Abstract
For almost 2 centuries it has been disputed whether Tuber aestivum and Tuber uncinatum constitute two different species of truffles. Molecular markers have been applied previously to contribute to resolving this question, coming to different conclusions. In this study, we address this question by analyzing the genetic structure of truffles assigned to either of the two putative species from a geographically broad sampling across Europe. We used an approach involving multigene phylogenies and coalescent analyses of nine regions from five genes. All tests conducted supported the conspecificity of Tuber aestivum and Tuber uncinatum.



Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology. doi:10.1016/s0022-2836(05)80360-2.
Bonito, G., Trappe, J. M., Rawlinson, P., & Vilgalys, R. (2010a). Improved resolution of major clades within Tuber and taxonomy of species within the Tuber gibbosum complex. Mycologia, 102, 1042–1057. doi:10.3852/09-213.
Bonito, G. M., Gryganskyi, A. P., Trappe, J. M., & Vilgalys, R. (2010b). A global meta-analysis of Tuber ITS rDNA sequences: species diversity, host associations and long-distance dispersal. Molecular Ecology. doi:10.1111/j.1365-294X.2010.04855.x.
Bonito, G. M., Smith, M., Nowak, M., Healy, R., Guevara, G., Cázares, E., et al. (2013). Historical biogeography and diversification of truffles in the Tuberaceae and their newly identified southern hemisphere sister lineage. PLoS One. doi:10.1371/journal.pone.0052765.
Chatin, A. (1887). Une nouvelle espèce de truffe. Les Comptes Rendus de L'Académie Des Sciences, 104, 1132–1135.
Chevalier, G., & Frochot, H. (1997). La truffe de Bourgogne. Levallois-Perret: Éditions Pétrarque.
Chevalier, G., Desmas, C., Frochot, H., & Riousset, L. (1979). L’espèce Tuber aestivum Vitt.: I. Définition. Mushroom Science, X(Part 1), 957–975.
Cunningham, C. W. (1997). Can three incongruence tests predict when data should be combined? Molecular Biology and Evolution, 14, 733–740.
Drummond, A. J., & Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology. doi:10.1186/1471-2148-7-214.
Drummond, A. J., Ho, S. Y. W., Phillips, M. J., & Rambaut, A. (2006). Relaxed phylogenetics and dating with confidence. PLoS Biology. doi:10.1371/journal.pbio.0040088.
Drummond, A. J., Suchard, M. A., Xie, D., & Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution. doi:10.1093/molbev/mss075.
Du Mortier, B. C. (1822). Commentationes botanicae: Observations botaniques, dédiées à la Société d'horticulture de Tournay.
Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology. doi:10.1111/j.1365-294X.2005.02553.x.
Gandeboeuf, D., Dupré, C., & Chevalier, G. (1994). Use of isoenzyme analysis to differentiate truffles from Europe. Acta Botanica Gallica, 141, 455–463.
Gardes, M., & Bruns, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes - Application to the identification of mycorrhizae and rusts. Molecular Ecology, 2, 113–118.
Geiser, D. M., Pitt, J. I., & Taylor, J. W. (1998). Cryptic speciation and recombination in the aflatoxin-producing fungus Aspergillus flavus. Proceedings of the National Academy of Sciences of the United States of America, 95, 388–393.
Glass, N. L., & Donaldson, G. C. (1995). Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology, 61, 1323–1330.
Guillemaud, T., Raymond, M., Callot, G., Cleyet-Marel, J. C., & Fernandez, D. (1996). Variability of nuclear and mitochondrial ribosomal DNA of a truffle species (Tuber aestivum). Mycological Research, 100, 547–550.
Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology. doi:10.1093/sysbio/syq010.
Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.
Hansen, K., LoBuglio, K. F., & Pfister, D. H. (2005). Evolutionary relationships of the cup-fungus genus Peziza and Pezizaceae inferred from multiple nuclear genes: RPB2, beta-tubulin, and LSU rDNA. Molecular Phylogenetics and Evolution. doi:10.1016/j.ympev.2005.03.010.
Huelsenbeck, J. P., & Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. doi:10.1093/bioinformatics/17.8.754.
Jeandroz, S., Murat, C., Wang, Y. J., Bonfante, P., & Le Tacon, F. (2008). Molecular phylogeny and historical biogeography of the genus Tuber, the 'true truffles'. Journal of Biogeography. doi:10.1111/j.1365-2699.2007.01851.x.
Larsson, E., & Jeppson, M. (2008). Phylogenetic relationships among species and genera of Lycoperdaceae based on ITS and LSU sequence data from north European taxa. Mycological Research. doi:10.1016/i.mycres.2007.10.018.
Librado, P., & Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. doi:10.1093/bioinformatics/btp187.
Maddison, W. P., & Knowles, L. L. (2006). Inferring phylogeny despite incomplete lineage sorting. Systematic Biology. doi:10.1080/10635150500354928.
Maddison, W. P., & Maddison, D. (2011). Mesquite: A modular system for evolutionary analysis. Version 2.75.
Matheny, P. B. (2005). Improving phylogenetic inference of mushrooms with RPB1 and RPB2 nucleotide sequences (Inocybe; Agaricales). Molecular Phylogenetics and Evolution. doi:10.1016/j.ympev.2004.11.014.
Matheny, P. B., Liu, Y. J. J., Ammirati, J. F., & Hall, B. D. (2002). Using RPB1 sequences to improve phylogenetic inference among mushrooms (Inocybe, Agaricales). American Journal of Botany, 89, 688–698.
Mello, A., Cantisani, A., Vizzini, A., & Bonfante, P. (2002). Genetic variability of Tuber uncinatum and its relatedness to other black truffles. Environmental Microbiology, 4, 584–594.
Molitor, C., Inthavong, B., Sage, L., Geremia, R. A., & Mouhamadou, B. (2010). Potentiality of the cox1 gene in the taxonomic resolution of soil fungi. FEMS Microbiology Letters. doi:10.1111/j.1574-6968.2009.01839.x.
Mouches, C., Duthil, P., Poitou, N., Delmas, J., & Bove, J. (1981). Caractérisation des espèces truffières par analyse de leurs protéines en gels de polyacrylamide et application de ces techniques à la taxonomie des champignons. Mushroom Science, 11, 819–831.
Paolocci, F., Rubini, A., Riccioni, C., Topini, F., & Arcioni, S. (2004). Tuber aestivum and Tuber uncinatum: two morphotypes or two species? FEMS Microbiology Letters, 235, 109–115.
Posada, D. (2008). jModelTest: phylogenetic model averaging. Molecular Biology and Evolution. doi:10.1093/molbev/msn083.
Posada, D., & Buckley, T. R. (2004). Model selection and model averaging in phylogenetics: advantages of akaike information criterion and Bayesian approaches over likelihood ratio tests. Systematic Biology. doi:10.1080/10635150490522304.
Rambaut, A. (2009). FigTree v1.3.1. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh.
Rambaut, A., & Drummond, A. J. (2006). TreeAnnotator 1.4.5. http://beastbioedacuk/TreeAnnotator.
Rambaut, A., & Drummond, A. J. (2007). Tracer v1.4. Available from http://beastbioedacuk/Tracer.
Riousset, L., Riousset, G., Chevalier, G., & Bardet, M. C. (2001). Truffes d’Europe et de Chine. Paris: INRA Editions.
Rokas, A., Williams, B. L., King, N., & Carroll, S. B. (2003). Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature. doi:10.1038/nature02053.
Ronquist, F., & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. doi:10.1093/bioinformatics/btg180.
Roux, C., Sejalon-Delmas, N., Martins, M., Parguey-Leduc, A., Dargent, R., & Becard, G. (1999). Phylogenetic relationships between European and Chinese truffles based on parsimony and distance analysis of ITS sequences. FEMS Microbiology Letters, 180, 147–155.
Spatafora, J. W., Sung, G. H., Johnson, D., Hesse, C., O'Rourke, B., Serdani, M., et al. (2006). A five-gene phylogeny of Pezizomycotina. Mycologia, 98, 1018–1028.
Splivallo, R., Valdez, N., Kirchhoff, N., Ona, M. C., Schmidt, J. P., Feussner, I., et al. (2012). Intraspecific genotypic variability determines concentrations of key truffle volatiles. New Phytologist. doi:10.1111/j.1469-8137.2012.04077.x.
Stockinger, H., Walker, C., & Schussler, A. (2009). 'Glomus intraradices DAOM197198', a model fungus in arbuscular mycorrhiza research, is not Glomus intraradices. New Phytologist. doi:10.1111/j.1469-8137.2009.02874.x.
Swofford, D. L. (2002). PAUP*: Phylogenetic analysis using parsimony (*and Other Methods) (40th ed.). Sunderland: Sinauer.
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution. doi:10.1093/molbev/msr121.
Taylor, J. W., Jacobson, D. J., Kroken, S., Kasuga, T., Geiser, D. M., Hibbett, D. S., et al. (2000). Phylogenetic species recognition and species concepts in fungi. Fungal Genetics and Biology. doi:10.1006/fgbi.2000.1228.
Templeton, A. R. (1983). Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the evolution of humans and the apes. Evolution. doi:10.2307/2408332.
Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). Clustal-w—improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research. doi:10.1093/nar/22.22.4673.
Urbanelli, S., Sallicandro, P., De Vito, E., Bullini, L., & Biocca, E. (1998). Biochemical systematics of some species in the genus Tuber. Mycologia, 90, 537–546.
van Tuinen, D., Zhao, B., & Gianinazzi-Pearson, V. (1998). PCR in studies of AM fungi: From primers to application (pp. 387–399). Berlin Heidelberg New York: Springer.
Vittadini, C. (1831). Monographia tuberacearum. Milan: Rusconi.
Wang, Y. J., Tan, Z. M., Zhang, D. C., Murat, C., Jeandroz, S., & Le Tacon, F. (2006). Phylogenetic relationships between Tuber pseudoexcavatum, a Chinese truffle, and other Tuber species based on parsimony and distance analysis of four different gene sequences. FEMS Microbiology Letters. doi:10.1111/j.1574-6868.2006.00283.x.
Weden, C., Danell, E., & Tibell, L. (2005). Species recognition in the truffle genus Tuber—the synonyms Tuber aestivum and Tuber uncinatum. Environmental Microbiology. doi:10.1111/j.1462-2920.2005.00837.x.
White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols. San Diego: A Guide to Methods and Applications Academic Press.
Acknowledgments
This study was supported by the Burgundy Regional Council. We are grateful to Henri Frochot for providing Tuber aestivum samples. We thank Gian Carlo Ponzi and Claude Murat for providing Tuber macrosporum and Tuber magnatum samples, respectively. We are grateful to Gregory Bonito for providing primer sequences for the elongation factor 1α gene. We also thank Régis Courtecuisse for accepting our exsiccata samples in the LIP herbarium.
The authors declare that the experiments comply with the current laws of France.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Molinier, V., van Tuinen, D., Chevalier, G. et al. A multigene phylogeny demonstrates that Tuber aestivum and Tuber uncinatum are conspecific. Org Divers Evol 13, 503–512 (2013). https://doi.org/10.1007/s13127-013-0146-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13127-013-0146-2

