni, F. J., & Hirota, M. M. (2009). The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biological Conservation, 142(6), 1141–1153. doi:10.1016/j.biocon.2009.02.021.

    Article  Google Scholar 

  • Rojas, M., Moreno, Æ. P., Kageyama, Æ. M., Crucifix, M., Hewitt, Æ. C., Ohgaito, R., et al. (2009). The Southern Westerlies during the last glacial maximum in PMIP2 simulations. Climate Dynamics, 32, 525–548. doi:10.1007/s00382-008-0421-7.

    Article  Google Scholar 

  • Rull, V. (2008). Speciation timing and neotropical biodiversity: the Tertiary-Quaternary debate in the light of molecular phylogenetic evidence. Molecular Ecology, 17(11), 2722–2729. doi:10.1111/j.1365-294X.2008.03789.x.

    Article  PubMed  Google Scholar 

  • Saadi, B. A., Machette, M. N., Haller, K. M., Dart, R. L., Bradley, L., & Souza, A. M. P. D. De. (2002). Map and database of Quaternary faults and lineaments in Brazil. U.S. Geological Survey, Open-File Report 02-230, version 1.0., 1–59.

  • Salzburger, W., Ewing, G. B., & von Haeseler, A. (2011). The performance of phylogenetic algorithms in estimating haplotype genealogies with migration. Molecular Ecology, 20(9), 1952–1963. doi:10.1111/j.1365-294X.2011.05066.x.

    Article  PubMed  Google Scholar 

  • Silva, S. M., Moraes-Barros, N., Ribas, C. C., Ferrand, N., & Morgante, J. S. (2012). Divide to conquer: a complex pattern of biodiversity depicted by vertebrate components in the Brazilian Atlantic Forest. Biological Journal of the Linnean Society, 107(1), 39–55. doi:10.1111/j.1095-8312.2012.01919.x.

    Article  Google Scholar 

  • Stephens, M., Smith, N. J., & Donnelly, P. (2001). A new statistical method for haplotype reconstruction from population data. American Journal of Human Genetics, 68, 978–989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123(3), 585–595.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomé, M. T. C., Zamudio, K. R., Giovanelli, J. G. R., Haddad, C. F. B., Baldissera, F. A., & Alexandrino, J. (2010). Phylogeography of endemic toads and post-Pliocene persistence of the Brazilian Atlantic Forest. Molecular Phylogenetics and Evolution, 55(3), 1018–1031. doi:10.1016/j.ympev.2010.02.003.

    Article  PubMed  Google Scholar 

  • Thomé, M. T. C., Zamudio, K. R., Haddad, C. F. B., & Alexandrino, J. (2012). Delimiting genetic units in Neotropical toads under incomplete lineage sorting and hybridization. BMC Evolutionary Biology, 12, 242. doi:10.1186/1471-2148-12-242.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomé, M. T. C., Zamudio, K. R., Haddad, C. F. B., & Alexandrino, J. (2014). Barriers, rather than refugia, underlie the origin of diversity in toads endemic to the Brazilian Atlantic Forest. Molecular Ecology, 23(24), 6152–6164. doi:10.1111/mec.12986

  • Turchetto-Zolet, A. C., Pinheiro, F., Salgueiro, F., & Palma-Silva, C. (2013). Phylogeographical patterns shed light on evolutionary process in South America. Molecular Ecology, 22(5), 1193–213. doi:10.1111/mec.12164

  • Valdez, L., & D’Elía, G. (2013). Differentiation in the Atlantic Forest: phylogeography of Akodon montensis (Rodentia, Sigmodontinae) and the Carnaval–Moritz model of Pleistocene refugia. Journal of Mammalogy, 94(4), 911–922. doi:10.1644/12-MAMM-A-227.1.

    Article  Google Scholar 

  • Wakeley, J., & Hey, J. (1997). Estimating ancestral population parameters. Genetics, 145, 847–855.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watterson, G. A. (1975). On the number of segregating sites in genetical models without recombination. Theoretical Population Biology, 7, 256–276.

    Article  CAS  PubMed  Google Scholar 

  • Weber, S. L., Drijfhout, S. S., Abe-Ouchi, A., Crucifix, M., Eby, M., Ganopolski, A., et al. (2007). The modern and glacial overturning circulation in the Atlantic Ocean in PMIP coupled model simulations. Climate of the Past, 3, 51–64. doi:10.5194/cpd-2-923-2006.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by São Paulo Research Foundation (FAPESP)—grants #2005/52727-5 and #2006/56938-3 to JA, #2008/50928-1 and #2013/50741-7 to CFBH, and fellowship grant #2011/51392-0 to MTCT; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)—grant #300612/2008-7 to CFBH; and Fundação para a Ciência e a Tecnologia (FCT)—project #PTDC/BIA-BEC/105093/2008 (funded by Fundo Europeu de Desenvolvimento Regional through the Programa Operacional Factores de Competitividade program and Portuguese national funds) to FS, and fellowship grants #SFRH/BD/61689/2009 to TOB and #SFRH/BPD/87721/2012 to FS (under the Programa Operacional Potencial Humano-Quadro de Referência Estratégico Nacional funds from the European Social Fund and Portuguese Ministério da Educação e Ciência). We are further grateful to Elaine M. Lucas (Unochapecó/Brazil), Miguel Trefault Rodrigues (USP/Brazil), and Selvino Neckel de Oliveira (UFSC/Brazil) for tissue donations; all members of UNESP/RC Herpetology Lab from 2009 to 2013, in particular, João Paulo de Cortes, for sample collections; José Carlos Brito for assisting in species distribution modeling analysis; and Andrew J. Crawford and an anonymous reviewer for their helpful comments and suggestions.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The research was conducted in accordance with Brazilian legislation governing standards of ethical procedures for collecting and scientific studies, and under consent and approval of Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio - permission 25906-1 and 2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuliana O. Brunes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

Supplementary materials and methods. (PDF 188 kb)

Online Resource 2

Supplementary results. (PDF 717 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brunes, T.O., Thomé, M.T.C., Alexandrino, J. et al. Ancient divergence and recent population expansion in a leaf frog endemic to the southern Brazilian Atlantic forest. Org Divers Evol 15, 695–710 (2015). https://doi.org/10.1007/s13127-015-0228-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-015-0228-4

Keywords

Navigation