Abstract
The dispersal ability of a species is central to its biology, affecting other processes like local adaptation, population and community dynamics, and genetic structure. Among the intrinsic, species-specific factors that affect dispersal ability in butterflies, wingspan was recently shown to explain a high amount of variance in dispersal ability. In this study, a comparative approach was adopted to test whether a difference in wingspan translates into a difference in population genetic structure. Two closely related butterfly species from subfamily Satyrinae, family Nymphalidae, which are similar with respect to all traits that affect dispersal ability except for wingspan, were studied. Melanitis leda (wingspan 60–80 mm) and Ypthima baldus (wingspan 30–40 mm) were collected from the same areas along the Western Ghats of southern India. Amplified fragment length polymorphisms were used to test whether the species with a higher wingspan (M. leda) exhibited a more homogenous population genetic structure, as compared to a species with a shorter wingspan (Y. baldus). In all analyses, Y. baldus exhibited greater degree of population genetic structuring. This study is one of the few adopting a comparative approach to establish the relationship between traits that affect dispersal ability and population genetic structure.
This is a preview of subscription content,
to check access.

Similar content being viewed by others
References
Abràmoff, M. D., Magalhães, P. J., & Ram, S. J. (2004). Image processing with ImageJ. Biophotonics International, 11(7), 36–42.
Arrigo, N., Tuszynski, J., Ehrich, D., Gerdes, T., & Alvarez, N. (2009). Evaluating the impact of scoring parameters on the structure of intra-specific genetic variation using RawGeno, an R package for automating AFLP scoring. BMC Bioinformatics, 10(1), 33.
Baguette, M., Petit, S., & Queva, F. (2000). Population spatial structure and migration of three butterfly species within the same habitat network: consequences for conservation. Journal of Applied Ecology, 37(1), 100–108.
Baguette, M., Mennechez, G., Petit, S., & Schtickzelle, N. (2003). Effect of habitat fragmentation on dispersal in the butterfly Proclossiana eunomia. Comptes Rendus-Biologies, 326, 200–209.
Barbaro, L., & van Halder, I. (2009). Linking bird, carabid beetle and butterfly life-history traits to habitat fragmentation in mosaic landscapes. Ecography, 32(2), 321–333. doi:10.1111/j.1600-0587.2008.05546.x.
Berry, O., Tocher, M. D., & Sarre, S. D. (2004). Can assignment tests measure dispersal? Molecular Ecology, 13(3), 551–561. doi:10.1046/j.1365-294X.2004.2081.x.
Billeter, R., Sedivy, I., & Diekotter, T. (2003). Distribution and dispersal patterns of the ringlet butterfly (Aphantopus hyperantus) in an agricultural landscape. Bulletin of the Geobotanical Institute ETH, 69, 45–55.
Bohonak, A. J. (1999). Dispersal, gene flow, and population structure. The Quarterly Review of Biology, 74(1), 21–45.
Bonin, A., Bellemain, E., Eidesen, P. B., Pompanon, F., Brochmann, C., & Taberlet, P. (2004). How to track and assess genotyping errors in population genetics studies. Molecular Ecology, 13(11), 3261–3273.
Bonin, A., Ehrich, D., & Manel, S. (2007). Statistical analysis of amplified fragment length polymorphism data: a toolbox for molecular ecologists and evolutionists. Molecular Ecology, 16(18), 3737–3758.
Brussard, P. F. (1970). The population structure of Erebia epipsodea (Lepidoptera: Satyrinae). Ecology, 51(1), 119–129.
Burke, R.J., Fitzsimmons, J.M., & Kerr, J.T. (2011). A mobility index for Canadian butterfly species based on naturalists’ knowledge. Biodiversity and Conservation, 1–23. doi:10.1007/s10531-011-0088-y
Chai, P., & Srygley, R.B. (1990). Predation and the flight, morphology, and temperature of neotropical rain-forest butterflies. American Naturalist.
Cowley, M. J. R., Thomas, C. D., Roy, D. B., Wilson, R. J., Leon-Cortes, J. L., Gutierrez, D., et al. (2001). Density-distribution relationships in British butterflies. I. The effect of mobility and spatial scale. Journal of Animal Ecology, 70(3), 410–425.
Crawford, L. A., Koscinski, D., & Keyghobadi, N. (2012). A call for more transparent reporting of error rates: the quality of AFLP data in ecological and evolutionary research. Molecular Ecology, 21(24), 5911–7.
Dennis, R. L., Donato, B., Sparks, T. H., & Pollard, E. (2000). Ecological correlates of island incidence and geographical range among British butterflies. Biodiversity and Conservation, 9(3), 343–359.
Doligez, B., & Part, T. (2008). Estimating fitness consequences of dispersal: a road to ‘know-where’? Non-random dispersal and the underestimation of dispersers’ fitness. Journal of Animal Ecology, 77(6), 1199–1211.
Dray, S., & Dufour, A.-B. (2007). The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software, 22(4), 1–20.
Duchesne, P., & Bernatchez, L. (2002). aflpop: a computer program for simulated and real population allocation, based on AFLP data. Molecular Ecology Notes, 2(3), 380–383.
Excoffier, L., & Lischer, H. (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10(3), 564–567. doi:10.1111/j.1755-0998.2010.02847.x.
Govindaraju, D. R. (1988). Relationship between dispersal ability and levels of gene flow in plants. Oikos, 52(1), 31–35.
Groot, A. T., Classen, A., Inglis, O., Blanco, C. A., López, J., Jr., Téran Vargas, A., et al. (2011). Genetic differentiation across North America in the generalist moth Heliothis virescens and the specialist H. subflexa. Molecular Ecology, 20(13), 2676–2692. doi:10.1111/j.1365-294X.2011.05129.x.
Habel, J., & Schmitt, T. (2009). The genetic consequences of different dispersal behaviours in Lycaenid butterfly species. Bulletin of Entomological Research, 99(05), 513–523.
Hanski, I., & Gaggiotti, O. (Eds.). (2004). Ecology, genetics, and evolution of metapopulations. London: Elsevier Academic Press.
Hanski, I., Breuker, C. J., Sch ps, K., Setchfield, R., & Nieminen, M. (2002). Population history and life history influence the migration rate of female Glanville fritillary butterflies. Oikos, 98(1), 87–97.
He, T., Krauss, S. L., Lamont, B. B., Miller, B. P., & Enright, N. J. (2004). Long-distance seed dispersal in a metapopulation of Banksia hookeriana inferred from a population allocation analysis of amplified fragment length polymorphism data. Molecular Ecology, 13(5), 1099–1109. doi:10.1111/j.1365-294X.2004.02120.x.
Irwin, D. E., Irwin, J. H., & Smith, T. B. (2011). Genetic variation and seasonal migratory connectivity in Wilson’s warblers (Wilsonia pusilla): species-level differences in nuclear DNA between western and eastern populations. Molecular Ecology, 20(15), 3102–3115. doi:10.1111/j.1365-294X.2011.05159.x.
Jombart, T. (2008). adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics, 24(11), 1403–1405. doi:10.1093/bioinformatics/btn129.
Kehimkar, I. (2008). The book of Indian butterflies. Mumbai: Bombay Natural History Society and Oxford University Press.
Koh, L. P., Sodhi, N. S., & Brook, B. W. (2004). Ecological correlates of extinction proneness in tropical butterflies. Conservation Biology, 18(6), 1571–1578.
Kotiaho, J. S., Kaitala, V., Komonen, A., & Päivinen, J. (2005). Predicting the risk of extinction from shared ecological characteristics. Proceedings of the National Academy of Sciences, 102(6), 1963–1967. doi:10.1073/pnas.0406718102.
Kuefler, D., Haddad, N. M., Hall, S., Hudgens, B., Bartel, B., & Hoffman, E. (2008). Distribution, population structure and habitat use of the endangered Saint Francis Satyr butterfly, Neonympha mitchellii francisci. American Midland Naturalist, 159(2), 298–320.
Leidner, A. K., & Haddad, N. M. (2010). Natural, not urban, barriers define population structure for a coastal endemic butterfly. Conservation Genetics, 11(6), 2311–2320. doi:10.1007/s10592-010-0117-5.
Louy, D., Habel, J., Schmitt, T., Assmann, T., Meyer, M., & Müller, P. (2007). Strongly diverging population genetic patterns of three skipper species: the role of habitat fragmentation and dispersal ability. Conservation Genetics, 8(3), 671–681.
Lowe, A., Harris, S., & Ashton, P. (2004). Ecological genetics: design, analysis, and application. Book.
Lynch, M., & Milligan, B. G. (1994). Analysis of population genetic structure with RAPD markers. Molecular Ecology, 3(2), 91–99. doi:10.1111/j.1365-294X.1994.tb00109.x.
Neve, G. (2009). Population genetics of butterflies. Ecology of butterflies in Europe.
Ockinger, E., Schweiger, O., Crist, T. O., Debinski, D. M., Krauss, J., Kuussaari, M., et al. (2010). Life-history traits predict species responses to habitat area and isolation: a cross-continental synthesis. Ecology Letters, 13, 969–979. doi:10.1111/j.1461-0248.2010.01487.x.
Peakall, R., & Smouse, P. E. (2006). GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6(1), 288–295.
Peña, C., Wahlberg, N., Weingartner, E., Kodandaramaiah, U., Nylin, S., Freitas, A., & Brower, A. (2006). Higher level phylogeny of Satyrinae butterflies (Lepidoptera: Nymphalidae) based on DNA sequence data. Molecular Phylogenetics and Evolution, 40(1), 29–49.
Peterson, M. A., & Denno, R. F. (1998). The influence of dispersal and diet breadth on patterns of genetic isolation by distance in phytophagous insects. The American Naturalist, 152(3), 428–446.
Quinn, R., Gaston, K., Blackburn, T., & Eversham, B. (1997). Abundance-range size relationships of macrolepidoptera in Britain: the effects of taxonomy and life history variables. Ecological Entomology, 22(4), 453–461.
R Development Core Team (2011). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed 7 July 2013.
Reineke, A., Karlovsky, P., & Zebitz, C. P. W. (1998). Preparation and purification of DNA from insects for AFLP analysis. Insect Molecular Biology, 7(1), 95–99.
Salvato, P., Battisti, A., Concato, S., Masutti, L., Patarnello, T., & Zane, L. (2002). Genetic differentiation in the winter pine processionary moth (Thaumetopoea pityocampa-wilkinsoni complex), inferred by AFLP and mitochondrial DNA markers. Molecular Ecology, 11(11), 2435–2444.
Schmitt, T., & Hewitt, G. (2004). The genetic pattern of population threat and loss: a case study of butterflies. Molecular Ecology, 13(1), 21–31.
Schneider, C., Dover, J., & Fry, G. L. A. (2003). Movement of two grassland butterflies in the same habitat network: the role of adult resources and size of the study area. Ecological Entomology, 28(2), 219–227.
Sekar, S. (2012). A meta-analysis of the traits affecting dispersal ability in butterflies: can wingspan be used as a proxy? The Journal of Animal Ecology, 81(1), 174–184. doi:10.1111/j.1365-2656.2011.01909.x.
Sekar, S., & Karanth, P. (2013). Flying between Sky Islands: The Effect of Naturally Fragmented Habitat on Butterfly Population Structure. PLoS ONE.
Stevens, V. M., Turlure, C., & Baguette, M. (2010). A meta-analysis of dispersal in butterflies. Biological Reviews, 85(3), 625–642.
Takami, Y., Koshio, C., Ishii, M., Fujii, H., Hidaka, T., & Shimizu, I. (2004). Genetic diversity and structure of urban populations of Pieris butterflies assessed using amplified fragment length polymorphism. Molecular Ecology, 13(2), 245–258.
Thaler, R., Brandstätter, A., Meraner, A., Chabicovski, M., Parson, W., Zelger, R., et al. (2008). Molecular phylogeny and population structure of the codling moth (Cydia pomonella) in Central Europe: II. AFLP analysis reflects human-aided local adaptation of a global pest species. Molecular Phylogenetics and Evolution, 48(3), 838–849. doi:10.1016/j.ympev.2008.05.027.
Thomas, C. D. (2000). Dispersal and extinction in fragmented landscapes. Proceedings of the Royal Society B: Biological Sciences, 267(1439), 139–145.
Timm, A. E., Geertsema, H., & Warnich, L. (2006). Gene flow among Cydia pomonella (Lepidoptera: Tortricidae) geographic and host populations in South Africa. Journal of Economic Entomology, 99(2), 341–348.
Vandewoestijne, S., Schtickzelle, N., & Baguette, M. (2008). Positive correlation between genetic diversity and fitness in a large, well-connected metapopulation. BMC Biology, 6(1), 46. doi:10.1186/1741-7007-6-46.
Vekemans, X., Beauwens, T., Lemaire, M., & Roldan-Ruiz, I. (2002). Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Molecular Ecology, 11(1), 139–151.
Whitlock, R., Hipperson, H., Mannarelli, M., Butlin, R. K., & Burke, T. (2008). An objective, rapid and reproducible method for scoring AFLP peak-height data that minimizes genotyping error. Molecular Ecology Resources, 8(4), 725–735. doi:10.1111/j.1755-0998.2007.02073.x.
Wynter-Blyth, M. A. (1957). Butterflies of the Indian Region. Mumbai: Bombay Natural History Society.
Acknowledgments
The authors would like to thank Krushnamegh Kunte and Ullasa Kodandaramaiah for discussions on the manuscript, and Jahnavi Joshi for helping with the maps. We would also like to thank the forest departments of Kerala, Karnataka, and Tamil Nadu for collection permits and the people who provided logistical support during field work: drivers (Sekar and Kumar), and field assistants at each collection site. This work was supported by the Department of Biotechnology (DBT), Government of India grant to KPK (Grant number: BT/24/NE/TBP/2010).
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Rights and permissions
About this article
Cite this article
Sekar, S., Karanth, K.P. Does size matter? Comparative population genetics of two butterflies with different wingspans. Org Divers Evol 15, 567–575 (2015). https://doi.org/10.1007/s13127-015-0214-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13127-015-0214-x