Advertisement

Organisms Diversity & Evolution

, Volume 15, Issue 3, pp 567–575 | Cite as

Does size matter? Comparative population genetics of two butterflies with different wingspans

  • Sandhya SekarEmail author
  • K. Praveen Karanth
Original Article
  • 246 Downloads

Abstract

The dispersal ability of a species is central to its biology, affecting other processes like local adaptation, population and community dynamics, and genetic structure. Among the intrinsic, species-specific factors that affect dispersal ability in butterflies, wingspan was recently shown to explain a high amount of variance in dispersal ability. In this study, a comparative approach was adopted to test whether a difference in wingspan translates into a difference in population genetic structure. Two closely related butterfly species from subfamily Satyrinae, family Nymphalidae, which are similar with respect to all traits that affect dispersal ability except for wingspan, were studied. Melanitis leda (wingspan 60–80 mm) and Ypthima baldus (wingspan 30–40 mm) were collected from the same areas along the Western Ghats of southern India. Amplified fragment length polymorphisms were used to test whether the species with a higher wingspan (M. leda) exhibited a more homogenous population genetic structure, as compared to a species with a shorter wingspan (Y. baldus). In all analyses, Y. baldus exhibited greater degree of population genetic structuring. This study is one of the few adopting a comparative approach to establish the relationship between traits that affect dispersal ability and population genetic structure.

Keywords

Amplified fragment length polymorphisms Butterflies Dispersal ability Population genetic structure Western Ghats Wingspan 

Notes

Acknowledgments

The authors would like to thank Krushnamegh Kunte and Ullasa Kodandaramaiah for discussions on the manuscript, and Jahnavi Joshi for helping with the maps. We would also like to thank the forest departments of Kerala, Karnataka, and Tamil Nadu for collection permits and the people who provided logistical support during field work: drivers (Sekar and Kumar), and field assistants at each collection site. This work was supported by the Department of Biotechnology (DBT), Government of India grant to KPK (Grant number: BT/24/NE/TBP/2010).

Supplementary material

13127_2015_214_MOESM1_ESM.docx (44 kb)
Table S1 Sampling locations for a) Melanitis leda and b) Ypthima baldus. (DOCX 43 kb)
13127_2015_214_MOESM2_ESM.docx (27 kb)
Table S2 Band-based F ST values between populations of a) ML, and b) YB. (DOCX 27 kb)
13127_2015_214_MOESM3_ESM.docx (24 kb)
Table S3 Analysis of molecular variance for ML and YB. (DOCX 24 kb)

References

  1. Abràmoff, M. D., Magalhães, P. J., & Ram, S. J. (2004). Image processing with ImageJ. Biophotonics International, 11(7), 36–42.Google Scholar
  2. Arrigo, N., Tuszynski, J., Ehrich, D., Gerdes, T., & Alvarez, N. (2009). Evaluating the impact of scoring parameters on the structure of intra-specific genetic variation using RawGeno, an R package for automating AFLP scoring. BMC Bioinformatics, 10(1), 33.PubMedCentralCrossRefPubMedGoogle Scholar
  3. Baguette, M., Petit, S., & Queva, F. (2000). Population spatial structure and migration of three butterfly species within the same habitat network: consequences for conservation. Journal of Applied Ecology, 37(1), 100–108.CrossRefGoogle Scholar
  4. Baguette, M., Mennechez, G., Petit, S., & Schtickzelle, N. (2003). Effect of habitat fragmentation on dispersal in the butterfly Proclossiana eunomia. Comptes Rendus-Biologies, 326, 200–209.CrossRefGoogle Scholar
  5. Barbaro, L., & van Halder, I. (2009). Linking bird, carabid beetle and butterfly life-history traits to habitat fragmentation in mosaic landscapes. Ecography, 32(2), 321–333. doi: 10.1111/j.1600-0587.2008.05546.x.CrossRefGoogle Scholar
  6. Berry, O., Tocher, M. D., & Sarre, S. D. (2004). Can assignment tests measure dispersal? Molecular Ecology, 13(3), 551–561. doi: 10.1046/j.1365-294X.2004.2081.x.CrossRefPubMedGoogle Scholar
  7. Billeter, R., Sedivy, I., & Diekotter, T. (2003). Distribution and dispersal patterns of the ringlet butterfly (Aphantopus hyperantus) in an agricultural landscape. Bulletin of the Geobotanical Institute ETH, 69, 45–55.Google Scholar
  8. Bohonak, A. J. (1999). Dispersal, gene flow, and population structure. The Quarterly Review of Biology, 74(1), 21–45.CrossRefPubMedGoogle Scholar
  9. Bonin, A., Bellemain, E., Eidesen, P. B., Pompanon, F., Brochmann, C., & Taberlet, P. (2004). How to track and assess genotyping errors in population genetics studies. Molecular Ecology, 13(11), 3261–3273.CrossRefPubMedGoogle Scholar
  10. Bonin, A., Ehrich, D., & Manel, S. (2007). Statistical analysis of amplified fragment length polymorphism data: a toolbox for molecular ecologists and evolutionists. Molecular Ecology, 16(18), 3737–3758.CrossRefPubMedGoogle Scholar
  11. Brussard, P. F. (1970). The population structure of Erebia epipsodea (Lepidoptera: Satyrinae). Ecology, 51(1), 119–129.CrossRefGoogle Scholar
  12. Burke, R.J., Fitzsimmons, J.M., & Kerr, J.T. (2011). A mobility index for Canadian butterfly species based on naturalists’ knowledge. Biodiversity and Conservation, 1–23. doi: 10.1007/s10531-011-0088-y
  13. Chai, P., & Srygley, R.B. (1990). Predation and the flight, morphology, and temperature of neotropical rain-forest butterflies. American Naturalist.Google Scholar
  14. Cowley, M. J. R., Thomas, C. D., Roy, D. B., Wilson, R. J., Leon-Cortes, J. L., Gutierrez, D., et al. (2001). Density-distribution relationships in British butterflies. I. The effect of mobility and spatial scale. Journal of Animal Ecology, 70(3), 410–425.CrossRefGoogle Scholar
  15. Crawford, L. A., Koscinski, D., & Keyghobadi, N. (2012). A call for more transparent reporting of error rates: the quality of AFLP data in ecological and evolutionary research. Molecular Ecology, 21(24), 5911–7.CrossRefPubMedGoogle Scholar
  16. Dennis, R. L., Donato, B., Sparks, T. H., & Pollard, E. (2000). Ecological correlates of island incidence and geographical range among British butterflies. Biodiversity and Conservation, 9(3), 343–359.CrossRefGoogle Scholar
  17. Doligez, B., & Part, T. (2008). Estimating fitness consequences of dispersal: a road to ‘know-where’? Non-random dispersal and the underestimation of dispersers’ fitness. Journal of Animal Ecology, 77(6), 1199–1211.CrossRefPubMedGoogle Scholar
  18. Dray, S., & Dufour, A.-B. (2007). The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software, 22(4), 1–20.Google Scholar
  19. Duchesne, P., & Bernatchez, L. (2002). aflpop: a computer program for simulated and real population allocation, based on AFLP data. Molecular Ecology Notes, 2(3), 380–383.CrossRefGoogle Scholar
  20. Excoffier, L., & Lischer, H. (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10(3), 564–567. doi: 10.1111/j.1755-0998.2010.02847.x.CrossRefPubMedGoogle Scholar
  21. Govindaraju, D. R. (1988). Relationship between dispersal ability and levels of gene flow in plants. Oikos, 52(1), 31–35.CrossRefGoogle Scholar
  22. Groot, A. T., Classen, A., Inglis, O., Blanco, C. A., López, J., Jr., Téran Vargas, A., et al. (2011). Genetic differentiation across North America in the generalist moth Heliothis virescens and the specialist H. subflexa. Molecular Ecology, 20(13), 2676–2692. doi: 10.1111/j.1365-294X.2011.05129.x.CrossRefPubMedGoogle Scholar
  23. Habel, J., & Schmitt, T. (2009). The genetic consequences of different dispersal behaviours in Lycaenid butterfly species. Bulletin of Entomological Research, 99(05), 513–523.CrossRefPubMedGoogle Scholar
  24. Hanski, I., & Gaggiotti, O. (Eds.). (2004). Ecology, genetics, and evolution of metapopulations. London: Elsevier Academic Press.Google Scholar
  25. Hanski, I., Breuker, C. J., Sch ps, K., Setchfield, R., & Nieminen, M. (2002). Population history and life history influence the migration rate of female Glanville fritillary butterflies. Oikos, 98(1), 87–97.CrossRefGoogle Scholar
  26. He, T., Krauss, S. L., Lamont, B. B., Miller, B. P., & Enright, N. J. (2004). Long-distance seed dispersal in a metapopulation of Banksia hookeriana inferred from a population allocation analysis of amplified fragment length polymorphism data. Molecular Ecology, 13(5), 1099–1109. doi: 10.1111/j.1365-294X.2004.02120.x.CrossRefPubMedGoogle Scholar
  27. Irwin, D. E., Irwin, J. H., & Smith, T. B. (2011). Genetic variation and seasonal migratory connectivity in Wilson’s warblers (Wilsonia pusilla): species-level differences in nuclear DNA between western and eastern populations. Molecular Ecology, 20(15), 3102–3115. doi: 10.1111/j.1365-294X.2011.05159.x.CrossRefPubMedGoogle Scholar
  28. Jombart, T. (2008). adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics, 24(11), 1403–1405. doi: 10.1093/bioinformatics/btn129.CrossRefPubMedGoogle Scholar
  29. Kehimkar, I. (2008). The book of Indian butterflies. Mumbai: Bombay Natural History Society and Oxford University Press.Google Scholar
  30. Koh, L. P., Sodhi, N. S., & Brook, B. W. (2004). Ecological correlates of extinction proneness in tropical butterflies. Conservation Biology, 18(6), 1571–1578.CrossRefGoogle Scholar
  31. Kotiaho, J. S., Kaitala, V., Komonen, A., & Päivinen, J. (2005). Predicting the risk of extinction from shared ecological characteristics. Proceedings of the National Academy of Sciences, 102(6), 1963–1967. doi: 10.1073/pnas.0406718102.CrossRefGoogle Scholar
  32. Kuefler, D., Haddad, N. M., Hall, S., Hudgens, B., Bartel, B., & Hoffman, E. (2008). Distribution, population structure and habitat use of the endangered Saint Francis Satyr butterfly, Neonympha mitchellii francisci. American Midland Naturalist, 159(2), 298–320.CrossRefGoogle Scholar
  33. Leidner, A. K., & Haddad, N. M. (2010). Natural, not urban, barriers define population structure for a coastal endemic butterfly. Conservation Genetics, 11(6), 2311–2320. doi: 10.1007/s10592-010-0117-5.CrossRefGoogle Scholar
  34. Louy, D., Habel, J., Schmitt, T., Assmann, T., Meyer, M., & Müller, P. (2007). Strongly diverging population genetic patterns of three skipper species: the role of habitat fragmentation and dispersal ability. Conservation Genetics, 8(3), 671–681.CrossRefGoogle Scholar
  35. Lowe, A., Harris, S., & Ashton, P. (2004). Ecological genetics: design, analysis, and application. Book.Google Scholar
  36. Lynch, M., & Milligan, B. G. (1994). Analysis of population genetic structure with RAPD markers. Molecular Ecology, 3(2), 91–99. doi: 10.1111/j.1365-294X.1994.tb00109.x.CrossRefPubMedGoogle Scholar
  37. Neve, G. (2009). Population genetics of butterflies. Ecology of butterflies in Europe.Google Scholar
  38. Ockinger, E., Schweiger, O., Crist, T. O., Debinski, D. M., Krauss, J., Kuussaari, M., et al. (2010). Life-history traits predict species responses to habitat area and isolation: a cross-continental synthesis. Ecology Letters, 13, 969–979. doi: 10.1111/j.1461-0248.2010.01487.x.PubMedGoogle Scholar
  39. Peakall, R., & Smouse, P. E. (2006). GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6(1), 288–295.CrossRefGoogle Scholar
  40. Peña, C., Wahlberg, N., Weingartner, E., Kodandaramaiah, U., Nylin, S., Freitas, A., & Brower, A. (2006). Higher level phylogeny of Satyrinae butterflies (Lepidoptera: Nymphalidae) based on DNA sequence data. Molecular Phylogenetics and Evolution, 40(1), 29–49.CrossRefPubMedGoogle Scholar
  41. Peterson, M. A., & Denno, R. F. (1998). The influence of dispersal and diet breadth on patterns of genetic isolation by distance in phytophagous insects. The American Naturalist, 152(3), 428–446.CrossRefPubMedGoogle Scholar
  42. Quinn, R., Gaston, K., Blackburn, T., & Eversham, B. (1997). Abundance-range size relationships of macrolepidoptera in Britain: the effects of taxonomy and life history variables. Ecological Entomology, 22(4), 453–461.CrossRefGoogle Scholar
  43. R Development Core Team (2011). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed 7 July 2013.
  44. Reineke, A., Karlovsky, P., & Zebitz, C. P. W. (1998). Preparation and purification of DNA from insects for AFLP analysis. Insect Molecular Biology, 7(1), 95–99.CrossRefPubMedGoogle Scholar
  45. Salvato, P., Battisti, A., Concato, S., Masutti, L., Patarnello, T., & Zane, L. (2002). Genetic differentiation in the winter pine processionary moth (Thaumetopoea pityocampa-wilkinsoni complex), inferred by AFLP and mitochondrial DNA markers. Molecular Ecology, 11(11), 2435–2444.CrossRefPubMedGoogle Scholar
  46. Schmitt, T., & Hewitt, G. (2004). The genetic pattern of population threat and loss: a case study of butterflies. Molecular Ecology, 13(1), 21–31.CrossRefPubMedGoogle Scholar
  47. Schneider, C., Dover, J., & Fry, G. L. A. (2003). Movement of two grassland butterflies in the same habitat network: the role of adult resources and size of the study area. Ecological Entomology, 28(2), 219–227.CrossRefGoogle Scholar
  48. Sekar, S. (2012). A meta-analysis of the traits affecting dispersal ability in butterflies: can wingspan be used as a proxy? The Journal of Animal Ecology, 81(1), 174–184. doi: 10.1111/j.1365-2656.2011.01909.x.CrossRefPubMedGoogle Scholar
  49. Sekar, S., & Karanth, P. (2013). Flying between Sky Islands: The Effect of Naturally Fragmented Habitat on Butterfly Population Structure. PLoS ONE.Google Scholar
  50. Stevens, V. M., Turlure, C., & Baguette, M. (2010). A meta-analysis of dispersal in butterflies. Biological Reviews, 85(3), 625–642.PubMedGoogle Scholar
  51. Takami, Y., Koshio, C., Ishii, M., Fujii, H., Hidaka, T., & Shimizu, I. (2004). Genetic diversity and structure of urban populations of Pieris butterflies assessed using amplified fragment length polymorphism. Molecular Ecology, 13(2), 245–258.CrossRefPubMedGoogle Scholar
  52. Thaler, R., Brandstätter, A., Meraner, A., Chabicovski, M., Parson, W., Zelger, R., et al. (2008). Molecular phylogeny and population structure of the codling moth (Cydia pomonella) in Central Europe: II. AFLP analysis reflects human-aided local adaptation of a global pest species. Molecular Phylogenetics and Evolution, 48(3), 838–849. doi: 10.1016/j.ympev.2008.05.027.CrossRefPubMedGoogle Scholar
  53. Thomas, C. D. (2000). Dispersal and extinction in fragmented landscapes. Proceedings of the Royal Society B: Biological Sciences, 267(1439), 139–145.PubMedCentralCrossRefPubMedGoogle Scholar
  54. Timm, A. E., Geertsema, H., & Warnich, L. (2006). Gene flow among Cydia pomonella (Lepidoptera: Tortricidae) geographic and host populations in South Africa. Journal of Economic Entomology, 99(2), 341–348.CrossRefPubMedGoogle Scholar
  55. Vandewoestijne, S., Schtickzelle, N., & Baguette, M. (2008). Positive correlation between genetic diversity and fitness in a large, well-connected metapopulation. BMC Biology, 6(1), 46. doi: 10.1186/1741-7007-6-46.PubMedCentralCrossRefPubMedGoogle Scholar
  56. Vekemans, X., Beauwens, T., Lemaire, M., & Roldan-Ruiz, I. (2002). Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Molecular Ecology, 11(1), 139–151.CrossRefPubMedGoogle Scholar
  57. Whitlock, R., Hipperson, H., Mannarelli, M., Butlin, R. K., & Burke, T. (2008). An objective, rapid and reproducible method for scoring AFLP peak-height data that minimizes genotyping error. Molecular Ecology Resources, 8(4), 725–735. doi: 10.1111/j.1755-0998.2007.02073.x.CrossRefPubMedGoogle Scholar
  58. Wynter-Blyth, M. A. (1957). Butterflies of the Indian Region. Mumbai: Bombay Natural History Society.Google Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2015

Authors and Affiliations

  1. 1.Centre for Ecological SciencesIndian Institute of ScienceBengaluruIndia

Personalised recommendations