Does size matter? Comparative population genetics of two butterflies with different wingspans

Abstract

The dispersal ability of a species is central to its biology, affecting other processes like local adaptation, population and community dynamics, and genetic structure. Among the intrinsic, species-specific factors that affect dispersal ability in butterflies, wingspan was recently shown to explain a high amount of variance in dispersal ability. In this study, a comparative approach was adopted to test whether a difference in wingspan translates into a difference in population genetic structure. Two closely related butterfly species from subfamily Satyrinae, family Nymphalidae, which are similar with respect to all traits that affect dispersal ability except for wingspan, were studied. Melanitis leda (wingspan 60–80 mm) and Ypthima baldus (wingspan 30–40 mm) were collected from the same areas along the Western Ghats of southern India. Amplified fragment length polymorphisms were used to test whether the species with a higher wingspan (M. leda) exhibited a more homogenous population genetic structure, as compared to a species with a shorter wingspan (Y. baldus). In all analyses, Y. baldus exhibited greater degree of population genetic structuring. This study is one of the few adopting a comparative approach to establish the relationship between traits that affect dispersal ability and population genetic structure.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Abràmoff, M. D., Magalhães, P. J., & Ram, S. J. (2004). Image processing with ImageJ. Biophotonics International, 11(7), 36–42.

    Google Scholar 

  2. Arrigo, N., Tuszynski, J., Ehrich, D., Gerdes, T., & Alvarez, N. (2009). Evaluating the impact of scoring parameters on the structure of intra-specific genetic variation using RawGeno, an R package for automating AFLP scoring. BMC Bioinformatics, 10(1), 33.

    PubMed Central  Article  PubMed  Google Scholar 

  3. Baguette, M., Petit, S., & Queva, F. (2000). Population spatial structure and migration of three butterfly species within the same habitat network: consequences for conservation. Journal of Applied Ecology, 37(1), 100–108.

    Article  Google Scholar 

  4. Baguette, M., Mennechez, G., Petit, S., & Schtickzelle, N. (2003). Effect of habitat fragmentation on dispersal in the butterfly Proclossiana eunomia. Comptes Rendus-Biologies, 326, 200–209.

    Article  Google Scholar 

  5. Barbaro, L., & van Halder, I. (2009). Linking bird, carabid beetle and butterfly life-history traits to habitat fragmentation in mosaic landscapes. Ecography, 32(2), 321–333. doi:10.1111/j.1600-0587.2008.05546.x.

    Article  Google Scholar 

  6. Berry, O., Tocher, M. D., & Sarre, S. D. (2004). Can assignment tests measure dispersal? Molecular Ecology, 13(3), 551–561. doi:10.1046/j.1365-294X.2004.2081.x.

    Article  PubMed  Google Scholar 

  7. Billeter, R., Sedivy, I., & Diekotter, T. (2003). Distribution and dispersal patterns of the ringlet butterfly (Aphantopus hyperantus) in an agricultural landscape. Bulletin of the Geobotanical Institute ETH, 69, 45–55.

    Google Scholar 

  8. Bohonak, A. J. (1999). Dispersal, gene flow, and population structure. The Quarterly Review of Biology, 74(1), 21–45.

    CAS  Article  PubMed  Google Scholar 

  9. Bonin, A., Bellemain, E., Eidesen, P. B., Pompanon, F., Brochmann, C., & Taberlet, P. (2004). How to track and assess genotyping errors in population genetics studies. Molecular Ecology, 13(11), 3261–3273.

    CAS  Article  PubMed  Google Scholar 

  10. Bonin, A., Ehrich, D., & Manel, S. (2007). Statistical analysis of amplified fragment length polymorphism data: a toolbox for molecular ecologists and evolutionists. Molecular Ecology, 16(18), 3737–3758.

    CAS  Article  PubMed  Google Scholar 

  11. Brussard, P. F. (1970). The population structure of Erebia epipsodea (Lepidoptera: Satyrinae). Ecology, 51(1), 119–129.

    Article  Google Scholar 

  12. Burke, R.J., Fitzsimmons, J.M., & Kerr, J.T. (2011). A mobility index for Canadian butterfly species based on naturalists’ knowledge. Biodiversity and Conservation, 1–23. doi:10.1007/s10531-011-0088-y

  13. Chai, P., & Srygley, R.B. (1990). Predation and the flight, morphology, and temperature of neotropical rain-forest butterflies. American Naturalist.

  14. Cowley, M. J. R., Thomas, C. D., Roy, D. B., Wilson, R. J., Leon-Cortes, J. L., Gutierrez, D., et al. (2001). Density-distribution relationships in British butterflies. I. The effect of mobility and spatial scale. Journal of Animal Ecology, 70(3), 410–425.

    Article  Google Scholar 

  15. Crawford, L. A., Koscinski, D., & Keyghobadi, N. (2012). A call for more transparent reporting of error rates: the quality of AFLP data in ecological and evolutionary research. Molecular Ecology, 21(24), 5911–7.

    Article  PubMed  Google Scholar 

  16. Dennis, R. L., Donato, B., Sparks, T. H., & Pollard, E. (2000). Ecological correlates of island incidence and geographical range among British butterflies. Biodiversity and Conservation, 9(3), 343–359.

    Article  Google Scholar 

  17. Doligez, B., & Part, T. (2008). Estimating fitness consequences of dispersal: a road to ‘know-where’? Non-random dispersal and the underestimation of dispersers’ fitness. Journal of Animal Ecology, 77(6), 1199–1211.

    Article  PubMed  Google Scholar 

  18. Dray, S., & Dufour, A.-B. (2007). The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software, 22(4), 1–20.

    Google Scholar 

  19. Duchesne, P., & Bernatchez, L. (2002). aflpop: a computer program for simulated and real population allocation, based on AFLP data. Molecular Ecology Notes, 2(3), 380–383.

    CAS  Article  Google Scholar 

  20. Excoffier, L., & Lischer, H. (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10(3), 564–567. doi:10.1111/j.1755-0998.2010.02847.x.

    Article  PubMed  Google Scholar 

  21. Govindaraju, D. R. (1988). Relationship between dispersal ability and levels of gene flow in plants. Oikos, 52(1), 31–35.

    Article  Google Scholar 

  22. Groot, A. T., Classen, A., Inglis, O., Blanco, C. A., López, J., Jr., Téran Vargas, A., et al. (2011). Genetic differentiation across North America in the generalist moth Heliothis virescens and the specialist H. subflexa. Molecular Ecology, 20(13), 2676–2692. doi:10.1111/j.1365-294X.2011.05129.x.

    CAS  Article  PubMed  Google Scholar 

  23. Habel, J., & Schmitt, T. (2009). The genetic consequences of different dispersal behaviours in Lycaenid butterfly species. Bulletin of Entomological Research, 99(05), 513–523.

    CAS  Article  PubMed  Google Scholar 

  24. Hanski, I., & Gaggiotti, O. (Eds.). (2004). Ecology, genetics, and evolution of metapopulations. London: Elsevier Academic Press.

    Google Scholar 

  25. Hanski, I., Breuker, C. J., Sch ps, K., Setchfield, R., & Nieminen, M. (2002). Population history and life history influence the migration rate of female Glanville fritillary butterflies. Oikos, 98(1), 87–97.

    Article  Google Scholar 

  26. He, T., Krauss, S. L., Lamont, B. B., Miller, B. P., & Enright, N. J. (2004). Long-distance seed dispersal in a metapopulation of Banksia hookeriana inferred from a population allocation analysis of amplified fragment length polymorphism data. Molecular Ecology, 13(5), 1099–1109. doi:10.1111/j.1365-294X.2004.02120.x.

    CAS  Article  PubMed  Google Scholar 

  27. Irwin, D. E., Irwin, J. H., & Smith, T. B. (2011). Genetic variation and seasonal migratory connectivity in Wilson’s warblers (Wilsonia pusilla): species-level differences in nuclear DNA between western and eastern populations. Molecular Ecology, 20(15), 3102–3115. doi:10.1111/j.1365-294X.2011.05159.x.

    Article  PubMed  Google Scholar 

  28. Jombart, T. (2008). adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics, 24(11), 1403–1405. doi:10.1093/bioinformatics/btn129.

    CAS  Article  PubMed  Google Scholar 

  29. Kehimkar, I. (2008). The book of Indian butterflies. Mumbai: Bombay Natural History Society and Oxford University Press.

    Google Scholar 

  30. Koh, L. P., Sodhi, N. S., & Brook, B. W. (2004). Ecological correlates of extinction proneness in tropical butterflies. Conservation Biology, 18(6), 1571–1578.

    Article  Google Scholar 

  31. Kotiaho, J. S., Kaitala, V., Komonen, A., & Päivinen, J. (2005). Predicting the risk of extinction from shared ecological characteristics. Proceedings of the National Academy of Sciences, 102(6), 1963–1967. doi:10.1073/pnas.0406718102.

    CAS  Article  Google Scholar 

  32. Kuefler, D., Haddad, N. M., Hall, S., Hudgens, B., Bartel, B., & Hoffman, E. (2008). Distribution, population structure and habitat use of the endangered Saint Francis Satyr butterfly, Neonympha mitchellii francisci. American Midland Naturalist, 159(2), 298–320.

    Article  Google Scholar 

  33. Leidner, A. K., & Haddad, N. M. (2010). Natural, not urban, barriers define population structure for a coastal endemic butterfly. Conservation Genetics, 11(6), 2311–2320. doi:10.1007/s10592-010-0117-5.

    Article  Google Scholar 

  34. Louy, D., Habel, J., Schmitt, T., Assmann, T., Meyer, M., & Müller, P. (2007). Strongly diverging population genetic patterns of three skipper species: the role of habitat fragmentation and dispersal ability. Conservation Genetics, 8(3), 671–681.

    Article  Google Scholar 

  35. Lowe, A., Harris, S., & Ashton, P. (2004). Ecological genetics: design, analysis, and application. Book.

  36. Lynch, M., & Milligan, B. G. (1994). Analysis of population genetic structure with RAPD markers. Molecular Ecology, 3(2), 91–99. doi:10.1111/j.1365-294X.1994.tb00109.x.

    CAS  Article  PubMed  Google Scholar 

  37. Neve, G. (2009). Population genetics of butterflies. Ecology of butterflies in Europe.

  38. Ockinger, E., Schweiger, O., Crist, T. O., Debinski, D. M., Krauss, J., Kuussaari, M., et al. (2010). Life-history traits predict species responses to habitat area and isolation: a cross-continental synthesis. Ecology Letters, 13, 969–979. doi:10.1111/j.1461-0248.2010.01487.x.

    PubMed  Google Scholar 

  39. Peakall, R., & Smouse, P. E. (2006). GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6(1), 288–295.

    Article  Google Scholar 

  40. Peña, C., Wahlberg, N., Weingartner, E., Kodandaramaiah, U., Nylin, S., Freitas, A., & Brower, A. (2006). Higher level phylogeny of Satyrinae butterflies (Lepidoptera: Nymphalidae) based on DNA sequence data. Molecular Phylogenetics and Evolution, 40(1), 29–49.

    Article  PubMed  Google Scholar 

  41. Peterson, M. A., & Denno, R. F. (1998). The influence of dispersal and diet breadth on patterns of genetic isolation by distance in phytophagous insects. The American Naturalist, 152(3), 428–446.

    CAS  Article  PubMed  Google Scholar 

  42. Quinn, R., Gaston, K., Blackburn, T., & Eversham, B. (1997). Abundance-range size relationships of macrolepidoptera in Britain: the effects of taxonomy and life history variables. Ecological Entomology, 22(4), 453–461.

    Article  Google Scholar 

  43. R Development Core Team (2011). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed 7 July 2013.

  44. Reineke, A., Karlovsky, P., & Zebitz, C. P. W. (1998). Preparation and purification of DNA from insects for AFLP analysis. Insect Molecular Biology, 7(1), 95–99.

    CAS  Article  PubMed  Google Scholar 

  45. Salvato, P., Battisti, A., Concato, S., Masutti, L., Patarnello, T., & Zane, L. (2002). Genetic differentiation in the winter pine processionary moth (Thaumetopoea pityocampa-wilkinsoni complex), inferred by AFLP and mitochondrial DNA markers. Molecular Ecology, 11(11), 2435–2444.

    CAS  Article  PubMed  Google Scholar 

  46. Schmitt, T., & Hewitt, G. (2004). The genetic pattern of population threat and loss: a case study of butterflies. Molecular Ecology, 13(1), 21–31.

    CAS  Article  PubMed  Google Scholar 

  47. Schneider, C., Dover, J., & Fry, G. L. A. (2003). Movement of two grassland butterflies in the same habitat network: the role of adult resources and size of the study area. Ecological Entomology, 28(2), 219–227.

    Article  Google Scholar 

  48. Sekar, S. (2012). A meta-analysis of the traits affecting dispersal ability in butterflies: can wingspan be used as a proxy? The Journal of Animal Ecology, 81(1), 174–184. doi:10.1111/j.1365-2656.2011.01909.x.

    Article  PubMed  Google Scholar 

  49. Sekar, S., & Karanth, P. (2013). Flying between Sky Islands: The Effect of Naturally Fragmented Habitat on Butterfly Population Structure. PLoS ONE.

  50. Stevens, V. M., Turlure, C., & Baguette, M. (2010). A meta-analysis of dispersal in butterflies. Biological Reviews, 85(3), 625–642.

    PubMed  Google Scholar 

  51. Takami, Y., Koshio, C., Ishii, M., Fujii, H., Hidaka, T., & Shimizu, I. (2004). Genetic diversity and structure of urban populations of Pieris butterflies assessed using amplified fragment length polymorphism. Molecular Ecology, 13(2), 245–258.

    Article  PubMed  Google Scholar 

  52. Thaler, R., Brandstätter, A., Meraner, A., Chabicovski, M., Parson, W., Zelger, R., et al. (2008). Molecular phylogeny and population structure of the codling moth (Cydia pomonella) in Central Europe: II. AFLP analysis reflects human-aided local adaptation of a global pest species. Molecular Phylogenetics and Evolution, 48(3), 838–849. doi:10.1016/j.ympev.2008.05.027.

    CAS  Article  PubMed  Google Scholar 

  53. Thomas, C. D. (2000). Dispersal and extinction in fragmented landscapes. Proceedings of the Royal Society B: Biological Sciences, 267(1439), 139–145.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  54. Timm, A. E., Geertsema, H., & Warnich, L. (2006). Gene flow among Cydia pomonella (Lepidoptera: Tortricidae) geographic and host populations in South Africa. Journal of Economic Entomology, 99(2), 341–348.

    CAS  Article  PubMed  Google Scholar 

  55. Vandewoestijne, S., Schtickzelle, N., & Baguette, M. (2008). Positive correlation between genetic diversity and fitness in a large, well-connected metapopulation. BMC Biology, 6(1), 46. doi:10.1186/1741-7007-6-46.

    PubMed Central  Article  PubMed  Google Scholar 

  56. Vekemans, X., Beauwens, T., Lemaire, M., & Roldan-Ruiz, I. (2002). Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Molecular Ecology, 11(1), 139–151.

    CAS  Article  PubMed  Google Scholar 

  57. Whitlock, R., Hipperson, H., Mannarelli, M., Butlin, R. K., & Burke, T. (2008). An objective, rapid and reproducible method for scoring AFLP peak-height data that minimizes genotyping error. Molecular Ecology Resources, 8(4), 725–735. doi:10.1111/j.1755-0998.2007.02073.x.

    CAS  Article  PubMed  Google Scholar 

  58. Wynter-Blyth, M. A. (1957). Butterflies of the Indian Region. Mumbai: Bombay Natural History Society.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Krushnamegh Kunte and Ullasa Kodandaramaiah for discussions on the manuscript, and Jahnavi Joshi for helping with the maps. We would also like to thank the forest departments of Kerala, Karnataka, and Tamil Nadu for collection permits and the people who provided logistical support during field work: drivers (Sekar and Kumar), and field assistants at each collection site. This work was supported by the Department of Biotechnology (DBT), Government of India grant to KPK (Grant number: BT/24/NE/TBP/2010).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sandhya Sekar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Sampling locations for a) Melanitis leda and b) Ypthima baldus. (DOCX 43 kb)

Table S2

Band-based F ST values between populations of a) ML, and b) YB. (DOCX 27 kb)

Table S3

Analysis of molecular variance for ML and YB. (DOCX 24 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sekar, S., Karanth, K.P. Does size matter? Comparative population genetics of two butterflies with different wingspans. Org Divers Evol 15, 567–575 (2015). https://doi.org/10.1007/s13127-015-0214-x

Download citation

Keywords

  • Amplified fragment length polymorphisms
  • Butterflies
  • Dispersal ability
  • Population genetic structure
  • Western Ghats
  • Wingspan