Skip to main content

Advertisement

Log in

Cryptic and repeated “allopolyploid” speciation within Allium przewalskianum Regel. (Alliaceae) from the Qinghai-Tibet Plateau

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

Polyploidization has contributed greatly to current plant diversity. Allopolyploid speciation, which can rapidly overcome meiosis abnormalities, is a common and repeated process in numerous genera. However, most polyploids within a single morphological/taxonomic species have been considered autopolyploids, which were assumed to arise through spontaneous genome doubling and/or following the fusion of unreduced diploid gametes. It remains untested whether these intraspecific polyploids may also be the result of ‘allopolyploid’ hybridizations between differentiated diploid populations and whether such speciation has also occurred repeatedly. In this study, we examined the diploid–tetraploid species Allium przewalskianum on the Qinghai-Tibet Plateau (QTP) to test this cryptic speciation hypothesis under morphological stasis, based on three sets of nuclear genetic data (AFLP, ITS, and CHS) and niche modeling. Our analyses of the three datasets together revealed that the diploid populations across the northeastern to southeastern QTP exhibit strong geographical differentiation. Based on the shared nuclear lineages fixed in the different diploids, three tetraploid groups in the northern, southern, and eastern QTP were identified as having originated independently, through “allopolyploid” hybridization between the differentiated diploids. Ecological niche modeling based on ecological variables suggested distinct niche differentiation between two tetraploid groups in the northern and southern QTP and also between these and the diploid populations. Furthermore, they also differed in their responses to past climate changes. These findings together suggested that at least two tetraploid groups had originated independently through hybridizations between the differentiated diploid populations. Our results highlight the cryptic allopolyploid speciation underlying a single morphological species, which mirrors well the repeated allopolyploid speciations within the genus. This allopolyploid speciation may prevail within the diploid–polyploid species complex that is classified as a single morphological species; indeed, the underlying cryptic speciation and evolutionary dynamics are certainly more complex than previously assumed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Adams, M., Raadik, T. A., Burridge, C. P., & Georges, A. (2014). Global biodiversity assessment and hyper-cryptic species complexes: more than one species of elephant in the room? Systematic Biology, 63, 518–533.

    Article  PubMed  Google Scholar 

  • Álvarez, I., & Wendel, J. F. (2003). Ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetics and Evolution, 29, 417–434.

    Article  PubMed  Google Scholar 

  • Amborella Genome Project. (2013). The Amborella genome and the evolution of flowering plants. Science, 342, 1241089.

    Article  Google Scholar 

  • Bardy, K. E., Albach, D. C., Schneeweiss, G. M., Fischer, M. A., & Schönswetter, P. (2010). Disentangling phylogeography, polyploid evolution and taxonomy of a woodland herb (Veronica chamaedrys group, Plantaginaceae s.l.) in southeastern Europe. Molecular Phylogenetics and Evolution, 57, 771–786.

    Article  PubMed Central  PubMed  Google Scholar 

  • Brochmann, C., Brysting, A., Alsos, I., Borgen, L., Grundt, H., Scheen, A. C., & Elven, R. (2004). Polyploidy in arctic plants. Biological Journal of the Linnean Society, 82(4), 521–536.

    Article  Google Scholar 

  • Casgrain, P., & Legendre, P. (2001). The R Package for multivariate and spatial analysis, Version 4.0d1-User’s Manual. Départment de Sciences Biologiques, Université de Montréal, Available, http://scsie.uv.es/scsie_web_fichs/BIO/sw/por_nombres/r/r4-users-guide.pdf.

  • Cifuentes, M., Grandont, L., Moore, G., Chèvre, A. M., & Jenczewski, E. (2010). Genetic regulation of meiosis in polyploid species: new insights into an old question. New Phytologist, 186, 29–36.

    Article  CAS  PubMed  Google Scholar 

  • Cronn, R., & Wendel, J. F. (2004). Cryptic trysts, genomic mergers, and plant speciation. New Phytologist, 161(1), 133–142.

    Article  CAS  Google Scholar 

  • Cui, L. Y., Wall, P. K., Leebens-Mack, J. H., Bruce, G. L., Douglas, E. S., Jeff, J. D., et al. (2006). Widespread genome duplications throughout the history of flowering plants. Genome Research, 16, 738–749.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cui, X. K., Ao, C. Q., Zhang, Q., Chen, L. T., & Liu, J. Q. (2008). Diploid and tetraploid distribution of Allium przewalskianum Regel. (Liliaceae) in the Qinghai-Tibetan Plateau and adjacent regions. Caryologia, 61(2), 192–200.

    Article  Google Scholar 

  • Dubcovsky, J., & Dvorak, J. (2007). Genome plasticity: a key factor in the success of polyploid wheat under domestication. Science, 316, 1862–1866.

    Article  CAS  PubMed  Google Scholar 

  • Elith, J., & Leathwick, J. R. (2009). Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40, 677–697.

    Article  Google Scholar 

  • Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14, 2611–2620.

    Article  CAS  PubMed  Google Scholar 

  • Fawcett, J. A., Maere, S., & Van de Peer, Y. (2009). Plants with double genomes might have had a better chance to survive the Cretaceous–Tertiary extinction event. Proceeding of National Academy of Sciences, 106, 5737–5742.

    Article  CAS  Google Scholar 

  • Fielding, A. H., & Bell, J. F. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24, 38–49.

    Article  Google Scholar 

  • Friesen, N., Fritsch, R. M., & Blattner, F. R. (2006). Phylogeny and new intrageneric classification of Allium (Alliaceae) based on nuclear ribosomal DNA ITS sequences. Aliso, 22, 372–395.

    Google Scholar 

  • Fuentes, I., Stegemann, S., Golczyk, H., Karcher, D., & Bock, R. (2014). Horizontal genome transfer as an asexual path to the formation of new species. Nature, 511, 232–235.

    Article  CAS  PubMed  Google Scholar 

  • Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457–472.

    Article  Google Scholar 

  • Grant, V. (1981). Plant speciation. New York: Columbia University Press.

    Google Scholar 

  • Guggisberg, A., Mansion, G., & Conti, E. (2009). Disentangling reticulate evolution in an arctic-alpine polyploid complex. Systematic Biology, 58, 55–73.

    Article  CAS  PubMed  Google Scholar 

  • Guindon, S., & Gascuel, O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology, 52, 696–704.

    Article  PubMed  Google Scholar 

  • Guo, Y. P., Tong, X. Y., Wang, L. W., & Vogl, C. (2013). A population genetic model to infer allotetraploid speciation and long-term evolution applied to two yarrow species. New Phytologist, 199, 609–621.

    Article  CAS  PubMed  Google Scholar 

  • Hasterok, R., Draper, J., & Jenkins, G. (2004). Laying the cytotaxonomic foundations of a new model grass, Brachypodium distachyon (L.) Beauv. Chromosome Research, 12, 397–403.

    Article  CAS  PubMed  Google Scholar 

  • Hasumi, H., & Emori, S. (2004). K-1 Coupled GCM (MIROC) description. K-1 Tech. Rep. 1, Center for Climate System Research (CCSR), University of Tokyo, National Institute for Environmental Studies (NIES), Frontier Research Center for Global Change (FRCGC), 34, Available, http://www.ccsr.u-tokyo.ac.jp/~agcmadm/.

  • Hijmans, R. J., Guarino, L., Cruz, M., & Rojas, E. (2001). Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS. Plant Genetic Resources Newsletter, 127, 15–19.

    Google Scholar 

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978.

    Article  Google Scholar 

  • Hubisz, M. J., Falush, D., Stephens, M., & Pritchard, J. K. (2009). Inferring weak population structure with the assistance of sample group information. Molecular Ecology Resources, 9, 1322–1332.

    Article  PubMed Central  PubMed  Google Scholar 

  • Huson, D. H., & Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution, 23, 254–267.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S. T., Sultan, S. E., & Donoghue, M. J. (2008). Allopolyploid speciation in Persicaria (Polygonaceae): insights from a low-copy nuclear region. Proceedings of National Academy of Sciences, 105, 12370–12375.

    Article  CAS  Google Scholar 

  • Leitch, A. R., & Leitch, I. J. (2008). Genomic plasticity and the diversity of polyploid plants. Science, 320, 481–483.

    Article  CAS  PubMed  Google Scholar 

  • Levin, D. A. (1983). Polyploidy and novelty in flowering plants. American Naturalist, 122, 1–25.

    Article  Google Scholar 

  • Levin, D. A. (2002). The role of chromosomal change in plant evolution. Oxford: Oxford University Press.

    Google Scholar 

  • Lewis, W. H. (1980). Polyploidy in angiosperms: dicotyledons. In W. H. Lewis (Ed.), Polyploidy: biological relevance (pp. 241–268). New York: Plenum Press.

    Chapter  Google Scholar 

  • Manzaneda, A. J., Rey, P. J., Bastida, J. M., Weiss-Lehman, C., Raskin, E., & Mitchell-Olds, T. (2012). Environmental aridity is associated with cytotype segregation and polyploidy occurrence in Brachypodium distachyon (Poaceae). New Phytologist, 193, 797–805.

    Article  PubMed Central  PubMed  Google Scholar 

  • Masterson, J. (1994). Stomatal size in fossil plants: evidence for polyploidy in the majority of angiosperms. Science, 264, 421–423.

    Article  CAS  PubMed  Google Scholar 

  • McCormack, J. E., Zellmer, A. J., & Knowles, L. L. (2010). Does niche divergence accompany allopatric divergence in Aphelocoma jays as predicted under ecological speciation?: insights from tests with niche models. Evolution, 64, 1231–1244.

    PubMed  Google Scholar 

  • Nylander, J. A. A. (2004). MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.

  • Olmstead, R. G., & Palmer, J. D. (1994). Chloroplast DNA systematics: a review of methods and data analysis. American Journal of Botany, 81(9), 1205–1224.

    Article  CAS  Google Scholar 

  • Onge, K. R., Foxe, J. P., Li, J., Li, H. P., Holm, K., Corcoran, P., et al. (2012). Coalescent-based analysis distinguishes between allo- and autopolyploid origin in Shepherd's Purse (Capsella bursa-pastoris). Molecular Biology and Evolution, 29, 1721–1733.

    Article  Google Scholar 

  • Otto, S. P. (2007). The evolutionary consequences of polyploidy. Cell, 131, 452–462.

    Article  CAS  PubMed  Google Scholar 

  • Parisod, C., Holderegger, R., & Brochmann, C. (2010). Evolutionary consequences of autopolyploidy. New Phytologist, 186, 5–17.

    Article  CAS  PubMed  Google Scholar 

  • Paun, O., Fay, M. F., Soltis, D. E., & Chase, M. W. (2007). Genetic and epigenetic alterations after hybridization and genome doubling. Taxon, 56, 649–656.

    Article  PubMed Central  PubMed  Google Scholar 

  • Pearson, R. G., Raxworthy, C. J., Nakamura, M., & Townsend Peterson, A. (2007). Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography, 34, 102–117.

    Article  Google Scholar 

  • Peterson, A. T., Papeş, M., & Soberón, J. (2008). Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological Modelling, 213, 63–72.

    Article  Google Scholar 

  • Phillips, S. J., & Dudík, M. (2008). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31, 161–175.

    Article  Google Scholar 

  • Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231–259.

    Article  Google Scholar 

  • Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155, 945–959.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rieseberg, L. H., & Willis, J. H. (2007). Plant speciation. Science, 317, 910–914.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rohlf, F. J. (2000). NTSYS-pc numerical taxonomy and multivariate analysis system Version 2.1. Setauket: Exeter Software.

    Google Scholar 

  • Ronquist, F., & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574.

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg, N. A. (2004). DISTRUCT: a program for the graphical display of population structure. Molecular Ecology Notes, 4, 137–138.

    Article  Google Scholar 

  • Sang, T. (2002). Utility of low-copy nuclear gene sequences in plant phylogenetics. Critical Reviews in Biochemistry and Molecular Biology, 37, 121–147.

    Article  CAS  PubMed  Google Scholar 

  • Scannell, D. R., Byrne, K. P., Gordon, J. L., Wong, S., & Wolfe, K. H. (2006). Multiple rounds of speciation associated with reciprocal gene loss in polyploid yeasts. Nature, 440, 341–345.

    Article  CAS  PubMed  Google Scholar 

  • Schoener, T. W. (1968). The Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology, 49(4), 704–726.

    Article  Google Scholar 

  • Shimizu-Inatsugi, R., Lihova, J., Iwanaga, H., Kudoh, H., Marhold, K., Savolalinen, O., et al. (2009). The allopolyploid Arabidopsis kamchatica originated from multiple individuals of Arabidopsis lyrata and Arabidopsis halleri. Molecular Ecology, 18, 4024–4048.

    Article  CAS  PubMed  Google Scholar 

  • Soltis, D. E., & Soltis, P. S. (1995). The dynamic nature of polyploid genomes. Proceedings of the National Academy of Sciences, 92, 8089–8091.

    Article  CAS  Google Scholar 

  • Soltis, P. S., & Soltis, D. E. (2000). The role of genetic and genomic attributes in the success of polyploids. Proceedings of the National Academy of Sciences, 97, 7051–7057.

    Article  CAS  Google Scholar 

  • Soltis, D. E., Buggs, R. J. A., Doyle, J. J., & Soltis, P. S. (2010). What we still don’t know about polyploidy. Taxon, 59, 1387–1403.

    Google Scholar 

  • Song, K., Lu, P., Tang, K., & Osborn, T. C. (1995). Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proceedings of the National Academy of Sciences, 92, 7719–7723.

    Article  CAS  Google Scholar 

  • Stebbins, G. L. (1971). Chromosomal evolution in higher plants. London: Addison-Wesley.

    Google Scholar 

  • Stebbins, G. L. (1984). Polyploidy and the distribution of the arctic-alpine flora: new evidence and a new approach. Botanica Helvetica, 94(1), 1–13.

    Google Scholar 

  • Steen, S. W., Gielly, L., Taberlet, P., & Brochmann, C. (2000). Same parental species, but different taxa: molecular evidence for hybrid origins of the rare endemics Saxifraga opdalensis and S. svalbardensis (Saxifragaceae). Botanical Journal of the Linnean Society, 132(2), 153–164.

    Google Scholar 

  • Swofford, D. L. (2002). PAUP*: phylogenetic analysis using parsimony (*and other methods) (Version 4.0b10). Sunderland: Sinauer Associates.

    Google Scholar 

  • Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). The CLUSTAL_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25, 4876–4882.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Trewick, S. A., Morgan-Richards, M., Russell, S. J., Henderson, S., Rumsey, F. J., Pintér, I., et al. (2002). Polyploidy, phylogeography and Pleistocene refugia of the rock fern Asplenium ceterach: evidence from chloroplast DNA. Molecular Ecology, 11, 2003–2012.

    Article  CAS  PubMed  Google Scholar 

  • Vos, P., Hogers, R., Bleeker, M., Reijans, M., Van de Lee, T., Hornes, M., et al. (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research, 23, 4407–4414.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Warren, D. L., Glor, R. E., & Turelli, M. (2008). Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution, 62, 2868–2883.

    Article  PubMed  Google Scholar 

  • Warren, D. L., Glor, R. E., & Turelli, M. (2010). ENMTools: a toolbox for comparative studies of environmental niche models. Ecography, 33, 607–611.

    Article  Google Scholar 

  • Wood, T. E., Takebayashi, N., Barker, M. S., Mayrose, I., Greenspoon, P. B., & Rieseberg, L. H. (2009). The frequency of polyploid speciation in vascular plants. Proceedings of the National Academy of Sciences, 106, 13875–13879.

    Article  CAS  Google Scholar 

  • Wu, L. L., Cui, X. K., Milne, R. I., Sun, Y. S., & Liu, J. Q. (2010). Multiple autopolyploidizations and range expansion of Allium przewalskianum Regel. (Alliaceae) in the Qinghai-Tibetan Plateau. Molecular Ecology, 19, 1691–1704.

    Article  CAS  PubMed  Google Scholar 

  • Young, N., Carter, L., & Evangelista, P. (2011). A MaxEnt Model v3. 3.3e Tutorial (ArcGIS v10). Colorado: Natural Resource Ecology Laboratory at Colorado State University and the National Institute of Invasive Species Science.

    Google Scholar 

Download references

Acknowledgments

This research was supported by grants from National Key Project for Basic Research (2014CB954100), Sichuan Province Youth Science and Technology Innovation Team (2014TD003), and National Natural Science Foundation of China (30725004). We are grateful to Dr John Blackwell for the polish English of the present manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianquan Liu.

Additional information

Qianlong Liang and Xiaoxiao Hu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 768 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Q., Hu, X., Wu, G. et al. Cryptic and repeated “allopolyploid” speciation within Allium przewalskianum Regel. (Alliaceae) from the Qinghai-Tibet Plateau. Org Divers Evol 15, 265–276 (2015). https://doi.org/10.1007/s13127-014-0196-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-014-0196-0

Key words