Organisms Diversity & Evolution

, Volume 15, Issue 2, pp 277–283 | Cite as

A new Dominican amber fossil of the derived fern genus Pleopeltis confirms generic stasis in the epiphytic fern diversity of the West Indies

  • Harald Schneider
  • Alexander R. Schmidt
  • Paul C. Nascimbene
  • Jochen Heinrichs
Original Article

Abstract

One of the grand objectives in the integration of fossils and phylogenetics is to obtain support for macroecological and macroevolutionary hypotheses. Here, we provide new evidence from Dominican amber fossils, which supports a likely stasis in the generic composition of epiphytic plant communities in the West Indies for at least 16 million years. The proposed hypothesis is based on the discovery of the first fossil of the Neotropical fern genus Pleopeltis. The relationships of this specimen to extant genera are studied using a dated phylogenetic framework to reconstruct the evolution of the characters preserved in the fossil, as well as by exploring the phylomorphospace of Pleopeltis. The fossil corroborates divergence time estimates obtained independently and also suggests the conservation of the generic composition of epiphytic communities. We discovered evidence for conserved morphotypes in the genus Pleopeltis occurring from the mid-Miocene to the present. The innovative use of phylomorphospace reconstruction provided crucial information about the affinities of the fossil. Rather than relying on reconstructing the evolution of single characters, this analysis integrates the evolution of all informative characters observed to evaluate relationships of the fossilized morphotype to extant morphotypes.

Keywords

Ancestral character evolution Assignment of fossils Epiphytic diversity Diversification time estimates Phylomorphospace Stasis in ecological assemblages 

References

  1. Collinson, M. E. (2001). Cainozoic ferns and their distribution. Brittonia, 53, 173–235.CrossRefGoogle Scholar
  2. Drummond, A. J., & Suchard, M. A. (2010). Bayesian random local clocks, or one rate to rule them all. BMC Biology, 8, 114. doi:10.1186/1741-700708-114.PubMedCentralPubMedCrossRefGoogle Scholar
  3. Drummond, A. J., Suchard, M. A., Xie, D., & Rambaut, A. (2012). Bayesian phylogenetics with BEAUTi and the BEAST 1.7. Molecular Biology Evolution, 29, 1969–1973.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Frahm, J. P., & Newton, A. E. (2005). A new contribution to the moss flora of Dominican amber. The Bryologist, 108, 526–536.CrossRefGoogle Scholar
  5. Gomez, L. D. (1982). Grammitis succinea, the first new world fern found in amber. American Fern Journal, 72, 49–52.CrossRefGoogle Scholar
  6. Gradstein, S. R. (1993). New fossil Hepaticae preserved in amber of the Dominican Republic. Nova Hedwigia, 57, 353–374.Google Scholar
  7. Gradstein, F. M., Ogg, J., & Smith, A. (2004). A geological time scale. Cambridge: Cambridge University Press.Google Scholar
  8. Grolle, R. (1984). Bryopteris and Cyclolejeunea fossil in dominikanischem Bernstein. Journal of the Hattori Botanical Laboratory, 56, 271–280.Google Scholar
  9. Hammer, O., Harper, D.A.T., & Ryan, P.D. (2001). PAST: paleontological statistics software package for education and data analyses. Palaeontologica. Electronica 4, 9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm.
  10. Heinrichs, J., Vitt, D. H., Schäfer-Verwimp, A., Ragazzi, E., Marzaro, G., Grimaldi, D. A., Nascimbene, P. C., Feldberg, K., & Schmidt, A. R. (2013). The moss Macromitrium richardii (Orthotrichaceae) with sporophyte and calyptra enclosed in Hymenaea resin from the Dominican Republic. Polish Botanical Journal, 58, 221–230.CrossRefGoogle Scholar
  11. Hirai, R. Y., Rouhan, G., Labiak, P. H., Ranker, T. A., & Prado, J. (2011). Moranopteris: a new neotropical genus of grammitid ferns (Polypodiaceae) segregated from Asian Micropolypodium. Taxon, 60, 1123–1137.Google Scholar
  12. Iturralde-Vinent, M. A. (2001). Geology of the amber-bearing deposits of the Greater Antilles. Caribbean Journal Earth Sciences, 37, 141–167.Google Scholar
  13. Jacques, F. M. B., Su, T., & Zhou, Z. K. (2013). The first fossil microsoroid fern (Palaeosorum ellipticum gen. et sp. nov.) from the middle Miocene of Yunnan, SE China. Journal of Systematics and Evolution, 51, 758–764.CrossRefGoogle Scholar
  14. Janssen, T., Kreier, H. P., & Schneider, H. (2007). Origin and diversification of African ferns with special emphasis on Polypodiaceae. Brittonia, 59, 159–181.CrossRefGoogle Scholar
  15. Kessler, M., Velazquez, A. L. M., Sundue, M., & Labiak, P. H. (2011). Alansmia, a new genus of grammitid ferns (Polypodiaceae) segregated from Terpsichore. Brittonia, 63, 233–244.Google Scholar
  16. Kreier, H. P., & Schneider, H. (2006). Phylogeny and biogeography of the staghorn fern genus Platycerium (Polypodiacae, Polypodiidae). American Journal of Botany, 93, 217–225.CrossRefGoogle Scholar
  17. Kreier, H. P., Rex, M., Weising, K., Kessler, M., Smith, A. R., & Schneider, H. (2008). Inferring the diversification of the epiphytic fern genus Serpocaulon (Polypodiaceae) in South America using chloroplast sequences and amplified fragment length polymorphisms. Plant Systematics and Evolution, 274, 1–16.CrossRefGoogle Scholar
  18. Kvacek, Z. (2001). A new fossil species of Polypodium (Polypodiaceae) from the Oligocene of northern Bohemia (Czech Republic). Feddes Repertorium, 122, 159–177.CrossRefGoogle Scholar
  19. Kvacek, Z., Daskova, J., & Zetter, R. (2004). A re-examination of Cenozoic Polypodium in North America. Review of Palaeobotany and Palynology, 128, 219–227.CrossRefGoogle Scholar
  20. Labiak, P. H. (2011). Stegnogrammitis, a new genus of grammitid ferns segregated from Lellingeria (Polypodiaceae). Brittonia, 63, 139–149.CrossRefGoogle Scholar
  21. Labiak, P. H., Sundue, M., & Rouhan, G. (2010). Molecular phylogeny, character evolution, and biogeography of the grammitid fern genus Lellingeria (Polypodiaceae). American Journal of Botany, 97, 1354–1364.PubMedCrossRefGoogle Scholar
  22. Lóriga, J., Schmidt, A. R., Moran, R. C., Feldberg, K., Schneider, H., & Heinrichs, J. (2014). The first fossil of a bolbitidoid fern belong to the early-divergent lineages of Elaphoglossum (Dryopteriaceae). American Journal of Botany, 101, 1466–1475.PubMedCrossRefGoogle Scholar
  23. Maddison, W.P., & Maddison, D.R. (2012). Mesquite: a modular system for evolutionary analysis. http://mesquiteproject.org.
  24. Midford, P.E., Garland, Jr. T., & Maddison, W.P. (2011). PDAP Package of Mesquite v. 1.1.6. http://mesquiteproject.org/pdap_mesquite/index.html.
  25. Otto, E. M., Janssen, T., Kreier, H. P., & Schneider, H. (2009). New insights into the phylogeny of Pleopeltis and related Neotropical genera (Polypodiaceae, Polypodiopsida). Molecular Phylogenetics and Evolution, 53, 190–201.PubMedCrossRefGoogle Scholar
  26. Ranker, T. A., Smith, A. R., Parris, B. S., Geiger, J. M. O., Haufler, C. H., Straub, S. C. K., & Schneider, H. (2004). Phylogeny and evolution of grammitid ferns (Grammitidaceae): a case of rampant morphological homoplasy. Taxon, 53, 415–428.CrossRefGoogle Scholar
  27. Reiner-Drehwald, M. E., Schmidt, A. R., & Heinrichs, J. (2012). The genus Lejeunea in Miocene amber from the Dominican Republic. Cryptogamie Bryologie, 33, 33–38.CrossRefGoogle Scholar
  28. Rouhan, G., Labiak, P. H., Randrianjohany, E., & Rakotondrainibe, F. M. (2012). Not so Neotropical after all: the grammitid fern genus Leucotrichum (Polypodiaceae) is also paleotropical, as revealed by a new species from Madagascar. Systematic Botany, 37, 331–338.CrossRefGoogle Scholar
  29. Schneider, H., Smith, A. R., Cranfill, R., Hildebrand, T. J., Haufler, C. H., & Ranker, T. A. (2004). Unravelling the phylogeny of polygrammoid ferns (Polypodiaceae and Grammitidaceae); exploring aspects of the diversification of epiphytic plants. Molecular Phylogenetics and Evolution, 31, 1041–1063.PubMedCrossRefGoogle Scholar
  30. Schneider, H., Kreier, H. P., Wilson, R., & Smith, A. R. (2006). The Synammia enigma: evidence for a temperate lineage of polygrammoid ferns (Polypodiaceae, Polypodiidae) in southern South America. Systematic Botany, 31, 31–41.CrossRefGoogle Scholar
  31. Schneider, H., Kreier, H. P., Janssen, T., Otto, E., Muth, H., & Heinrichs, J. (2010). Key innovations versus key opportunities: identifying causes of rapid radiations in ferns. In M. Gaulbrecht (Ed.), Evolution in action (pp. 61–75). Berlin: Springer-Verlag.CrossRefGoogle Scholar
  32. Schuettpelz, E., & Pryer, K. M. (2009). Evidence for a Cenozoic radiation of ferns in an angiosperm-dominated canopy. Proceedings of the National Academy of Sciences USA, 106, 11200–11205.CrossRefGoogle Scholar
  33. Sidlauskas, B. (2008). Continuous and arrested morphological diversification in sister clades of characiform fishes: a phylomorphospace approach. Evolution, 62, 3135–3156.PubMedCrossRefGoogle Scholar
  34. Smith, A. R., & Tejero-Diez, J. D. (2014). Pleopeltis (Polypodiaceae), a redefinition of the genus and new combination. Botanical Sciences, 92, 43–58.Google Scholar
  35. Smith, A. R., Kreier, H. P., Haufler, C. H., Ranker, T. A., & Schneider, H. (2006a). Serpocaulon (Polypodiaceae), a new genus segregated from Polypodium. Taxon, 55, 919–930.CrossRefGoogle Scholar
  36. Smith, A. R., Pryer, K. M., Schuettpelz, E., Korall, P., Schneider, H., & Wolf, P. G. (2006b). A classification for extant ferns. Taxon, 55, 705–731.CrossRefGoogle Scholar
  37. Sprunt, S. V., Schneider, H., Watson, L. E., Russell, S. J., Navarro-Gomez, A., & Hickey, R. J. (2011). Exploring the molecular phylogeny and biogeography of Pleopeltis polypodioides (Polypodiaceae, Polypodiales) inferred from plastid DNA sequences. Systematic Botany, 36, 862–869.CrossRefGoogle Scholar
  38. Su, T., Jacques, F. M. B., Liu, Y. S., Xiang, J. Y., Xing, Y. W., Huang, Y. J., & Zhou, Z. K. (2011). A new Drynaria (Polypodiaceae) from the Upper Pliocene of Southwest China. Review of Palaeobotany and Palynology, 164, 132–142.CrossRefGoogle Scholar
  39. Sundue, M. A. (2013). Mycopteris, a new neotropical genus of grammitid ferns (Polypodiaceae). Brittonia, 66, 174–185.CrossRefGoogle Scholar
  40. Sundue, M. A., Labiak, P. H., Mostacero, J., & Smith, A. R. (2012). Galatodenia, a new genus of grammitid ferns segregated from Terpsichore (Polypodiaceae). Systematic Botany, 37, 339–346.CrossRefGoogle Scholar
  41. Sundue, M. A., Parris, B. S., Ranker, T. A., Smith, A. R., Fujimoto, E. L., Zamora-Crosby, D., Morden, C. W., Chiou, W. L., Chen, C. W., Rouhan, G., Hirai, R. Y., & Prado, J. (2014). Global phylogeny and biogeography of grammitid ferns (Polypodiaceae). Molecular Phylogenetics and Evolution, 81, 195–206.PubMedCrossRefGoogle Scholar
  42. Van Uffelen, G. A. (1991). Fossil Polypodiaceae and their spores. Blumea, 36, 253–272.Google Scholar
  43. Wen, W. W., Xie, S. P., Liu, K. N., Sun, B. N., Wang, L., Li, H., & Dao, K. Q. (2013). Two species of fern macrofossil from the late Miocene of Lincang, Yunnan, China and their paleocological implications. Palaeoworld, 22, 144–152.CrossRefGoogle Scholar
  44. Wu, J. Y., Sun, B. N., Xie, S. P., Ding, S. T., & Wen, W. W. (2012). Dimorphic fronds and in situ spores of Drynaria (Polypodiaceae) from the upper Pliocene of Southwest China. Review of Palaeobotany and Palynology, 172, 1–9.CrossRefGoogle Scholar
  45. Zotz, G. (2013). The systematic distribution of vascular epiphytes-a critical update. Botanical Journal of the Linnean Society, 171, 453–481.CrossRefGoogle Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2015

Authors and Affiliations

  • Harald Schneider
    • 1
  • Alexander R. Schmidt
    • 2
  • Paul C. Nascimbene
    • 3
  • Jochen Heinrichs
    • 4
  1. 1.Department of Life SciencesNatural History MuseumLondonUK
  2. 2.Department of GeobiologyGeorg August UniversityGöttingenGermany
  3. 3.Division of Invertebrate ZoologyAmerican Museum of Natural HistoryNew YorkUSA
  4. 4.Systematic Botany and Mycology, Faculty of BiologyLudwig Maximilian UniversityMunichGermany

Personalised recommendations