Organisms Diversity & Evolution

, Volume 13, Issue 4, pp 583–603 | Cite as

3D- microanatomy of the semiterrestrial slug Gascoignella aprica Jensen, 1985—a basal plakobranchacean sacoglossan (Gastropoda, Panpulmonata)

  • Peter Kohnert
  • Bastian Brenzinger
  • Kathe R. Jensen
  • Michael Schrödl
Original Article


The monophyly of the panpulmonate, usually marine benthic Sacoglossa—and its basal division into shelled Oxynoacea and shell-less Plakobranchacea—is undisputed, but family relationships are in doubt. Of particular interest is the potentially basal plakobranchacean family Platyhedylidae, comprising morphologically aberrant members lacking head tentacles or body appendages. Herein we re-describe the type species of the genus Gascoignella, G. aprica Jensen, 1985, from Hong Kong. Morphological data was generated by three-dimensional reconstruction from serial semi-thin sections using Amira software. Our microanatomical results largely confirm the original description. The anterior digestive system is sacoglossan-like but modified, e.g. the ascus is not demarcated externally and pharyngeal pouches are lacking. The digestive gland is bipartite, with two rami separated by a longitudinal, muscular, median septum, but fused in the rear end. The postpharyngeally situated nerve ring contains fused cerebropleural ganglia; the short visceral loop has three ganglia. Two major cerebral nerves were identified as rhinophoral and labiotentacular nerves, innervating sensory areas on the head velum. Gascoignella aprica is a hermaphrodite with a truly androdiaulic genital system of which some originally ambiguous characters are clarified. Bursa and prostate insert into a fertilization chamber proximal to a sac-like albumen gland and a tubular mucus gland. The cephalic copulatory apparatus contains a penis armed with a short and straight stylet and an accessory gland of unclear function; the presumed mode of sperm transfer is discussed. A well-developed heart and a large H-shaped kidney are present; the nephroduct opens into the intestine. Epidermal glands and body tissues are described for the first time. The presence of a unique longitudinal, median septum is considered diagnostic for Platyhedylidae, multiple further apomorphies are given. Morphological evidence supports the molecular phylogenetic hypothesis that the Platyhedylidae could be a basal non-shelled sacoglossan lineage.


Mollusca Opisthobranch Sea slug Phylogeny Morphology Evolution 

Supplementary material

13127_2013_142_MOESM1_ESM.pdf (3.8 mb)
Suppl Fig. 1(PDF 3900 kb)


  1. Andrews, E. B. (1988). Excretory systems of molluscs (pp. 381–448). London: Academic.Google Scholar
  2. Anthes, N., & Michiels, N. K. (2007). Precopulatory stabbing, hypodermic injections and unilateral copulations in a hermaphroditic sea slug. Biology Letters, 3(2), 121–124.PubMedCrossRefGoogle Scholar
  3. Arnaud, P. M., Poizat, C., & Salvini-Plawen, L. V. (Eds.). (1986). Marine interstitial Gastropoda (including one freshwater species) Stygofauna Mundi (pp. 153–161). Leiden: Brill/Backhuys.Google Scholar
  4. Baeumler, N., Haszprunar, G., & Ruthensteiner, B. (2011). Development of the excretory system in the polyplacophoran mollusc, Lepidochitona corrugata: the Protonephridium. Journal of Morphology, 272(8), 972–986.PubMedCrossRefGoogle Scholar
  5. Baeumler, N., Haszprunar, G., & Ruthensteiner, B. (2012). Development of the excretory system in a polyplacophoran mollusc: stages in metanephridial system development. Frontiers in Zoology, 9(1), 23. doi:10.1186/1742-9994-9-23.PubMedCrossRefGoogle Scholar
  6. Brenzinger, B., Neusser, T. P., Jörger, K. M., & Schrödl, M. (2011a). Integrating 3D microanatomy and molecules: natural history of the pacific freshwater slug Strubellia Odhner, 1937 (Heterobranchia: Acochlidia), with description of a new species. Journal of Molluscan Studies, 77, 351–374.CrossRefGoogle Scholar
  7. Brenzinger, B., Wilson, N. G., & Schrödl, M. (2011b). 3D microanatomy of a gastropod 'worm', Rhodope rousei n. Ssp. (HETEROBRANCHIA) from Southern Australia. Journal of Molluscan Studies, 77, 375–387.CrossRefGoogle Scholar
  8. Brenzinger, B., Padula, V., & Schrödl, M. (2012). Insemination by a kiss? Interactive 3D-microanatomy, biology and systematics of the mesopsammic cephalaspidean sea slug Pluscula cuica Marcus, 1953 from Brazil (Euopisthobranchia: Cephalaspidea: Philinoglossidae). Organisms, Diversity and Evolution. doi:10.1007/s13127-012-0093-3.Google Scholar
  9. Clark, K. B., Jensen, K. R., & Stirts, H. M. (1990). Survey for functional kleptoplasty (Chloroplast symbiosis) among West Atlantic Ascoglossa (=Sacoglossa) (Mollusca: Opisthobranchia). Veliger, 33, 339–345.Google Scholar
  10. DaCosta, S., Cunha, C. M., Simone, L. R. L., & Schrödl, M. (2007). Computer-based 3-dimensional reconstruction of major organ systems of a new aeolid nudibranch subspecies Flabellina engeli lucianae, from brazil. (Gastropoda: Opisthobranchia). Journal of Molluscan Studies, 73, 339–353.CrossRefGoogle Scholar
  11. Dayrat, B., & Tillier, S. (2000). Taxon sampling, character sampling and systematics: how gradist presuppositions created additional ganglia in gastropod euthyneuran taxa. Zoological Journal of the Linnean Society, 129, 403–418.CrossRefGoogle Scholar
  12. Dinapoli, A., & Klussmann-Kolb, A. (2010). The long way to diversity - Phylogeny and evolution of the Heterobranchia (Mollusca: Gastropoda). Molecular Phylogenetics and Evolution, 55(1), 60–76.PubMedCrossRefGoogle Scholar
  13. Fahrner, A., & Haszprunar, G. (2001). Anatomy and ultrastructure of the excretory system of a heart-bearing and a heart-less sacoglossan gastropod (Opisthobranchia, Sacoglossa). Zoomorphology, 121(2), 85–93.CrossRefGoogle Scholar
  14. Gascoigne, T. (1956). Feeding and reproduction in the Limapontiidae. Transactions of the Royal Society of Edinburgh, 63, 129–150.CrossRefGoogle Scholar
  15. Gascoigne, T. (1976). The reproductive system and classification of the Stiligeridae (Opisthobranchia: Sacoglossa). Journal of the Malacological Society of Australia, 3, 157–172.Google Scholar
  16. Gascoigne, T. (1979). A redescription of Caliphylla mediterrana Costa, 1867 (Opisthobranchia: Ascoglossa). Journal of Molluscan Studies, 45(3), 300–311.Google Scholar
  17. Göbbeler, K., & Klussmann-Kolb, A. (2011). Molecular phylogeny of the Euthyneura (Mollusca, Gastropoda) with special focus on Opisthobranchia as a framework for reconstruction of evolution of diet. Thalassas, 27, 121–154.Google Scholar
  18. Golding, R. E. (2010). Anatomy in Toledonia warenella n. sp. (Gastropoda: Opisthobranchia: Diaphanidae) visualized by three-dimensional reconstruction. Invertebrate Biology, 129, 151–164.CrossRefGoogle Scholar
  19. Gosliner, T. M. (1981). Origins and relationships of primitive members of the Opisthobranchia (Mollusca, Gastropoda). Biological Journal of the Linnean Society, 16(3), 197–225.CrossRefGoogle Scholar
  20. Gosliner, T. M. (1994). Chapter 5. Gastropoda: Opisthobranchia. In F. W. Harrison & A. J. Kohn (Eds.), Macroscopic anatomy of Invertebrates: Mollusca I, volume 5 (pp. 253–355). New York: Wiley-Liss.Google Scholar
  21. Gosliner, T., Behrens, D., & Valdes, A. (2008). Indo Pacific Nudibranchs and Sea Slugs: a field guide to the World’s most diverse fauna. San Francisco: California Academy of Sciences/Sea Challengers Natural History Books.Google Scholar
  22. Händeler, K., Grzymbowski, Y. P., Krug, P. J., & Wägele, H. (2009). Functional chloroplasts in metazoan cells—a unique evolutionary strategy in animal life. Frontiers in Zoology, 6, 28. doi:10.1186/1742-9994-6-28.PubMedCrossRefGoogle Scholar
  23. Haszprunar, G. (1985). The Heterobranchia—a new concept of the phylogeny of the higher Gastropoda. Zeitschrift für zoologische Systematik und Evolutionsforschung, 23, 15–37.CrossRefGoogle Scholar
  24. Haszprunar, G., Speimann, E., et al. (2011). Interactive 3D anatomy and affinities of the Hyalogyrinidae, basal Heterobranchia (Gastropoda) with a rhipidoglossate radula. Organisms, Diversity and Evolution, 11(3), 201–236.CrossRefGoogle Scholar
  25. Henry, E. C. (1977). A method for obtaining ribbons of serial sections of plastic embedded specimens. Stain Technology, 52, 59–60.PubMedGoogle Scholar
  26. Huber, G. (1993). On the cerebral nervous system of marine Heterobranchia (Gastropoda). Journal of Molluscan Studies, 59, 381–420.CrossRefGoogle Scholar
  27. Jensen, K. R. (1980). A review of sacoglossan diets with comparative notes on radular and buccal anatomy. Malacological Review, 13(1–2), 55–78.Google Scholar
  28. Jensen, K. R. (1981). Observations on feeding methods in some Florida ascoglossans. Journal of Molluscan Studies, 47, 190–199.Google Scholar
  29. Jensen, K. R. (1985). Annotated checklist of Hong-Kong Ascoglossa (Mollusca, Opisthobranchia), with descriptions of four new species. In B. Morton & D. Dudgeon (Eds.), Proceedings of the Second International Workshop on the Malacofauna of Hong Kong and Soutern China (pp. 77–107). Hong Kong: Hong Kong University Press.Google Scholar
  30. Jensen, K. R. (1991). Comparison of alimentary systems in shelled and non-shelled Sacoglossa (Mollusca, Opisthobranchia). Acta Zoologica, 72, 143–150.Google Scholar
  31. Jensen, K. R. (1993a). Evolution of buccal apparatus and diet radiation in the Sacoglossa (Opisthobranchia). Bollettino Malacologico, 29(5–8), 147–172.Google Scholar
  32. Jensen, K. R. (1993b). Morphological adaptations and plasticity of radular teeth of the Sacoglossa (=Ascoglossa) (Mollusca: Opisthobranchia) in relation to their food plants. Biological Journal of the Linnean Society, 48, 135–155.CrossRefGoogle Scholar
  33. Jensen, K. R. (1993c). Sacoglossa (Mollusca: Opisthobranchia)—specialist herbivores and partial predators: Integrating ecological, physiological and morphological data. In B. Morton (Ed.), The marine biology of the South China Sea. Proceedings of the First International Conference on the Marine Biology of Hong Kong and the South China Sea. Hong Kong, 28 October–3 November 1990 (pp. 437–458). Hong Kong: Hong Kong University Press.Google Scholar
  34. Jensen, K. R. (1995). The Diaphanidae as a possible sister group of the Sacoglossa (Gastropoda, Opisthobranchia). In J. Taylor (Ed.), Origin and evolutionary radiation of the Mollusca (pp. 231–247). Oxford: Oxford University Press.Google Scholar
  35. Jensen, K. R. (1996). Phylogenetic systematics and classification of the Sacoglossa (Mollusca, Gastropoda, Opisthobranchia). Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 351(1335), 91–122.CrossRefGoogle Scholar
  36. Jensen, K. R. (1997). Evolution of Sacoglossa (Mollusca, Opisthobranchia) and the ecological associations with their food plants. Evolutionary Ecology, 11, 301–335.CrossRefGoogle Scholar
  37. Jensen, K. R. (1999). Copulatory behaviour in three shelled and five non-shelled sacoglossans (Mollusca, Opisthobranchia), with a discussion of the phylogenetic significance of copulatory behaviour. Ophelia, 51(2), 93–106.CrossRefGoogle Scholar
  38. Jensen, K. R. (2001). Review of reproduction in the Sacoglossa (Mollusca, Opisthobranchia). Bollettino Malacologico, 37(5–8), 81–98.Google Scholar
  39. Jensen, K. R. (2003). Distributions, diets and reproduction of Hong Kong Sacoglossa (Mollusca: Opisthobranchia): A summary of data, 1980–2001. In B. Morton (Ed.), Perspectives on marine environmental change in Hong Kong and Southern China, 1977–2001: Proceedings of an International Workshop Reunion Conference, Hong Kong 2001 (pp. 347–365). Hong Kong: Hong Kong University Press.Google Scholar
  40. Jörger, K. M., Stöger, I., et al. (2010). On the origin of Acochlidia and other enigmatic euthyneuran gastropods, with implications for the systematics of Heterobranchia. BMC Evolutionary Biology, 10, 323. doi:10.1186/1471-2148-10-323.PubMedCrossRefGoogle Scholar
  41. Klussmann-Kolb, A. (2001). Comparative investigation of the genital systems in the Opisthobranchia (Mollusca, Gastropoda) with special emphasis on the nidamental glandular system. Zoomorphology, 120, 215–235.CrossRefGoogle Scholar
  42. Klussmann-Kolb, A., Dinapoli, A., et al. (2008). From sea to land and beyond - New insights into the evolution of euthyneuran Gastropoda (Mollusca). BMC Evolutionary Biology, 8, 57. doi:10.1186/1471-2148-8-57.PubMedCrossRefGoogle Scholar
  43. Maeda, T., Kajita, T., et al. (2010). Molecular phylogeny of the Sacoglossa, with a discussion of gain and loss of kleptoplasty in the evolution of the group. The Biological Bulletin, 219(1), 17–26.PubMedGoogle Scholar
  44. Malaquias, M. A. E., Mackenzie-Dodds, J., Bouchet, P., Gosliner, T., & Reid, D. G. (2009). A molecular phylogeny of the Cephalaspidea sensu lato (Gastropoda: Euthyneura): architectibranchia redefined and Runcinacea reinstated. Zoologica Scripta, 38, 23–41.CrossRefGoogle Scholar
  45. Martynov, A., Brenzinger, B., et al. (2011). 3D-anatomy of a new tropical peruvian nudibranch gastropod species, Corambe Mancorensis, and novel hypotheses on dorid gill ontogeny and evolution. Journal of Molluscan Studies, 77, 129–141.CrossRefGoogle Scholar
  46. Medina, M., Lal, S., Vallès, Y., Takaoka, T. L., Dayrat, B. A., Boore, J. L., et al. (2011). Crawling through time: transition of snails to slugs dating back to the Paleozoic, based on mitochondrial phylogenomics. Marine Genomics, 4, 51–59.PubMedCrossRefGoogle Scholar
  47. Mikkelsen, P. M. (1996). The evolutionary relationships of cephalaspidea SL (Gastropoda: Opisthobranchia): a phylogenetic analysis. Malacologia, 37(2), 375–442.Google Scholar
  48. Mikkelsen, P. M. (1998). Cylindrobulla and Ascobulla in the western Atlantic (Gastropoda, Opisthobranchia, Sacoglossa): systematic review, description of a new species, and phylogenetic reanalysis. Zoologica Scripta, 27(1), 49–71.CrossRefGoogle Scholar
  49. Morse, P. M., & Reynolds, P. D. (1996). Ultrastructure of the heart-kidney complex in smaller classes supports symplesiomorphy of molluscan coelomic characters. In J. Taylor (Ed.), Origin and evolutionary radiation of the Mollusca (pp. 89–97). Oxford: Oxford University Press.Google Scholar
  50. Neusser, T. P., & Schrödl, M. (2007). Tantulum elegans reloaded: a computer-based 3D-visualization of the anatomy of the Caribbean freshwater acochlidian gastropod. Invertebrate Biology, 126(1), 18–39.Google Scholar
  51. Neusser, T. P., Jörger, K. M., & Schrödl, M. (2007). Exploring cerebral features in Acochlidia (Gastropoda: Opisthobranchia). Bonner zoologische Beiträge, 55, 301–310.Google Scholar
  52. Neusser, T. P., & Schrödl, M. (2009). Between Vanuatu tides: 3D anatomical reconstruction of a new brackish water acochlidian gastropod from Espiritu Santo. Zoosystema, 31(3), 453–469.CrossRefGoogle Scholar
  53. Neusser, T. P., Heß, M., Haszprunar, G., & Schrödl, M. (2006). Computer-based three-dimensional reconstruction of the anatomy of Microhedyle remanei (Marcus, 1953), an interstitial acochlidian gastropod from Bermuda. Journal of Morphology, 267, 231–247.Google Scholar
  54. Neusser, T. P., Heß, M. & Schrödl, M. (2009a). Tiny but complex – interactive 3D visualization of the interstitial acochlidian gastropod Pseudunela cornuta (Challis, 1970). Frontiers in Zoology, 6(20):17.Google Scholar
  55. Neusser, T. P., Martynov, A. V., & Schrödl, M. (2009b). Heartless and primitive? 3D reconstruction of the polar acochlidian gastropod Asperspina murmanica. Acta Zoologica, 90, 228–245.CrossRefGoogle Scholar
  56. Neusser, T. P., Jörger, K. M., & Schrödl, M. (2011a). Cryptic speciation in tropic sands—interactive 3D anatomy, molecular phylogeny and evolution of meiofaunal Pseudunelidae (Gastropoda, Acochlidia). PLoS One. doi:10.1371/journal.pone.0023313.PubMedGoogle Scholar
  57. Neusser, T. P., Fukuda, H., et al. (2011b). Sacoglossa or Acochlidia? 3D reconstruction, molecular phylogeny and evolution of the Aitengidae (Gastropoda: Heterobranchia). Journal of Molluscan Studies, 77, 332–350.CrossRefGoogle Scholar
  58. Ponder, W. F., & Lindberg, D. R. (1997). Towards a phylogeny of gastropod molluscs: an analysis using morphological characters. Zoological Journal of the Linnean Society, 119, 83–265.CrossRefGoogle Scholar
  59. Rankin, J. J. (1979). A fresh water shell-less mollusc Tantulum elegans new-genus new-species from the Caribbean. Structure biotics and contribution to a new understanding of the Acochlidioidea. Royal Ontario Museum Life Sciences Contributions, 116, 1–123.Google Scholar
  60. Richardson, K. C., Jarett, L., & Finke, E. H. (1960). Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technology, 35(6), 313–323.PubMedGoogle Scholar
  61. Rieger, R. M., & Sterrer, W. (1975). New spicular skeletons in Turbellaria, and the occurrence of spicules in marine meiofauna (Part 1). Zeitschrift für zoologische Systematik und Evolutionsforschung, 13, 249–278.Google Scholar
  62. Rivest, B. R. (1984). Copulation by hypodermic injection in the nudibranchs Palio zosterae and P. dubia (Gastropoda, Opisthobranchia). The Biological Bulletin, 167, 543–554.CrossRefGoogle Scholar
  63. Romeis, B. (1989). Mikroskopische Technik. Munich: Urban and Schwarzenberg.Google Scholar
  64. Rückert, I. M., Altnöder, A., et al. (2008). Computer-based 3D anatomical reconstruction and systematic placement of the mesopsammic gastropod Platyhedyle denudata Salvini-Plawen, 1973 (Opisthobranchia, Sacoglossa). Organisms, Diversity and Evolution, 8(5), 358–367.CrossRefGoogle Scholar
  65. Ruthensteiner, B. (2008). Soft part 3D visualization by serial sectioning and computer reconstruction. Zoosymposia, 1, 63–100.CrossRefGoogle Scholar
  66. Ruthensteiner, B., & Heß, M. (2008). Embedding 3D models of biological specimens in pdf publications. Microscopy Research and Technique, 71, 778–786.PubMedCrossRefGoogle Scholar
  67. Salvini-Plawen, L. (1973). Contribution to the knowledge of the Philinoglossacea and the Acochlidiacea with Platyhedylidae new family (Gastropoda, Cephalaspidea). Zeitschrift für Zoologische Systematik und Evolutionsforschung, 11(2), 110–133.Google Scholar
  68. Salvini-Plawen, L. V. (1991). The status of Rhodopidae (Gastropoda: Euthyneura). Malacologia, 32, 301–311.Google Scholar
  69. Sanders-Esser, B. (1984). Vergleichende Untersuchungen zur Anatomie und Histologie der vorderen Genitalorgane der Ascoglossa (Gastropoda, Euthyneura). Zoologische Jahrbücher, Abteilung für Anatomie und Ontogenie der Tiere., 111, 195–243.Google Scholar
  70. Schmitt, V., Anthes, N., & Michiels, N. K. (2007). Mating behaviour in the sea slug Elysia timida (Opisthobranchia, Sacoglossa): hypodermic injection, sperm transfer and balanced reciprocity. Frontiers in Zoology, 4(17). doi:10.1186/1742-9994-4-17.
  71. Schrödl, M., & Neusser, T. P. (2010). Towards a phylogeny and evolution of Acochlidia (Mollusca: Gastropoda: Opisthobranchia). Zoological Journal of the Linnean Society, 158, 124–154.CrossRefGoogle Scholar
  72. Schrödl, M., & Wägele, H. (2001). Anatomy and histology of Corambe lucea Marcus, 1959 (Gastropoda, Nudibranchia, Doridoidea), with a discussion of the systematic position of Corambidae. Organisms, Diversity and Evolution, 1, 3–16.CrossRefGoogle Scholar
  73. Schrödl, M., Jörger, K. M., et al. (2011a). Bye bye "Opisthobranchia"! A review on the contribution of mesopsammic sea slugs to euthyneuran systematics. Thalassas, 27(2), 101–112.Google Scholar
  74. Schrödl, M., Jörger, K. M., et al. (2011b). A reply to Medina, et al. (2011b): crawling through time: transition of snails to slugs dating back to the Paleozoic based on mitochondrial phylogenomics. Marine Genomics, 4(4), 301–303.PubMedCrossRefGoogle Scholar
  75. Sommerfeld, N., & Schrödl, M. (2005). Microanatomy of Hedylopsis ballatinei, a new interstitial acochlidian Gastropod from the Red Sea, and its significance for Phylogeny. Journal of Molluscan Studies, 71, 153–165.CrossRefGoogle Scholar
  76. Spurr, A. R. (1969). A low-viscosity resin embedding medium for electron microscopy. Journal of Ultrastructural Research, 26, 31–43.CrossRefGoogle Scholar
  77. Stöger, I. & Schrödl, M. (2012). Mitogenomics does not resolve deep molluscan relationships (yet?). Molecular Phylogenetics and Evolution. 10.1016/j.ympev.2012.11.017.
  78. Swedmark, B. (1964). The interstitial fauna of marine sand. Biological Reviews, 39, 1–42.CrossRefGoogle Scholar
  79. Swennen, C. (2001). Two new sacoglossans (Gastropoda: Opisthobranchia) from Thailand. Beaufortia, 51(3), 75–81.Google Scholar
  80. Swennen, C., & Buatip, S. (2009). Aiteng ater, new genus, new species, an amphibious and insectivorous sea slug that is difficult to classify (Mollusca: Gastropoda: Opisthobranchia: Sacoglossa(?): Aitengidae, new family. Raffles Bulletin of Zoology, 57(2), 495–500.Google Scholar
  81. Wägele, H., & Klussmann-Kolb, A. (2005). Opisthobranchia (Mollusca, Gastropoda)—more than just slimy slugs. Shell reduction and its implications on defence and foraging. Frontiers in Zoology. doi:10.1186/1742-9994-2-3.PubMedGoogle Scholar
  82. Wägele, H., & Willan, R. C. (2000). On the phylogeny of the Nudibranchia. Zoological Journal of the Linnean Society, 130, 83–181.CrossRefGoogle Scholar
  83. Wägele, H., Klussmann-Kolb, A., Vonnemann, V., & Medina, M. (2008). Heterobranchia I, the Opisthobranchia. In W. F. Ponder & D. Lindberg (Eds.), Phylogeny and evolution of the Mollusca (pp. 385–408). Berkeley: University of California Press.Google Scholar
  84. Wawra, E. (1988). Beitrag zur Kenntnis des Zentralnervensystems von Platyhedyle denudata Salvini-Plawen 1973 (Ascoglossa, Gastropoda). Annalen des Naturhistorischen Museums in Wien Serie B Botanik und Zoologie B, 90, 269–275.Google Scholar
  85. Wawra, E. (1991). Beitrag zur Kenntnis des Genitaltraktes von Platyhedyle denudata Salvini-Plawen, 1973 (Mollusca: Gastropoda: Ascoglossa). Annalen des Naturhistorischen Museums in Wien B, 92, 269–275.Google Scholar
  86. Wilson, N. G., Rouse, G. W., & Giribet, G. (2010). Assessing the molluscan hypothesis Serialia (Monoplacophora + Polyplacophora) using novel molecular data. Molecular Phylogenetics and Evolution, 54, 187–193.PubMedCrossRefGoogle Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2013

Authors and Affiliations

  • Peter Kohnert
    • 1
    • 2
  • Bastian Brenzinger
    • 1
    • 2
  • Kathe R. Jensen
    • 3
  • Michael Schrödl
    • 1
    • 2
  1. 1.SNSB Bavarian State Collection of ZoologyMunichGermany
  2. 2.Department Biologie IIBiozentrum, Ludwig Maximilians-UniversitätPlanegg-MartinsriedGermany
  3. 3.Zoological Museum, Natural History Museum of DenmarkCopenhagenDenmark

Personalised recommendations