Abstract
Polyploidization has contributed greatly to current plant diversity. Allopolyploid speciation, which can rapidly overcome meiosis abnormalities, is a common and repeated process in numerous genera. However, most polyploids within a single morphological/taxonomic species have been considered autopolyploids, which were assumed to arise through spontaneous genome doubling and/or following the fusion of unreduced diploid gametes. It remains untested whether these intraspecific polyploids may also be the result of ‘allopolyploid’ hybridizations between differentiated diploid populations and whether such speciation has also occurred repeatedly. In this study, we examined the diploid–tetraploid species Allium przewalskianum on the Qinghai-Tibet Plateau (QTP) to test this cryptic speciation hypothesis under morphological stasis, based on three sets of nuclear genetic data (AFLP, ITS, and CHS) and niche modeling. Our analyses of the three datasets together revealed that the diploid populations across the northeastern to southeastern QTP exhibit strong geographical differentiation. Based on the shared nuclear lineages fixed in the different diploids, three tetraploid groups in the northern, southern, and eastern QTP were identified as having originated independently, through “allopolyploid” hybridization between the differentiated diploids. Ecological niche modeling based on ecological variables suggested distinct niche differentiation between two tetraploid groups in the northern and southern QTP and also between these and the diploid populations. Furthermore, they also differed in their responses to past climate changes. These findings together suggested that at least two tetraploid groups had originated independently through hybridizations between the differentiated diploid populations. Our results highlight the cryptic allopolyploid speciation underlying a single morphological species, which mirrors well the repeated allopolyploid speciations within the genus. This allopolyploid speciation may prevail within the diploid–polyploid species complex that is classified as a single morphological species; indeed, the underlying cryptic speciation and evolutionary dynamics are certainly more complex than previously assumed.






Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Adams, M., Raadik, T. A., Burridge, C. P., & Georges, A. (2014). Global biodiversity assessment and hyper-cryptic species complexes: more than one species of elephant in the room? Systematic Biology, 63, 518–533.
Álvarez, I., & Wendel, J. F. (2003). Ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetics and Evolution, 29, 417–434.
Amborella Genome Project. (2013). The Amborella genome and the evolution of flowering plants. Science, 342, 1241089.
Bardy, K. E., Albach, D. C., Schneeweiss, G. M., Fischer, M. A., & Schönswetter, P. (2010). Disentangling phylogeography, polyploid evolution and taxonomy of a woodland herb (Veronica chamaedrys group, Plantaginaceae s.l.) in southeastern Europe. Molecular Phylogenetics and Evolution, 57, 771–786.
Brochmann, C., Brysting, A., Alsos, I., Borgen, L., Grundt, H., Scheen, A. C., & Elven, R. (2004). Polyploidy in arctic plants. Biological Journal of the Linnean Society, 82(4), 521–536.
Casgrain, P., & Legendre, P. (2001). The R Package for multivariate and spatial analysis, Version 4.0d1-User’s Manual. Départment de Sciences Biologiques, Université de Montréal, Available, http://scsie.uv.es/scsie_web_fichs/BIO/sw/por_nombres/r/r4-users-guide.pdf.
Cifuentes, M., Grandont, L., Moore, G., Chèvre, A. M., & Jenczewski, E. (2010). Genetic regulation of meiosis in polyploid species: new insights into an old question. New Phytologist, 186, 29–36.
Cronn, R., & Wendel, J. F. (2004). Cryptic trysts, genomic mergers, and plant speciation. New Phytologist, 161(1), 133–142.
Cui, L. Y., Wall, P. K., Leebens-Mack, J. H., Bruce, G. L., Douglas, E. S., Jeff, J. D., et al. (2006). Widespread genome duplications throughout the history of flowering plants. Genome Research, 16, 738–749.
Cui, X. K., Ao, C. Q., Zhang, Q., Chen, L. T., & Liu, J. Q. (2008). Diploid and tetraploid distribution of Allium przewalskianum Regel. (Liliaceae) in the Qinghai-Tibetan Plateau and adjacent regions. Caryologia, 61(2), 192–200.
Dubcovsky, J., & Dvorak, J. (2007). Genome plasticity: a key factor in the success of polyploid wheat under domestication. Science, 316, 1862–1866.
Elith, J., & Leathwick, J. R. (2009). Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40, 677–697.
Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14, 2611–2620.
Fawcett, J. A., Maere, S., & Van de Peer, Y. (2009). Plants with double genomes might have had a better chance to survive the Cretaceous–Tertiary extinction event. Proceeding of National Academy of Sciences, 106, 5737–5742.
Fielding, A. H., & Bell, J. F. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24, 38–49.
Friesen, N., Fritsch, R. M., & Blattner, F. R. (2006). Phylogeny and new intrageneric classification of Allium (Alliaceae) based on nuclear ribosomal DNA ITS sequences. Aliso, 22, 372–395.
Fuentes, I., Stegemann, S., Golczyk, H., Karcher, D., & Bock, R. (2014). Horizontal genome transfer as an asexual path to the formation of new species. Nature, 511, 232–235.
Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457–472.
Grant, V. (1981). Plant speciation. New York: Columbia University Press.
Guggisberg, A., Mansion, G., & Conti, E. (2009). Disentangling reticulate evolution in an arctic-alpine polyploid complex. Systematic Biology, 58, 55–73.
Guindon, S., & Gascuel, O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology, 52, 696–704.
Guo, Y. P., Tong, X. Y., Wang, L. W., & Vogl, C. (2013). A population genetic model to infer allotetraploid speciation and long-term evolution applied to two yarrow species. New Phytologist, 199, 609–621.
Hasterok, R., Draper, J., & Jenkins, G. (2004). Laying the cytotaxonomic foundations of a new model grass, Brachypodium distachyon (L.) Beauv. Chromosome Research, 12, 397–403.
Hasumi, H., & Emori, S. (2004). K-1 Coupled GCM (MIROC) description. K-1 Tech. Rep. 1, Center for Climate System Research (CCSR), University of Tokyo, National Institute for Environmental Studies (NIES), Frontier Research Center for Global Change (FRCGC), 34, Available, http://www.ccsr.u-tokyo.ac.jp/~agcmadm/.
Hijmans, R. J., Guarino, L., Cruz, M., & Rojas, E. (2001). Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS. Plant Genetic Resources Newsletter, 127, 15–19.
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978.
Hubisz, M. J., Falush, D., Stephens, M., & Pritchard, J. K. (2009). Inferring weak population structure with the assistance of sample group information. Molecular Ecology Resources, 9, 1322–1332.
Huson, D. H., & Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution, 23, 254–267.
Kim, S. T., Sultan, S. E., & Donoghue, M. J. (2008). Allopolyploid speciation in Persicaria (Polygonaceae): insights from a low-copy nuclear region. Proceedings of National Academy of Sciences, 105, 12370–12375.
Leitch, A. R., & Leitch, I. J. (2008). Genomic plasticity and the diversity of polyploid plants. Science, 320, 481–483.
Levin, D. A. (1983). Polyploidy and novelty in flowering plants. American Naturalist, 122, 1–25.
Levin, D. A. (2002). The role of chromosomal change in plant evolution. Oxford: Oxford University Press.
Lewis, W. H. (1980). Polyploidy in angiosperms: dicotyledons. In W. H. Lewis (Ed.), Polyploidy: biological relevance (pp. 241–268). New York: Plenum Press.
Manzaneda, A. J., Rey, P. J., Bastida, J. M., Weiss-Lehman, C., Raskin, E., & Mitchell-Olds, T. (2012). Environmental aridity is associated with cytotype segregation and polyploidy occurrence in Brachypodium distachyon (Poaceae). New Phytologist, 193, 797–805.
Masterson, J. (1994). Stomatal size in fossil plants: evidence for polyploidy in the majority of angiosperms. Science, 264, 421–423.
McCormack, J. E., Zellmer, A. J., & Knowles, L. L. (2010). Does niche divergence accompany allopatric divergence in Aphelocoma jays as predicted under ecological speciation?: insights from tests with niche models. Evolution, 64, 1231–1244.
Nylander, J. A. A. (2004). MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.
Olmstead, R. G., & Palmer, J. D. (1994). Chloroplast DNA systematics: a review of methods and data analysis. American Journal of Botany, 81(9), 1205–1224.
Onge, K. R., Foxe, J. P., Li, J., Li, H. P., Holm, K., Corcoran, P., et al. (2012). Coalescent-based analysis distinguishes between allo- and autopolyploid origin in Shepherd's Purse (Capsella bursa-pastoris). Molecular Biology and Evolution, 29, 1721–1733.
Otto, S. P. (2007). The evolutionary consequences of polyploidy. Cell, 131, 452–462.
Parisod, C., Holderegger, R., & Brochmann, C. (2010). Evolutionary consequences of autopolyploidy. New Phytologist, 186, 5–17.
Paun, O., Fay, M. F., Soltis, D. E., & Chase, M. W. (2007). Genetic and epigenetic alterations after hybridization and genome doubling. Taxon, 56, 649–656.
Pearson, R. G., Raxworthy, C. J., Nakamura, M., & Townsend Peterson, A. (2007). Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography, 34, 102–117.
Peterson, A. T., Papeş, M., & Soberón, J. (2008). Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological Modelling, 213, 63–72.
Phillips, S. J., & Dudík, M. (2008). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31, 161–175.
Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231–259.
Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155, 945–959.
Rieseberg, L. H., & Willis, J. H. (2007). Plant speciation. Science, 317, 910–914.
Rohlf, F. J. (2000). NTSYS-pc numerical taxonomy and multivariate analysis system Version 2.1. Setauket: Exeter Software.
Ronquist, F., & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574.
Rosenberg, N. A. (2004). DISTRUCT: a program for the graphical display of population structure. Molecular Ecology Notes, 4, 137–138.
Sang, T. (2002). Utility of low-copy nuclear gene sequences in plant phylogenetics. Critical Reviews in Biochemistry and Molecular Biology, 37, 121–147.
Scannell, D. R., Byrne, K. P., Gordon, J. L., Wong, S., & Wolfe, K. H. (2006). Multiple rounds of speciation associated with reciprocal gene loss in polyploid yeasts. Nature, 440, 341–345.
Schoener, T. W. (1968). The Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology, 49(4), 704–726.
Shimizu-Inatsugi, R., Lihova, J., Iwanaga, H., Kudoh, H., Marhold, K., Savolalinen, O., et al. (2009). The allopolyploid Arabidopsis kamchatica originated from multiple individuals of Arabidopsis lyrata and Arabidopsis halleri. Molecular Ecology, 18, 4024–4048.
Soltis, D. E., & Soltis, P. S. (1995). The dynamic nature of polyploid genomes. Proceedings of the National Academy of Sciences, 92, 8089–8091.
Soltis, P. S., & Soltis, D. E. (2000). The role of genetic and genomic attributes in the success of polyploids. Proceedings of the National Academy of Sciences, 97, 7051–7057.
Soltis, D. E., Buggs, R. J. A., Doyle, J. J., & Soltis, P. S. (2010). What we still don’t know about polyploidy. Taxon, 59, 1387–1403.
Song, K., Lu, P., Tang, K., & Osborn, T. C. (1995). Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proceedings of the National Academy of Sciences, 92, 7719–7723.
Stebbins, G. L. (1971). Chromosomal evolution in higher plants. London: Addison-Wesley.
Stebbins, G. L. (1984). Polyploidy and the distribution of the arctic-alpine flora: new evidence and a new approach. Botanica Helvetica, 94(1), 1–13.
Steen, S. W., Gielly, L., Taberlet, P., & Brochmann, C. (2000). Same parental species, but different taxa: molecular evidence for hybrid origins of the rare endemics Saxifraga opdalensis and S. svalbardensis (Saxifragaceae). Botanical Journal of the Linnean Society, 132(2), 153–164.
Swofford, D. L. (2002). PAUP*: phylogenetic analysis using parsimony (*and other methods) (Version 4.0b10). Sunderland: Sinauer Associates.
Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). The CLUSTAL_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25, 4876–4882.
Trewick, S. A., Morgan-Richards, M., Russell, S. J., Henderson, S., Rumsey, F. J., Pintér, I., et al. (2002). Polyploidy, phylogeography and Pleistocene refugia of the rock fern Asplenium ceterach: evidence from chloroplast DNA. Molecular Ecology, 11, 2003–2012.
Vos, P., Hogers, R., Bleeker, M., Reijans, M., Van de Lee, T., Hornes, M., et al. (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research, 23, 4407–4414.
Warren, D. L., Glor, R. E., & Turelli, M. (2008). Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution, 62, 2868–2883.
Warren, D. L., Glor, R. E., & Turelli, M. (2010). ENMTools: a toolbox for comparative studies of environmental niche models. Ecography, 33, 607–611.
Wood, T. E., Takebayashi, N., Barker, M. S., Mayrose, I., Greenspoon, P. B., & Rieseberg, L. H. (2009). The frequency of polyploid speciation in vascular plants. Proceedings of the National Academy of Sciences, 106, 13875–13879.
Wu, L. L., Cui, X. K., Milne, R. I., Sun, Y. S., & Liu, J. Q. (2010). Multiple autopolyploidizations and range expansion of Allium przewalskianum Regel. (Alliaceae) in the Qinghai-Tibetan Plateau. Molecular Ecology, 19, 1691–1704.
Young, N., Carter, L., & Evangelista, P. (2011). A MaxEnt Model v3. 3.3e Tutorial (ArcGIS v10). Colorado: Natural Resource Ecology Laboratory at Colorado State University and the National Institute of Invasive Species Science.
Acknowledgments
This research was supported by grants from National Key Project for Basic Research (2014CB954100), Sichuan Province Youth Science and Technology Innovation Team (2014TD003), and National Natural Science Foundation of China (30725004). We are grateful to Dr John Blackwell for the polish English of the present manuscript.
Author information
Authors and Affiliations
Corresponding author
Additional information
Qianlong Liang and Xiaoxiao Hu contributed equally to this work.
Electronic supplementary material
Below is the link to the electronic supplementary material.
ESM 1
(DOC 768 kb)
Rights and permissions
About this article
Cite this article
Liang, Q., Hu, X., Wu, G. et al. Cryptic and repeated “allopolyploid” speciation within Allium przewalskianum Regel. (Alliaceae) from the Qinghai-Tibet Plateau. Org Divers Evol 15, 265–276 (2015). https://doi.org/10.1007/s13127-014-0196-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13127-014-0196-0


