Organisms Diversity & Evolution

, Volume 14, Issue 4, pp 339–348 | Cite as

Floral scent and its correlation with AFLP data in Sorbus

  • Martin Feulner
  • Stefan Pointner
  • Lisa Heuss
  • Gregor Aas
  • Juraj Paule
  • Stefan Dötterl
Original Article

Abstract

Comparisons between floral scent-based and DNA-molecular-based taxonomies are rare, yet such comparisons indicate that scent can provide useful taxonomic information. Here, we correlate the phytochemical differentiation in floral scent to the DNA-molecular-based differentiation in the genus Sorbus. Inflorescence scent patterns of the apomictic and endemic Sorbus latifolia microspecies Sorbus franconica, Sorbus adeana, and Sorbus cordigastensis originated by hybridization as well as their parental taxa Sorbus aria agg. and Sorbus torminalis were investigated with the dynamic headspace method. The scent data (presence/absence of compounds) were used to construct an UPGMA tree, to calculate a similarity matrix, and to correlate them with the published amplified fragment length polymorphism (AFLP) data of the same individuals, populations, and taxa. Flow cytometry was used to estimate the DNA-ploidy level of the taxa. Scent analyses showed a total of 68 substances, among them aromatic compounds, terpenoids, aliphatics, and nitrogen-containing compounds. The scent patterns were taxon-specific, and the number of scent components differed among taxa. The correlations with the published AFLP data on population and individual level are highly significant, indicating that the scent and AFLP data are highly congruent in the plants studied. Scent therefore provides useful taxonomic characters in Sorbus.

Keywords

AFLP Apomixis Correlation analysis Floral scent Rosaceae Taxonomy Sorbus 

References

  1. Aas, G., & Kohles, M. (2011). Verbreitung, Häufigkeit und Verjüngung von Sorbus cordigastensis (Kordigast-Mehlbeere) in der nördlichen Frankenalb. Tuexenia, 31, 59–71.Google Scholar
  2. Ackerman, J. D., Cuevas, A. A., & Hof, D. (2011). Are deception-pollinated species more variable than those offering a reward? Plant Systematics and Evolution, 293, 91–99.CrossRefGoogle Scholar
  3. Adams, R. P. (2007). Identification of essential oil components by gas chromatography/mass spectrometry (4th ed.). Carol Stream: Allured Publishing Corporation.Google Scholar
  4. Amirav, A., & Dagan, S. (1997). A direct sample introduction device for mass spectrometry studies and gas chromatography mass spectrometry analyses. European Mass Spectrometry, 105–111.Google Scholar
  5. Burger, H., Dötterl, S., Häberlein, C., Schulz, S., & Ayasse, M. (2011). An arthropod deterrent attracts specialised bees to their host plants. Oecologia, 168, 727–736.PubMedCrossRefGoogle Scholar
  6. Campbell, C. S., & Dickinson, T. A. (1990). Apomixis, patterns of morphological variation, and species concepts in subfam. Maloideae (Rosaceae). Systematic Botany, 15, 124–135.CrossRefGoogle Scholar
  7. Campbell, C. S., Evans, R. C., Morgan, D. R., Dickinson, T. A., & Arsenault, M. P. (2007). Phylogeny of subtribe Pyrinae (formerly the Maloideae, Rosaceae): limited resolution of a complex evolutionary history. Plant Systematics and Evolution, 266, 119–145.CrossRefGoogle Scholar
  8. Chapman, H., Robson, B., & Pearson, M. L. (2004). Population genetic structure of a colonising, triploid weed, Hieracium lepidulum. Heredity, 92, 182–188.PubMedCrossRefGoogle Scholar
  9. Clarke, K. R. & Gorley, R. N. (2006). Primer v6: user manual/tutorial. Primer-E Ltd.Google Scholar
  10. Dobson, H. E. M., Raguso, R. A., Knudsen, J. T., Ayasse, M. (2005). Scent as an attractant. In: Dafni A, Kevan, P. G., Husband, B. C. (Eds.), Practical pollination biology (pp. 197–199). Cambridge, Ontario, Canada: Enviroquest, Ltd.Google Scholar
  11. Doležel, J., Sgorbati, S., & Lucretti, S. (1992). Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiologia Plantarum, 85, 625–631.CrossRefGoogle Scholar
  12. Doležel, J., Doleželová, M., & Novák, F. J. (1994). Flow cytometric estimation of nuclear DNA amount in diploid bananas (Musa acuminata and M. balbisiana). Biologia Plantarum, 36, 351–357.CrossRefGoogle Scholar
  13. Doležel, J., Greilhuber, J., & Suda, J. (2007). Estimation of nuclear DNA content in plants using flow cytometry. Nature Protocols, 2, 2233–2244.PubMedCrossRefGoogle Scholar
  14. Dötterl, S., Wolfe, L. W., & Jürgens, A. (2005). Qualitative and quantitative analyses of flower scent in Silene latifolia. Phytochemistry, 66, 203–213.PubMedCrossRefGoogle Scholar
  15. Dötterl, S., Jürgens, A., Seifert, K., Laube, T., Weißbecker, B., & Schütz, S. (2006). Nursery pollination by a moth in Silene latifolia: the role of odours in eliciting antennal and behavioural responses. New Phytologist, 169, 707–718.PubMedCrossRefGoogle Scholar
  16. Düll, R. (1961). Die Sorbus-Arten und ihre Bastarde in Bayern und Thüringen. Berichte Bayerische Botanische Gesellschaft, 34, 11–65.Google Scholar
  17. Faegri, K., & van der Pijl, L. (1979). The principles of pollination ecology. Oxford: New York, Toronto, Sydney, Paris, Frankfurt, Pergamon Press Ltd.Google Scholar
  18. Fenster, C. B., Armbruster, W. S., Wilson, P., Dudash, M. R., & Thomson, J. D. (2004). Pollination syndromes and floral specialization. Annual Review of Ecology, Evolution, and Systematics, 35, 375–403.CrossRefGoogle Scholar
  19. Feulner, M., Schuhwerk, F., & Dötterl, S. (2009). Floral scent analysis in Hieracium subgenus Pilosella and its taxonomical implications. Flora, 204, 495–505.CrossRefGoogle Scholar
  20. Feulner, M., Schuhwerk, F., & Dötterl, S. (2011). Taxonomical value of inflorescence scent in Hieracium s. str. Biochemical Systemetic and Evolution, 39, 732–743.CrossRefGoogle Scholar
  21. Feulner, M., Liede-Schumann, S., Meve, U., Weig, A., & Aas, G. (2013). Genetic structure of Sorbus latifolia (Lam.) Pers. taxa endemic to Northern Bavaria. Plant Systematics and Evolution, 299, 1065–1074.CrossRefGoogle Scholar
  22. Gancel, A. L., Ollé, D., Ollitrault, P., Luro, F., & Brillouet, J. M. (2002). Leaf and peel volatile compounds of an interspecific citrus somatic hybrid [Citrus aurantifolia (Christm.) Swing. + Citrus paradisi Macfayden]. Flavour and Fragrance Journal, 17, 416–424.CrossRefGoogle Scholar
  23. Jankun, A., & Kovanda, M. (1987). Embryological studies of Sorbus 2. Apomixis and origin of Sorbus bohemica. Preslia, 59, 97–116.Google Scholar
  24. Jersáková, J., Castro, S., Sonk, N., Milchreit, K., Schödelbauerová, I., Tolasch, T., & Dötterl, S. (2010). Absence of pollinator-mediated premating barriers in mixed-ploidy populations of Gymnadenia conopsea s.l. (Orchidaceae). Evolutionary Ecology, 24, 1199–1218.CrossRefGoogle Scholar
  25. Knudsen, J. T., & Tollsten, L. (1993). Trends in floral scent chemistry in pollination syndromes: floral scent composition in moth-pollinated taxa. Botanical Journal of the Linnean Society, 113, 263–284.CrossRefGoogle Scholar
  26. Lepší, M., Vít, P., Lepší, P., Boublík, K., & Kolář, F. (2009). Sorbus portae-bohemicae and Sorbus albensis, two new endemic apomictic species recognized based on a revision of Sorbus bohemica. Preslia, 8, 63–89.Google Scholar
  27. Levin, R. A., McDade, L. A., & Raguso, R. A. (2003). The systematic utility of floral and vegetative fragrance in two genera of Nyctaginaceae. Systematic Biology, 52, 334–351.PubMedCrossRefGoogle Scholar
  28. Ludwig, S., Robertson, A., Rich, T. C. G., Djordjevic, M., Cerovic, R., Houston, L., Harris, S. A., & Hiscock, S. J. (2013). Breeding systems, hybridization and continuing evolution in Avon Gorge Sorbus. Annals of Botany, 111, 563–575.PubMedCentralPubMedCrossRefGoogle Scholar
  29. Meyer, N., Meierott, L., Schuwerk, H., & Angerer, O. (2005). Beiträge zur Gattung Sorbus in Bayern. Berichte Bayerische Botanische Gesellschaft Sonderband, 5–216.Google Scholar
  30. Meyer, N., Gregor, T., Meierott, L. & Paule J. (2014). Diploidy suggests hybrid origin and sexuality in the genus Sorbus, subgen. Tormaria, from Thuringia, Central Germany. Plant systematics and evolution, doi:10.1007/s00606-014-1043-7.
  31. Nogler, G. A. (1984). Gametophytic apomixis. In B. M. Johri (Ed.), Embryology of angiosperms. Berlin: Springer (pp. 475–518).Google Scholar
  32. Paule, J., Sharbel, T. F., & Dobeš, C. (2011). Apomictic and sexual lineages of the Potentilla argentea L. group (Rosaceae): cytotype and molecular genetic differentiation. Taxon, 60, 721–732.Google Scholar
  33. Pellicer, J., Clermont, S., Houston, L., Rich, T. C. G., & Fay, M. F. (2012). Cytotype diversity in the Sorbus complex (Rosaceae) in Britain: sorting out the puzzle. Annals of Botany, 110, 1185–1193.PubMedCentralPubMedCrossRefGoogle Scholar
  34. Plepys, D., Ibarra, F., & Löfstedt, C. (2002). Odour-mediated nectar foraging in the silver Y moth, Autographa gamma (Lepidoptera: Noctuidae): behavioural and electrophysiological responses to floral volatiles. Oikos, 99, 75–82.CrossRefGoogle Scholar
  35. Raguso, R. A., Levin, R. A., Foose, S. E., Holmberg, M. W., & McDade, L. A. (2003). Fragrance chemistry, nocturnal rhythms and pollination “syndromes” in Nicotiana. Phytochemistry, 63, 265–284.PubMedCrossRefGoogle Scholar
  36. Rich, T. C. G., Mcdonnell, E. J. L., & Dolores, M. (2008). Conservation of Britain’s biodiversity: the case of Hieracium cyathis (Asteraceae) and its relation to other apomictic taxa. Botanical Journal of the Linnean Society, 156, 669–680.CrossRefGoogle Scholar
  37. Rich, T. C. G., Houston, L. & Robertson, A. (2010). Whitebeams, rowans and service Trees of Britain and Ireland. A monograph of British and Irish Sorbus L. BSBI Handbook 14, London.Google Scholar
  38. Robertson, A., Rich, T. C. G., Allen, A. M., Houston, L., Roberts, C., Bridle, J. R., Harris, S. A., & Hiscock, J. S. (2010). Hybridization and polyploidy as drivers of continuing evolution and speciation in Sorbus. Molecular Ecology, 19, 1675–1690.PubMedCrossRefGoogle Scholar
  39. Salzman, C. C., Nardella, A. M., Cozzolino, S., & Schiestl, F. P. (2007). Variability in floral scent in rewarding and deceptive orchids: the signature of pollinator-imposed selection? Annals of Botany, 100, 757–765.CrossRefGoogle Scholar
  40. Steiner, K. E., Kaiser, R., & Dötterl, S. (2011). Strong phylogenetic effects on floral scent variation of oil-secreting orchids in South Africa. American Journal of Botany, 98, 1663–1679.PubMedCrossRefGoogle Scholar
  41. Stökl, J., Schlueter, P. M., Stuessy, T. F., Paulus, H. F., Assum, G., & Ayasse, M. (2008). Scent variation and hybridization cause the displacement of a sexually deceptive orchid species. American Journal of Botany, 95, 472–481.PubMedCrossRefGoogle Scholar
  42. Svensson, G. P., Okamoto, T., Kawakita, A., Goto, R., & Kato, M. (2010). Chemical ecology of an obligate pollination mutualism: testing the ‘private channel’ hypothesis in the Breynia-Epicephala association. New Phytologist, 186, 995–1004.PubMedCrossRefGoogle Scholar
  43. Talent, N. (2009). Evolution of gametophytic apomixis in flowering plants: an alternative model from Maloid Rosaceae. Theory in Biosciences, 128, 121–138.PubMedCrossRefGoogle Scholar
  44. Vereecken, N. J., Cozzolino, S., & Schiestl, F. P. (2010). Hybrid floral scent novelty drives pollinator shift in sexually deceptive orchids. BMC Evolutionary Biology, 10, 103.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2014

Authors and Affiliations

  • Martin Feulner
    • 1
  • Stefan Pointner
    • 1
  • Lisa Heuss
    • 1
  • Gregor Aas
    • 2
  • Juraj Paule
    • 3
  • Stefan Dötterl
    • 1
    • 4
  1. 1.Department of Plant SystematicsUniversity of BayreuthBayreuthGermany
  2. 2.Ecological-Botanical GardensUniversity of BayreuthBayreuthGermany
  3. 3.Department of Botany and Molecular EvolutionSenckenberg Research Institute & Biodiversity and Climate Research Centre (BiK-F)Frankfurt/MainGermany
  4. 4.Department of Organismic BiologyUniversity of SalzburgSalzburgAustria

Personalised recommendations