Advertisement

Organisms Diversity & Evolution

, Volume 15, Issue 3, pp 527–542 | Cite as

New ambrosia beetles (Coleoptera: Curculionidae: Platypodinae) from Miocene Mexican and Dominican ambers and their paleobiogeographical implications

  • David PerisEmail author
  • Mónica M. Solórzano Kraemer
  • Enrique Peñalver
  • Xavier Delclòs
Original Article

Abstract

Two new species are described from Mexican amber (15–20 Ma): Cenocephalus tenuis Peris and Solórzano Kraemer sp. nov. and Tesserocerus simojovelensis Peris and Solórzano Kraemer sp. nov. Cenocephalus, originally described as living in Central and South America and then as fossils from Early to Middle Miocene amber, is noted as morphologically indistinguishable from Mitosoma, and originally described as endemic from Madagascar. Thus, we consider that a close taxonomic relationship exists, even if they are not the same genus. New evidence of the species already described in Platypodinae (Tesserocerini) from Mexican and Dominican ambers (15–20 Ma) and the differences between those species are discussed, complementing the original descriptions. The paleobiogeography of Cenocephalus and Mitosoma is analyzed, which strongly supports the hypothesis of colonization from Afrotropical Madagascar to America prior to Early to Middle Miocene (15–20 Ma) via sea currents. Hymenaea was interpreted as the Mexican and Dominican resin producers. Based on the analysis of fossil and current distribution of such plants, our hypothesis considers that the beetle dispersion occurred with Hymenaea, which was possibly its host plant.

Keywords

Platypodinae Cenocephalus Mitosoma Hymenaea Paleobiogeography Madagascar 

Notes

Acknowledgments

The authors are grateful to Drs. A. Nel, A.I. Cognato, B.H. Jordal, D.E. Bright, G.O. Poinar, J. Hulcr, and S.R. Davis for their help with the bibliography and/or comments provided on the first draft. The authors would like also to thank Dr. G. Bechly for allowing us to study the Mexican amber specimens and Dr. H. Schillhammer for allowing us to study the holotypes of Cenocephalus and Mitosoma. We also thank R. Ravelomanana and S. Rahanitriniaina for their assistance and help during the scientific fieldwork, and B. Razafindrahama and W. Nandroinjafihita (Commune Rurale d’Ambahy, Madagascar) for granting permits and offering assistance during the fieldwork stage in the Réserve Naturelle Ambahy Forêt d’Analalava. We also received helpful comments on the earlier versions of this study from two anonymous reviewers, for which we are very grateful. Furthermore, the authors wish to acknowledge the Institute for the Conservation of Tropical Environments (ICTE/MICET) for their assistance in aspects of the administrative development of our work in Madagascar. This research received support from the SYNTHESYS Project http://www.synthesys.info/ which is financed by the European Community Research Infrastructure Action under the FP7 “Capacities” Program and from the project 2014SGR-251, “Sedimentary Geology”, from the University Department, Research and Information Society of the  Catalonian Government (DURSI).This study is part of the Ph.D. dissertation of D.P., which is supported by a FPU grant from the Spanish Ministry of Education, Culture and Sport. This project represents a contribution to the project CGL2011-23948, “The Cretaceous amber of Spain: A multidisciplinary study II”, from the Spanish Ministry of Economy and Competitiveness. M.M.S.K was supported by postdoctoral fellowship No. SO894/3-1 from the German Research Foundation (DFG). Research in Madagascar is partially founded by the Grant GEFNE127-14 from the National Geographic Global Exploration Found.

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical approval

This work complies with the current laws of the countries where it was performed.

References

  1. Alekseev, V. I. (2013). The beetles (Insecta: Coleoptera) of Baltic amber: the checklist of described species and preliminary analysis of biodiversity. Zoology and Ecology, 23, 5–12.CrossRefGoogle Scholar
  2. Ali, J. R. (2012). Colonizing the Caribbean: is the GAARlandia land-bridge hypothesis gaining a foothold? Journal of Biogeography, 39, 431–433.CrossRefGoogle Scholar
  3. Ali, J. R., & Huber, M. (2010). Mammalian biodiversity on Madagascar controlled by ocean currents. Nature, 463, 653–657.CrossRefPubMedGoogle Scholar
  4. Alonso-Zarazaga, M. A., & Lyal, C. H. C. (2009). A catalogue of family and genus group names in Scolytinae and Platypodinae with nomenclatural remarks (Coleoptera: Curculionidae). Zootaxa, 2258, 1–138.Google Scholar
  5. Antonelli, A. (2008). Higher level phylogeny and evolutionary trends in Campanulaceae subfam. Lobelioideae: molecular signal overshadows morphology. Molecular Phylogenetics & Evolution, 46, 1–18.CrossRefGoogle Scholar
  6. Beal, L. M., De Ruijter, W. P. M., Biastoch, A., & Zahn, R. (2011). On the role of the Agulhas system in ocean circulation and climate. Nature, 472, 429–436.CrossRefPubMedGoogle Scholar
  7. Bouchard, P., Bousquet, Y., Davies, A. E., Alonso-Zarazaga, M. A., Lawrence, J. F., Lyal, C. H., et al. (2011). Family-group names in Coleoptera (Insecta). Zookeys, 88, 1–972.CrossRefPubMedGoogle Scholar
  8. Bright, D. E. (1972). The Scolytidae and Platypodidae of Jamaica (Coleoptera). Bulletin of the Institute of Jamaica, Science series, 21, 1–106.Google Scholar
  9. Bright, D. E. (2014). A catalog of Scolytidae and Platypodidae (Coleoptera), Supplement 3 (2000–2010), with notes on subfamily and tribal reclassifications. Insecta Mundi, paper 861.Google Scholar
  10. Bright, D. E., & Poinar, G. O., Jr. (1994). Scolytidae and Platypodidae (Coleoptera) from Dominican Republic amber. Annals of the Entomological Society of America, 87, 170–194.CrossRefGoogle Scholar
  11. Browne, F. G. (1971). The genus Chaetastus Nunberg (Coleoptera: Platypodidae). Journal of Entomology (B), 40, 7–20.Google Scholar
  12. Bryden, H. L., Beal, L. M., & Duncan, L. M. (2005). Structure and transport of the Agulhas Current and its temporal variability. Journal of Oceanography, 61, 479–492.CrossRefGoogle Scholar
  13. Calvillo-Canadell, L., Cevallos-Ferriz, S., & Rico-Arce, L. (2010). Miocene Hymenaea flowers preserved in amber from Simojovel de Allende, Chiapas, Mexico. Review of Palaeobotany and Palynology, 160, 126–134.CrossRefGoogle Scholar
  14. Chanderbali, A. S., Van der Werff, H., & Renner, S. S. (2001). Phylogeny and historical biogeography of Lauraceae: evidence from the chloroplast and nuclear genomes. Annals of the Missouri Botanical Garden, 88, 104–134.CrossRefGoogle Scholar
  15. Chapuis, F. (1865). Monographie des Platypides. Liege: H. Dessain.CrossRefGoogle Scholar
  16. Coddington, J. A. (1986). The genera of the spider family Theridiosomatidae. Smithsonian Contributions to Zoology, 422, 1–96.CrossRefGoogle Scholar
  17. Cognato, A. I. (2013). Electroborus brighti: the first Hylesinini bark beetle described from Dominican amber (Coleoptera: Curculionidae: Scolytinae). The Canadian Entomologist, 145, 501–508.CrossRefGoogle Scholar
  18. Cognato, A. I. (2015). Platypus cylindricus Burmeister, 1831, in reference to a Baltic amber fossil, is an unavailable name (Coleoptera: Curculionidae: Platypodinae). The Coleopterists Bulletin.Google Scholar
  19. Cognato, A. I., & Grimaldi, D. A. (2009). 100 million years of morphological conservation in bark beetles (Coleoptera: Curculionidae: Scolytinae). Systematic Entomology, 34, 93–100.CrossRefGoogle Scholar
  20. Darlington, P. J. (1938). Origin of the fauna of the Greater Antilles, with discussion of dispersal of animals over water and through the air. The Quarterly Review of Biology, 13, 274–300.CrossRefGoogle Scholar
  21. Darlington, P. J. (1957). Zoogeography: the geographical distribution of animals. New York: John Wiley & Sons.Google Scholar
  22. Davis, S. R., & Engel, M. S. (2007). A new ambrosia beetle in Miocene amber of the Dominican Republic (Coleoptera: Curculionidae: Platypodinae). Alavesia, 1, 121–124.Google Scholar
  23. Dick, C. W., Abdul-Salim, K., & Bermingham, E. (2003). Molecular systematic analysis reveals cryptic Tertiary diversification of a widespread tropical rain forest tree. American Naturalist, 162, 691–703.CrossRefPubMedGoogle Scholar
  24. Erkens, R.H.J., Maas, J.W. & Couvreur, T.L.P. (2009). From Africa via Europe to South America: migrational route o a species-rich genus of Neotropical lowland rain forest trees (Guatteria, Annonaceae). Journal of Biogeography, 36, 2338–2352.Google Scholar
  25. Erwin, T. L. (1979). The American connection, past and present, as a model blending dispersal and vicariance in the study of biogeography. In T. L. Erwin, G. E. Ball, D. L. Whitehead, & A. L. Halpern (Eds.), Carabid beetles: their evolution, natural history and classification (pp. 355–367). The Hague: Junk.CrossRefGoogle Scholar
  26. Farrell, B. D., Sequeira, A. S., O’Meara, B., Normark, B. B., Chung, J. H., & Jordal, B. H. (2001). The evolution of agriculture in beetles (Curculionidae: Scolytinae and Platypodinae). Evolution, 51, 2011–2027.CrossRefGoogle Scholar
  27. Feakins, S. J., & Demenocal, P. B. (2010). Global and African regional climate during the Cenozoic. In L. Werdelin & W. J. Sanders (Eds.), Cenozoic mammals of Africa (pp. 45–56). Berkeley: University of California Press.CrossRefGoogle Scholar
  28. Fleagle, J. G. (1999). Primate adaptation & evolution (3rd ed.). San Diego: Academic.Google Scholar
  29. Flint, O. S. (1978). Probable origins of the West Indian Trichoptera and Odonata faunas. Proceedings of the 2 nd International Symposium on Trichoptera, 215–223, The Hague.Google Scholar
  30. Fougère-Danezan, M., Herendeen, P. S., Maumont, S., & Bruneau, A. (2010). Morphological evolution in the variable resin-producing Detarieae (Fabaceae): do morphological characters retain a phylogenetic signal? Annals of Botany, 105, 311–325.PubMedCentralCrossRefPubMedGoogle Scholar
  31. Fratantoni, D. M., Johns, W. E., Townsend, T. L., & Hurlburt, H. E. (2000). Low-latitude circulation and mass transport pathways in a model of the tropical Atlantic Ocean. Journal of Physical Oceanography, 30, 1944–1966.CrossRefGoogle Scholar
  32. Gombauld, P. (1991). Étude comparée de l’Entomofaune d’Hymenaea courbaril et de Diplotropis purpurea en plantation et en fôret primaire. Biologie de Chlorida festiva deprédaterur majeur du Courbaril. DEA Memory, University of Paris-VI and Paris. XI, Institut National Agronomique Paris-Grignon.Google Scholar
  33. Gonzoli, S. L., & Gordon, A. L. (1996). Origins and variability of the Benguela Current. Journal of Geophysical Research, Oceans, 101, 897–906.CrossRefGoogle Scholar
  34. Gottschling, M., Diane, N., Hilger, H. H., & Weigend, M. (2004). Testing hyphotheses on disjunctions present in the primarily woody Boraginales: Ehretiaceae, Cordiaceae, and Heliotropiaceae, inferred from ITS1 sequence data. International Journal of Plant Sciences, 165, 123–135.CrossRefGoogle Scholar
  35. Graham, A. (2011). The age and diversification of terrestrial New World ecosystems through Cretaceous and Cenozoic time. American Journal of Botany, 98, 336–351.Google Scholar
  36. Grimaldi, D. A. (1988). Relicts in the Drosophilidae (Diptera). In J. K. Liebherr (Ed.), Zoogeography of Caribbean insects (pp. 183–211). Ithaca, New York: Cornell University Press.Google Scholar
  37. Grimaldi, D. A. (1994). The age of Dominican amber. In K. B. Anderson & J. C. Crelling (Eds.), Amber, resinite, and fossil resins (pp. 203–217). Washington D.C: American Chemical Society.Google Scholar
  38. Grimaldi, D. A., & Engel, M. S. (2005). Evolution of the insects. New York: Cambridge University Press.Google Scholar
  39. Guillett, C. P. D. T., Crampton-Platt, A., Timmermans, M. J. T. N., Jordal, B., Emerson, B. C., & Vogler, A. P. (2014). Bulk de novo mitogenome assembly from pooled total DNA elucidates the phylogeny of weevils (Coleoptera: Curculionoidea). Molecular Biology & Evolution. doi: 10.1093/molbev/msu154.Google Scholar
  40. Gunn, C. R., & Dennis, J. V. (1976). World guide to tropical drift seeds and fruits. New York: Quadrangle, New York Times Book Company.Google Scholar
  41. Houle, A. (1999). The origin of platyrrhines: an evaluation of the antarctic scenario and the floating island model. American Journal of Physical Anthropology, 109, 541–559.CrossRefPubMedGoogle Scholar
  42. Howden, H. F. (1970). The Coleoptera. In Fauna of Sable Island and its zoogeographic affinities—a compendium. Publication in Zoology, 4, 1–30. Ottawa: National Museum of Natural Science.Google Scholar
  43. Hulcr, J., Atkinson, T., Cognato, A. I., Jordal, B. H., & McKenna, D. (2015). Morphology, taxonomy and phylogenetics of bark beetles. In F. E. Vega & R. W. Hofstetter (Eds.), Bark beetles: biology and ecology of native and invasive species (pp. 41–84). San Diego: Academic.Google Scholar
  44. Iturralde-Vinent, M. A. (2001). Geology of the amber-bearing deposits of the Greater Antilles. Caribbean Journal of Science, 37, 141–167.Google Scholar
  45. Iturralde-Vinent, M. A., & MacPhee, R. D. E. (1996). Age and paleogeographical origin of Dominican amber. Science, 273, 1850–1852.CrossRefGoogle Scholar
  46. Iturralde-Vinent, M. A., & MacPhee, R. D. E. (1999). Paleogeography of the Caribbean region: implication for Cenozoic biogeography. Bulletin of the American Museum of Natural History, 238, 1–95.Google Scholar
  47. Jacobs, B. F., Pan, A. D., & Scotese, C. R. (2010). A review of the Cenozoic vegetation history of Africa. In L. Werdelin & W. J. Sanders (Eds.), Cenozoic mammals of Africa (pp. 57–72). Berkeley: University of California Press.CrossRefGoogle Scholar
  48. Jordal, B.H. & Cognato, A.I. (2012). Molecular phylogeny of bark and ambrosia beetles reveals multiple origins of fungus farming during periods of global warming. BMC Evolutionary Biology, 12, 133, doi: 10.1186/1471-2148-1.
  49. Jordal, B. H., Sequeira, A. S., & Cognato, A. I. (2011). The age and phylogeny of wood boring weevils and the origin of subsociality. Molecular Phylogenetics & Evolution, 59, 708–724.CrossRefGoogle Scholar
  50. Jordal, B. H., Smith, S. M., & Cognato, A. I. (2014). Classification of weevils as a data-driven science: leaving opinion behind. ZooKeys, 439, 1–18.CrossRefPubMedGoogle Scholar
  51. Kennett, J. P., Houtz, R. E., Andrews, P. B., Edwards, A. R., Gostin, V. A., Hajós, M., Hampton, M., Jenkins, D. G., Margolis, S. V., Ovenshine, A. T., & Perch-Nielsen, K. (1975). Cenozoic Paleoceanography in the southwest Pacific Ocean, Antarctic glaciation, and the development of the circum-Antarctic current. In J. P. Kennett, R. E. Houtz, P. B. Andrews, A. R. Edwards, V. A. Gostin, M. Hajós, M. Hampton, D. G. Jenkins, S. V. Margolis, A. T. Ovenshine, & K. Perch-Nielsen (Eds.), Initial reports of the deep sea drilling project 29 (pp. 1155–1169). Washington: U.S. Government Printing Office.CrossRefGoogle Scholar
  52. Kirejtshuk, A. G., Azar, D., Beaver, R., Mandelshtam, M., & Nel, A. (2009). The most ancient bark beetle known: a new tribe, genus and species from Lebanese amber (Coleoptera, Curculionidae, Scolytinae). Systematic Entomology, 34, 101–112.CrossRefGoogle Scholar
  53. Kirejshuk, A. G., Ponomarenko, A. G., & Zherikhin V. V. (2014). Taxonomic list of fossil beetles of the suborder Scarabaeina (part 4). http://www.zin.ru/Animalia/Coleoptera/eng/paleosy2.htm. Accessed 19 Apr 2015.
  54. Kirkendall, L. R., Biedermann, P., & Jordal, B. H. (2015). Evolution and diversity of bark and Ambrosia beetles. In F. E. Vega & R. W. Hofstetter (Eds.), Bark beetles: biology and ecology of native and invasive species (pp. 85–156). San Diego: Academic.Google Scholar
  55. Knízek, M., & Beaver, R. (2004). Chapter 5. Taxonomy and systematics of bark and ambrosia beetles. In F. Lieutier, K. R. Day, A. Battisti, J.-C. Grégoire, & H. F. Evans (Eds.), Bark and wood-boring insects in living trees in Europe, a synthesis (pp. 41–54). Dordrecht: Springer.CrossRefGoogle Scholar
  56. Kuschel, G., Leschen, R. A. B., & Zimmerman, E. C. (2000). Platypodidae under scrutiny. Invertebrate Taxonomy, 14, 771–805.CrossRefGoogle Scholar
  57. Langenheim, J. H. (2003). Plant resins, chemistry, evolution, ecology, ethnobotany. Portland, Cambridge: Timber Press.Google Scholar
  58. Langenheim, J. H., & Lee, Y. T. (1974). Reinstatement of the genus Hymenaea (Leguminosae: Caesalpinioideae) in Africa. Brittonia, 26, 3–21.CrossRefGoogle Scholar
  59. Larsson, S. (1978). Baltic amber—a palaeobiological study. Entomonograph, 1, 1–192.Google Scholar
  60. Lavin, M., & Luckow, M. (1991). Leguminosae in Mexico and the Greater Antilles have close relatives in Africa: a Laurasia-Gondwana connection transgressing the Old and New World. American Journal of Botany, 78, 198–199.CrossRefGoogle Scholar
  61. Lavin, M., & Luckow, M. (1993). Origins and relationships of tropical North America in the context of the boreotropics hypothesis. American Journal of Botany, 80, 1–14.CrossRefGoogle Scholar
  62. Lavin, M., Schrire, B., Lewis, G., Pennington, T., Delgado-Salinas, A., Thulin, M., et al. (2004). Metacommunity process rather than continental tectonic history better explains geographically structured phylogenies in legumes. Philosophical Transactions of the Royal Society of London B, 359, 1509–1522.CrossRefGoogle Scholar
  63. Lawver, L. A., & Gahagan, L. M. (2003). Evolution of Cenozoic seaways in the circum-Antarctic region. Palaeogeography Palaeoclimatology Palaeoecology, 198, 11–37.CrossRefGoogle Scholar
  64. Lee, Y. T., & Langenheim, J. H. (1975). A systematic revision of the genus Hymenaea (Leguminosae; Caesalpinioideae, Detarieae). University of California Publications, 69, 1–109.Google Scholar
  65. Liebherr, J. K. (1986). Barylaus, new genus (Coleoptera: Carabidae) endemic to the West Indies, with Old World affinities. Journal of the New York Entomological Society, 94, 83–97.Google Scholar
  66. Liebherr, J. K. (1988). Zoogeography of Caribbean insects. Ithaca, New York: Cornell University Press.Google Scholar
  67. Lutjeharms, J. R. E., Bang, N. D., & Duncan, C. P. (1981). Characteristics of the currents east and south of Madagascar. Deep Sea Research Part A. Oceanographic Research Papers, 28, 879–899.CrossRefGoogle Scholar
  68. Magioncalda, R., Dupuis, C., Smith, T., Steurbaut, E. & Gingerich, P.D. (2004). Paleocene-Eocene carbon isotope excursions in organic carbon and pedogenic carbonate: direct comparison in a continental stratigraphic section. Geology, 32, 553–556.Google Scholar
  69. Marvaldi, A. E. (1997). Higher level phylogeny of Curculionidae (Coleoptera: Curculionoidea) based mainly on larval characters, with special reference to broad-nosed weevils. Cladistics, 13, 285–312.CrossRefGoogle Scholar
  70. Marvaldi, A. E., Sequeira, A. S., O’Brien, C. W., & Farrell, B. D. (2002). Molecular and morphological phylogenetics of weevils (Coleoptera, Curculionoidea): do niche shifts accompany diversification? Systematic Biology, 51, 761–785.CrossRefPubMedGoogle Scholar
  71. Marvaldi, A. E., Ducket, C. N., Kjer, K. M., & Gillespie, J. J. (2008). Structural alignment of 18S and 28S rDNA sequences provides insights into phylogeny of Phytophaga (Coleoptera: Curculionoidea and Chrysomeloides). Zoologica Scripta, 38, 63–77.CrossRefGoogle Scholar
  72. Matthews, E. G. (1966). A taxonomic and zoogeographic survey of the Scarabaeinae of the Antilles (Coleoptera: Scarabaeidae). Memoirs of the American Entomological Society, 21, 1–133.Google Scholar
  73. McKellar, R. C., Wolfe, A., Muehlenbachs, K., Tappert, R., Engel, M. S., Cheng, T., & Sánchez-Azofeifa, G. (2011). Insect outbreaks produce distinctive carbon isotope signatures in defensive resin and fossiliferous ambers. Proceedings of the Royal Society Biological Sciences Series B, 278, 3219–3224.CrossRefGoogle Scholar
  74. Morley R.J. (2003). Interplate dispersal paths for megathermal angiosperms. Perspectives in Plant Ecology, Evolution and Systematics, 6, 5–200.Google Scholar
  75. Muller, J. (1981). Fossil pollen records of extant angiosperms. The Botanical Review, 47, 1–142.CrossRefGoogle Scholar
  76. Nascimbene, P., & Silverstein, H. (2000). The preparation of fragile Cretaceous ambers for conservation and study of organismal inclusions. In D. Grimaldi (Ed.), Studies on fossils in amber, with particular reference to the cretaceous of New Jersey (pp. 93–102). Leiden: Backhuys Publishers Leiden.Google Scholar
  77. Nichols, S. W. (1988). Kaleidoscopic biogeography of West Indian Scaritinae (Coleoptera: Carabidae). In J. K. Liebherr (Ed.), Zoogeography of Caribbean insects (pp. 71–112). Ithaca, New York: Cornell University Press.Google Scholar
  78. Oberprieler, R. G., Marvaldi, A. E., & Anderson, R. S. (2007). Weevils, weevils, weevils everywhere. In Z.-Q. Zhang & W. A. Shear (Eds.), Linnaeus tercentenary: Progress in invertebrate taxonomy. Zootaxa, 1668, 1–766.Google Scholar
  79. Peck, S. B. (2010). The beetles of the island of St. Vincent, Lesser Antilles (Insecta: Coleoptera); diversity and distribution. Insecta Mundi, 0144, 1–77.Google Scholar
  80. Peck, S. B., & Perez-Gelabert, D. E. (2012). A summary of the endemic beetle genera of the West Indies (Insecta: Coleoptera); bioindicators of the evolutionary richness of this Neotropical archipelago. Insecta Mundi, 0212, 1–33.Google Scholar
  81. Penney, D. (2008). Dominican amber spiders. A comparative palaeontological–neontological approach to identification, faunistic, ecology and biogeography. Manchester: Siri Scientific Press.Google Scholar
  82. Penney, D. (2010). Dominican amber. In D. Penney (Ed.), Biodiversity of fossils in amber from the major world deposits (pp. 22–41). Manchester: Siri Scientific Press.Google Scholar
  83. Perry, E., & Dennis, J. V. (2003). Sea-beans from the tropics. A collector’s guide to sea-beans and other tropical drift on Atlantic shores. Malabar: Krieger Publishing Company.Google Scholar
  84. Pfuhl, H. A., & McCave, I. N. (2004). Evidence for late Oligocene establishment of the antarctic circumpolar current. Earth and Planetary Science Letters, 235, 715–728.CrossRefGoogle Scholar
  85. Poinar, G. O., Jr. (1991). Hymenaea protera sp. n. (Leguminosae, Caesalpinioideae) from Dominican amber has African affinities. Experientia, 47, 1075–1082.CrossRefGoogle Scholar
  86. Poinar, G. O., Jr. (1992). Life in amber. Standford: Stanford University Press.Google Scholar
  87. Poinar, G. O., Jr., & Brown, A. E. (2002). Hymenaea mexicana sp. nov. (Leguminosae: Caesalpinioideae) from Mexican amber indicates Old World connections. Botanical Journal of the Linnean Society, 139, 125–132.CrossRefGoogle Scholar
  88. Poinar, G. O., Jr., & Poinar, R. (1999). The amber forest: a reconstruction of a vanished world. Princeton: Princeton University Press.Google Scholar
  89. Renner, S. (2004). Plant dispersal across the tropical Atlantic by wind and sea currents. International Journal of Plant Sciences, 165, S23–S33.CrossRefGoogle Scholar
  90. Rosen, D. E. (1975). A vicariance model of Caribbean biogeography. Systematic Biology, 24, 431–464.CrossRefGoogle Scholar
  91. Roth, I. (1987). Stratification of a tropical forest as seen in dispersal types. Tasks for Vegetation Science, 17, 1–324. Dordrecht: Dr. W. Junk Publishers.CrossRefGoogle Scholar
  92. Schawaller, W. (1981). Pseudoskorpione (Cheliferidae) phoretisch auf Käfern (Platypodidae) in Dominikanischem bernstein (Stuttgarter Bernsteinsammlung: Pseudoscorpionidea und Coleoptera). Stuttgarter Beiträge zur Naturkunde, Serie B, 71, 1–17.Google Scholar
  93. Schedl, K. E. (1962). New Platypodidae from Mexican amber. Journal of Paleontology, 36, 1035–1038.Google Scholar
  94. Schedl, K. E. (1972). Monographie der familie Platypodidae, Coleoptera. The Hague: Junk.Google Scholar
  95. Secord, R., Gingerich, P.D., Lohmann, K.C. & MacLeod, K.G. (2010). Continental warming preceding the Paleocene-Eocene thermal maximum. Nature, 467, 955–958.Google Scholar
  96. Schneider, H., Schmidt, A., Nascimbene, P.C. & Heinrichs, J. (2015). A new Dominican amber fossil of the derived fern genus Pleopeltis confirms generic stasis in the epiphytic fern diversity of the West Indies. Organisms Diversity & Evolution, doi: 10.1007/s13127-015-0200-3.
  97. Séranne, M., & Nzé Abeigne, C. R. (1999). Oligocene to Holocene sediment drifts and bottom currents on the slope of Gabon continental margin (West Africa). Consequences for sedimentation and southeast Atlantic upwelling. Sedimentary Geology, 128, 179–199.CrossRefGoogle Scholar
  98. Shields, O., & Dvorak, S. K. (1979). Butterfly distribution and continental drift between the Americas, the Caribbean, and Africa. Journal of Natural History, 13, 221–250.CrossRefGoogle Scholar
  99. Simon, M. H., Arthur, K. L., Hall, I. R., Peeters, F. J. C., Loveday, B. R., Barker, S., Ziegler, M., & Zahn, R. (2013). Millennial-scale Agulhas Current variability and its implications for salt-leakage through the Indian–Atlantic Ocean Gateway. Earth and Planetary Science Letters, 383, 101–112.CrossRefGoogle Scholar
  100. Slater, J. A. (1988). Zoogeography of West Indian Lygaeidae (Hemiptera). In J. K. Liebherr (Ed.), Zoogeography of Caribbean insects (pp. 38–60). Ithaca, New York: Cornell University Press.Google Scholar
  101. Solórzano Kraemer, M. M. (2007). Systematic, palaeoecology, and palaeobiogeography of the insect fauna from the Mexican amber. Palaeontographica Abteilung A, 282, 1–133.Google Scholar
  102. Solórzano Kraemer, M. M. (2010). Mexican amber. In D. Penney (Ed.), Biodiversity of fossils in amber from the major world deposits (pp. 42–56). Manchester: Siri Scientific Press.Google Scholar
  103. Stramma, L., & England, M. (1999). On the water masses and mean circulation of the South Atlantic Ocean. Journal of Geophysical Research, Oceans, 104(20), 20863–20883.CrossRefGoogle Scholar
  104. Thorne, R. F. (1973). Floristic relationships between tropical Africa and tropical America. In B. J. Meggers, E. S. Ayensu, & W. D. Duckworth (Eds.), Tropical forest ecosystems in Africa and South America: a comparative review (pp. 27–47). Washington D.C: Smithsonian Press.Google Scholar
  105. Vaca, D. K., Torrico, G., & Peralta, R. (2002). Ecología de las especies maderables menos conocidas en el departamento de Pando. Cobija, Pando: Centro de Investigación y Preservación de la Amazonía.Google Scholar
  106. Walker, N. D. (1990). Links between South African summer rainfall and temperature variability of the Agulhas and Benguela Current systems. Journal of Geophysical Research, Oceans, 95, 3297–3319.CrossRefGoogle Scholar
  107. Weitschat, W., & Wichard, W. (2002). Atlas of the plants and animals in Baltic amber (pp. 160–1665). München: Verlag Dr. Friedrich Pfeil.Google Scholar
  108. Wolfe, J. A. (1985). Distribution of major vegetation types during the Tertiary. Geophysical Monograph, 32, 357–375.Google Scholar
  109. Wood, S. L. (1986). A reclassification of the genera of Scolytidae (Coleoptera). Great Basin Naturalist Memoirs, 10, 1–126.Google Scholar
  110. Wood, S. L. (1993). Revision of the genera of Platypodidae (Coleoptera). The Great Basin Naturalist, 53, 259–281.Google Scholar
  111. Wood, S. L., & Bright, D. E. (1992). Catalog of Scolytidae and Platypodidae (Coleoptera), part 2: taxonomical index. Great Basin Naturalist Memoirs, 13, 1–1553.Google Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2015

Authors and Affiliations

  • David Peris
    • 1
    Email author
  • Mónica M. Solórzano Kraemer
    • 2
  • Enrique Peñalver
    • 3
  • Xavier Delclòs
    • 1
  1. 1.Departament d’Estratigrafia, Paleontologia i Geociències Marines; and Institut de Recerca de la Biodiversitat (IRBio), Facultat de GeologiaUniversitat de Barcelona (UB)BarcelonaSpain
  2. 2.Senckenberg Forschungsinstitut und NaturmuseumFrankfurt am MainGermany
  3. 3.Museo GeomineroInstituto Geológico y Minero de EspañaMadridSpain

Personalised recommendations