Organisms Diversity & Evolution

, Volume 13, Issue 4, pp 639–664 | Cite as

Revisiting Amazonian phylogeography: insights into diversification hypotheses and novel perspectives

Review

Abstract

The Amazon Basin harbors one of the richest biotas on Earth, such that a number of diversification hypotheses have been formulated to explain patterns of Amazonian biodiversity and biogeography. For nearly two decades, phylogeographic approaches have been applied to better understand the underlying causes of genetic differentiation and geographic structure among Amazonian organisms. Although this research program has made progress in elucidating several aspects of species diversification in the region, recent methodological and theoretical developments in the discipline of phylogeography will provide new perspectives through more robust hypothesis testing. Herein, we outline central aspects of Amazonian geology and landscape evolution as well as climate and vegetation dynamics through the Neogene and Quaternary to contextualize the historical settings considered by major hypotheses of diversification. We address each of these hypotheses by reviewing key phylogeographic papers and by expanding their respective predictions. We also propose future directions for devising and testing hypotheses. Specifically, combining the exploratory power of phylogeography with the statistical rigor of coalescent methods will greatly expand analytical inferences on the evolutionary history of Amazonian biota. Incorporation of non-genetic data from Earth science disciplines into the phylogeographic approach is key to a better understanding of the influence of climatic and geophysical events on patterns of Amazonian biodiversity and biogeography. In addition, achieving such an integrative enterprise must involve overcoming issues such as limited geographic and taxonomic sampling. These future challenges likely will be accomplished by a combination of extensive collaborative research and incentives for conducting basic inventories.

Keywords

Amazonia Terrestrial vertebrates Biogeography Evolutionary history Phylogeography Diversification hypothesis Predictions Coalescent 

Supplementary material

13127_2013_140_MOESM1_ESM.pdf (151 kb)
ESM 1(PDF 151 kb)

References

  1. Aleixo, A. (2004). Historical diversification of a terra-firme forest bird superspecies: a phylogeographic perspective on the role of different hypotheses of Amazonian diversification. Evolution, 58, 1303–1317.Google Scholar
  2. Aleixo, A. (2006). Historical diversification of floodplain forest specialist species in the Amazon: a case study with two species of the avian genus Xiphorhynchus (Aves: Dendrocolaptidae). Biological Journal of the Linnean Society, 89, 383–395.Google Scholar
  3. Aleixo, A., & Rossetti, D. F. (2007). Avian gene trees, landscape evolution, and geology: towards a modern synthesis of Amazonian historical biogeography? Journal of Ornithology, 148, S443–S453.Google Scholar
  4. Anderson, D. R., Burnham, K. P., & Thompson, W. L. (2000). Null hypothesis testing: problems, prevalence, and an alternative. Journal of Wildlife Management, 64, 912–923.Google Scholar
  5. Antonelli, A., & Rodriguez, V. (2009). Brazil should facilitate research permits. Conservation Biology, 23, 1068–1069.PubMedGoogle Scholar
  6. Antonelli, A., Quijada-Mascareñas, A., Crawford, A. J., Bates, J. M., Velazco, P. M., & Wüster, W. (2010). Molecular studies and phylogeography of Amazonian tetrapods and their relation to geological and climatic models. In C. Hoorn & F. P. Wesselingh (Eds.), Amazonia: landscape and species evolution. A look into the past (pp. 386–404). Chichester: Wiley–Blackwell.Google Scholar
  7. Arbogast, B. S., & Kenagy, G. J. (2001). Comparative phylogeography as an integrative approach to historical biogeography. Journal of Biogeography, 28, 819–825.Google Scholar
  8. Arbogast, B. S., Edwards, S. V., Wakeley, J., Beerli, P., & Slowinski, J. B. (2002). Estimating divergence times from molecular data on phylogenetic and population genetic timescales. Annual Review of Ecology and Systematics, 33, 707–740.Google Scholar
  9. Armenta, J. K., Weckstein, J. D., & Lane, D. F. (2005). Geographic variation in mitochondrial DNA sequences of an Amazonian nonpassarine: the black-spotted barbet complex. Condor, 107, 527–536.Google Scholar
  10. Avise, J. C. (2000). Phylogeography: the history and formation of species. Cambridge: Harvard University Press.Google Scholar
  11. Avise, J. C. (2009). Phylogeography: retrospect and prospect. Journal of Biogeography, 36, 3–15.Google Scholar
  12. Avise, J. C., Arnold, J., Ball, R. M., Bermingham, E., Lamb, T., Neigel, J. E., et al. (1987). Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annual Review of Ecology and Systematics, 18, 489–522.Google Scholar
  13. Ayres, J. M., & Clutton-Brock, T. H. (1992). River boundaries and species range size in Amazonian primates. American Naturalist, 140, 531–537.Google Scholar
  14. Ballard, J. W. O., & Whitlock, M. C. (2004). The incomplete natural history of mitochondria. Molecular Ecology, 13, 729–744.PubMedGoogle Scholar
  15. Barlow, J., Ewers, R. M., Anderson, L., Aragao, L. E. O. C., Baker, T. R., Boyd, E., et al. (2011). Using learning networks to understand complex systems: a case study of biological, geophysical and social research in the Amazon. Biological Reviews, 86, 457–474.PubMedGoogle Scholar
  16. Bates, J. M., Haffer, J., & Grismer, E. (2004). Avian mitochondrial DNA sequence divergence across a headwater stream of the Rio Tapajós, a major Amazonian river. Journal of Ornithology, 145, 199–205.Google Scholar
  17. Beaumont, M. A., Nielsen, R., Robert, C., Hey, J., Gaggiotti, O., Knowles, L., et al. (2010). In defence of model-based inference in phylogeography. Molecular Ecology, 19, 436–446.Google Scholar
  18. Beheregaray, L. B. (2008). Twenty years of phylogeography: the state of the field and the challenges for the Southern Hemisphere. Molecular Ecology, 17, 3754–3774.PubMedGoogle Scholar
  19. Bermingham, E., & Moritz, C. (1998). Comparative phylogeography: concepts and applications. Molecular Ecology, 7, 367–369.Google Scholar
  20. Bigarella, J. J., & Ferreira, A. M. M. (1985). Amazonian geology and the Pleistocene and the Cenozoic environments and paleoclimates. In G. T. Prance & T. E. Lovejoy (Eds.), Key environments: Amazonia (pp. 49–71). Oxford: Pergamon.Google Scholar
  21. Bonaccorso, E., Koch, I., & Peterson, A. T. (2006). Pleistocene fragmentation of Amazon species' ranges. Diversity and Distributions, 12, 157–164.Google Scholar
  22. Bonvicino, C. R., & Weksler, M. (2012). Speciation in Amazonia: patterns and predictions of a network of hypotheses. In B. D. Patterson & L. P. Costa (Eds.), Bones, clones, and biomes (pp. 259–282). Chicago: University of Chicago Press.Google Scholar
  23. Bonvicino, C. R., Gonçalves, P. R., de Oliveira, J. A., de Oliveira, L. F. B., & Mattevi, M. S. (2009). Divergence in Zygodontomys (Rodentia: Sigmodontinae) and distribution of Amazonian savannas. Journal of Heredity, 100, 322–328.PubMedGoogle Scholar
  24. Bowcock, A. M., Ruiz-Linares, A., Tomfohrde, J., Minch, E., Kidd, J. R., & Cavalli-Sforza, L. L. (1994). High resolution of human evolutionary trees with polymorphic microsatellites. Nature, 368, 455–457.Google Scholar
  25. Brito, P., & Edwards, S. (2009). Multilocus phylogeography and phylogenetics using sequence-based markers. Genetica, 135, 439–455.Google Scholar
  26. Buckley, D. (2009). Toward an organismal, integrative, and iterative phylogeography. BioEssays, 31, 784–793.PubMedGoogle Scholar
  27. Bush, M. B. (1994). Amazonian speciation: a necessarily complex model. Journal of Biogeography, 21, 5–17.Google Scholar
  28. Bush, M. B. (2002). On the interpretation of fossil Poaceae pollen in the lowland humid neotropics. Palaeogeography, Palaeoclimatology, Palaeoecology, 177, 5–17.Google Scholar
  29. Bush, M. B., De Oliveira, P. E., Colinvaux, P. A., Miller, M. C., & Moreno, J. E. (2004). Amazonian paleoecological histories: one hill, three watersheds. Palaeogeography, Palaeoclimatology, Palaeoecology, 214, 359–393.Google Scholar
  30. Cadena, C. D., Gutiérrez-Pinto, N., Dávila, N., & Chesser, R. T. (2011). No population genetic structure in a widespread aquatic songbird from the Neotropics. Molecular Phylogenetics and Evolution, 58, 540–545.Google Scholar
  31. Campbell, K. E. (2010). Late Miocene onset of the Amazon River and the Amazon deep-sea fan: evidence from the Foz do Amazonas Basin. Comment. Geology, 38, e212.Google Scholar
  32. Campbell, K. E., Frailey, C. D., & Romero-Pittman, L. (2006). The Pan-Amazonian Ucayali Peneplain, late Neogene sedimentation in Amazonia, and the birth of the modern Amazon River system. Palaeogeography, Palaeoclimatology, Palaeoecology, 239, 166–219.Google Scholar
  33. Capparella, A. P. (1988). Genetic variation in Neotropical birds: implications for the speciation process. Acta Congressus Internationalis Ornithologici, 19, 1658–1664.Google Scholar
  34. Capparella, A. P. (1992). Neotropical avian diversity and riverine barriers. Acta Congressus Internationalis Ornithologici, 20, 307–316.Google Scholar
  35. Caputo, M. V. (1991). Solimões megashear: intraplate tectonics in northwestern Brazil. Geology, 19, 246–249.Google Scholar
  36. Carling, M. D., & Brumfield, R. T. (2007). Gene sampling strategies for multi-locus population estimates of genetic diversity θ. PLoS ONE, 2, e160.Google Scholar
  37. Carnaval, A. C., Hickerson, M. J., Haddad, C. F. B., Rodrigues, M. T., & Moritz, C. (2009). Stability predicts genetic diversity in the Brazilian Atlantic Forest hotspot. Science, 323, 785–789.PubMedGoogle Scholar
  38. Carstens, B. C., & Richards, C. L. (2007). Integrating coalescent and ecological niche modeling in comparative phylogeography. Evolution, 61, 1439–1454.PubMedGoogle Scholar
  39. Carstens, B. C., Brunsfeld, S. J., Demboski, J. R., Good, J. M., & Sullivan, J. (2005). Investigating the evolutionary history of the Pacific Northwest mesic forest ecosystem: hypothesis testing within a comparative phylogeographic framework. Evolution, 59, 1639–1652.PubMedGoogle Scholar
  40. Carstens, B. C., Stoute, H. N., & Reid, N. M. (2009). An information-theoretical approach to phylogeography. Molecular Ecology, 18, 4270–4282.Google Scholar
  41. Carstens, B., Lemmon, A. R., & Lemmon, E. M. (2012). The promises and pitfalls of next-generation sequencing data in phylogeography. Systematic Biology, 61, 713–715.Google Scholar
  42. Cheviron, Z. A., Hackett, S. J., & Capparella, A. P. (2005). Complex evolutionary history of a Neotropical lowland forest bird (Lepidothrix coronata) and its implications for historical hypotheses of the origin of Neotropical avian diversity. Molecular Phylogenetics and Evolution, 36, 338–357.PubMedGoogle Scholar
  43. Colinvaux, P. A. (1993). Pleistocene biogeograhy and diversity in tropical forests of South America. In P. Goldblatt (Ed.), Biological relationships between Africa and South America (pp. 473–499). New Haven: Yale University Press.Google Scholar
  44. Colinvaux, P. A., & De Oliveira, P. E. (2001). Amazon plant diversity and climate through the Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 166, 51–63.Google Scholar
  45. Colinvaux, P. A., Oliveira, P. E., Moreno, J. E., Miller, M. C., & Bush, M. B. (1996). A long pollen record from lowland Amazonia: forest and cooling in glacial times. Science, 274, 84–88.Google Scholar
  46. Colinvaux, P. A., De Oliveira, P. E., & Bush, M. B. (2000). Amazonian and Neotropical plant communities on glacial time-scales: the failure of the aridity and refuge hypotheses. Quaternary Science Reviews, 19, 141–169.Google Scholar
  47. Costa, J. B. S., Bemerguy, R. L., Hasui, Y., & Borges, M. S. (2001). Tectonics and paleogeography along the Amazon river. Journal of South American Earth Sciences, 14, 335–347.Google Scholar
  48. Cracraft, J. (2001). Managing the biosphere: the essential role of systematic biology. In M. J. Novacek (Ed.), The biodiversity crisis: losing what counts (pp. 150–154). New York: New.Google Scholar
  49. Cunha, P. R. C., de Melo, J. H. G., & da Silva, O. B. (2007). Bacia do Amazonas. Boletim de Geociências da Petrobrás, 15, 227–251.Google Scholar
  50. da Silva, M. N. F., & Patton, J. L. (1993). Amazonian phylogeography: mtDNA sequence variation in arboreal echimyid rodents (Caviomorpha). Molecular Phylogenetics and Evolution, 2, 243–255.PubMedGoogle Scholar
  51. Dasmahapatra, K. K., Lamas, G., Simpson, F., & Mallet, J. (2010). The anatomy of a ‘suture zone’ in Amazonian butterflies: a coalescent-based test for vicariant geographic divergence and speciation. Molecular Ecology, 19, 4283–4301.Google Scholar
  52. de Thoisy, B., da Silva, A., Ruiz-García, M., Tapia, A., Ramirez, O., Arana, M., et al. (2010). Population history, phylogeography, and conservation genetics of the last Neotropical mega-herbivore, the lowland tapir (Tapirus terrestris). BMC Evolutionary Biology, 10, 278.Google Scholar
  53. Dingle, C., Lovette, I. J., Canaday, C., Smith, T. B., & Fleischer, R. C. (2006). Elevational zonation and the phylogenetic relationships of the Henicorhina wood-wrens. Auk, 123, 119–134.Google Scholar
  54. Dobson, D. M., Dickens, G. R., & Rea, D. K. (2001). Terrigenous sediment on Ceara Rise: a Cenozoic record of South American orogeny and erosion. Palaeogeography, Palaeoclimatology, Palaeoecology, 165, 215–229.Google Scholar
  55. Edwards, S. V., & Beerli, P. (2000). Perspective: gene divergence, population divergence, and the variance in coalescence time in phylogeographic studies. Evolution, 54, 1839–1854.PubMedGoogle Scholar
  56. Elmer, K., Davila, J., & Lougheed, S. (2007). Cryptic diversity and deep divergence in an upper Amazonian leaflitter frog, Eleutherodactylus ockendeni. BMC Evolutionary Biology, 7, 247.PubMedGoogle Scholar
  57. Emerson, B. C., & Hewitt, G. M. (2005). Phylogeography. Current Biology, 15, R367–R371.PubMedGoogle Scholar
  58. Endler, J. (1977). Geographic variation, speciation, and clines. Princeton: Princeton University Press.Google Scholar
  59. Endler, J. (1982). Pleistocene forest refuges: fact or fancy? In G. T. Prance (Ed.), Biological diversification in the Tropics (pp. 641–657). New York: Columbia University Press.Google Scholar
  60. Espurt, N., Baby, P., Brusset, S., Roddaz, M., Hermoza, W., & Barbarand, J. (2010). The Nazca Ridge and uplift of the Fitzcarrald Arch: implications for regional geology in northern South America. In C. Hoorn & F. P. Wesselingh (Eds.), Amazonia: landscape and species evolution. A look into the past (pp. 89–100). Chichester: Wiley–Blackwell.Google Scholar
  61. Fearnside, P. M. (1997). Environmental services as a strategy for sustainable development in rural Amazonia. Ecological Economics, 20, 53–70.Google Scholar
  62. Felsenstein, J. (2006). Accuracy of coalescent likelihood estimates: do we need more sites, more sequences, or more loci? Molecular Biology and Evolution, 23, 691–700.PubMedGoogle Scholar
  63. Figueiredo, J., Hoorn, C., van der Ven, P., & Soares, E. (2009). Late Miocene onset of the Amazon River and the Amazon deep-sea fan: evidence from the Foz do Amazonas Basin. Geology, 37, 619–622.Google Scholar
  64. Figueiredo, J., Hoorn, C., van der Ven, P., & Soares, E. (2010). Late Miocene onset of the Amazon River and the Amazon deep-sea fan: evidence from the Foz do Amazonas Basin. Reply. Geology, 38, e213.Google Scholar
  65. Fouquet, A., Noonan, B. P., Rodrigues, M. T., Pech, N., Gilles, A., & Gemmell, N. J. (2012). Multiple Quaternary refugia in the eastern Guiana Shield revealed by comparative phylogeography of 12 frog species. Systematic Biology.Google Scholar
  66. Funk, W. C., Caldwell, J. P., Peden, C. E., Padial, J. M., De la Riva, I., & Cannatella, D. C. (2007). Tests of biogeographic hypotheses for diversification in the Amazonian forest frog, Physalaemus petersi. Molecular Phylogenetics and Evolution, 44, 825–837.PubMedGoogle Scholar
  67. Funk, W. C., Caminer, M., & Ron, S. R. (2012). High levels of cryptic species diversity uncovered in Amazonian frogs. Proceedings of the Royal Society B: Biological Sciences, 279, 1806–1814.PubMedGoogle Scholar
  68. Garda, A. A., Da Silva, J. M. C., & Baião, P. C. (2010). Biodiversity conservation and sustainable development in the Amazon. Systematics and Biodiversity, 8, 169–175.Google Scholar
  69. Garrick, R. C., Caccone, A., & Sunnucks, P. (2010). Inference of population history by coupling exploratory and model-driven phylogeographic analyses. International Journal of Molecular Sciences, 11, 1190–1227.Google Scholar
  70. Gascon, C., Lougheed, S. C., & Bogart, J. P. (1996). Genetic and morphological variation in Vanzolinius discodactylus: a test of the river hypothesis of speciation. Biotropica, 28, 376–387.Google Scholar
  71. Gascon, C., Lougheed, S. C., & Bogart, J. P. (1998). Patterns of genetic population differentiation in four species of Amazonian frogs: a test of the riverine barrier hypothesis. Biotropica, 30, 104–119.Google Scholar
  72. Gosling, W. D., & Bush, M. B. (2005). A biogeographic comment on: Wüster et al. (2005) Tracing an invasion: landbridges, refugia, and the phylogeography of the Neotropical rattlesnake (Serpentes: Viperidae: Crotalus durissus). Molecular Ecology, 14, 3615–3617.PubMedGoogle Scholar
  73. Graham, C. H., Ron, S. R., Santos, J. C., Schneider, C. J., Moritz, C., & Cunningham, C. (2004). Integrating phylogenetics and environmental niche models to explore speciation mechanisms in dedrobatid frogs. Evolution, 58, 1781–1793.PubMedGoogle Scholar
  74. Haberle, S. G., & Maslin, M. A. (1999). Late Quaternary vegetation and climate change in the Amazon Basin based on a 50,000 year pollen record from the Amazon Fan, ODP Site 932. Quaternary Research, 51, 27–38.Google Scholar
  75. Haffer, J. (1969). Speciation in Amazonian forest birds. Science, 165, 131–137.PubMedGoogle Scholar
  76. Haffer, J. (1982). General aspects of the refuge theory. In G. T. Prance (Ed.), Biological diversification in the Tropics (pp. 6–24). New York: Columbia University Press.Google Scholar
  77. Haffer, J. (1993). Time's cycle and time's arrow in the history of Amazonia. Biogeographica, 69, 15–45.Google Scholar
  78. Haffer, J. (1997). Alternative models of vertebrate speciation in Amazonia: an overview. Biodiversity and Conservation, 6, 451–476.Google Scholar
  79. Haffer, J., & Prance, G. T. (2001). Climatic forcing of evolution in Amazonia during the Cenozoic: on the refuge theory of biotic differentiation. Amazoniana, 16, 579–608.Google Scholar
  80. Hall, J. P. W., & Harvey, D. J. (2002). The phylogeography of Amazonia revisited: new evidence from riodinid butterflies. Evolution, 56, 1489–1497.PubMedGoogle Scholar
  81. Haq, B. U., Hardenbol, J. A. N., & Vail, P. R. (1987). Chronology of fluctuating sea levels since the Triassic. Science, 235, 1156–1167.PubMedGoogle Scholar
  82. Hare, M. P. (2001). Prospects for nuclear gene phylogeography. Trends in Ecology and Evolution, 16, 700–706.Google Scholar
  83. Harris, S. E., & Mix, A. C. (1999). Pleistocene precipitation balance in the Amazon Basin recorded in deep sea sediments. Quaternary Research, 51, 14–26.Google Scholar
  84. Hayes, F. E., & Sewlal, J. A. N. (2004). The Amazon River as a dispersal barrier to passerine birds: effects of river width, habitat and taxonomy. Journal of Biogeography, 31, 1809–1818.Google Scholar
  85. Hein, J., Schierup, M. H., & Wiuf, C. (2005). Gene genealogies, variation and evolution: a primer in coalescent theory. Oxford: Oxford University Press.Google Scholar
  86. Hernández, R. M., Jordan, T. E., Dalenz Farjat, A., Echavarría, L., Idleman, B. D., & Reynolds, J. H. (2005). Age, distribution, tectonics, and eustatic controls of the Paranense and Caribbean marine transgressions in southern Bolivia and Argentina. Journal of South American Earth Sciences, 19, 495–512.Google Scholar
  87. Hewitt, G. M. (1996). Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of the Linnean Society, 58, 247–276.Google Scholar
  88. Hewitt, G. (2000). The genetic legacy of the Quaternary ice ages. Nature, 405, 907–913.PubMedGoogle Scholar
  89. Hey, J., & Machado, C. A. (2003). The study of structured populations—new hope for a difficult and divided science. Nature Review Genetics, 4, 535–543.Google Scholar
  90. Hickerson, M. J., Carstens, B. C., Cavender-Bares, J., Crandall, K. A., Graham, C. H., Johnson, J. B., et al. (2010). Phylogeography's past, present, and future: 10 years after Avise, 2000. Molecular Phylogenetics and Evolution, 54, 291–301.Google Scholar
  91. Higgins, M. A., Ruokolainen, K., Tuomisto, H., Llerena, N., Cardenas, G., Phillips, O. L., et al. (2011). Geological control of floristic composition in Amazonian forests. Journal of Biogeography, 38, 2136–2149.PubMedGoogle Scholar
  92. Hooghiemstra, H., & van der Hammen, T. (1998). Neogene and Quaternary development of the neotropical rain forest: the forest refugia hypothesis, and a literature overview. Earth-Science Reviews, 44, 147–183.Google Scholar
  93. Hoorn, C. (1993). Marine incursions and the influence of Andean tectonics on the Miocene depositional history of northwestern Amazonia: results of a palynostratigraphic study. Palaeogeography, Palaeoclimatology, Palaeoecology, 105, 267–309.Google Scholar
  94. Hoorn, C. (1994). An environmental reconstruction of the palaeo-Amazon River system (Middle–Late Miocene, NW Amazonia). Palaeogeography, Palaeoclimatology, Palaeoecology, 112, 187–238.Google Scholar
  95. Hoorn, C., & Wesselingh, F. P. (2010). Introduction: Amazonia, landscape and species evolution. In C. Hoorn & F. P. Wesselingh (Eds.), Amazonia: landscape and species evolution. A look into the past (pp. 1–6). Chichester: Wiley–Blackwell.Google Scholar
  96. Hoorn, C., Guerrero, J., Sarmiento, G. A., & Lorente, M. A. (1995). Andean tectonics as a cause for changing drainage patterns in Miocene northern South America. Geology, 23, 237–240.Google Scholar
  97. Hoorn, C., Roddaz, M., Dino, R., Soares, E., Uba, C., Ochoa-Lozano, D., et al. (2010a). The Amazonian Craton and its influence on past fluvial systems (Mesozoic–Cenozoic, Amazonia). In C. Hoorn & F. P. Wesselingh (Eds.), Amazonia: landscape and species evolution. A look into the past (pp. 101–122). Chichester: Wiley–Blackwell.Google Scholar
  98. Hoorn, C., Wesselingh, F. P., Hovikoski, J., & Guerrero, J. (2010b). The development of the amazonian mega-wetland (Miocene; Brazil, Colombia, Peru, Bolivia). In C. Hoorn & F. P. Wesselingh (Eds.), Amazonia: landscape and species evolution. A look into the past (pp. 123–142). Chichester: Wiley–Blackwell.Google Scholar
  99. Hoorn, C., Wesselingh, F. P., ter Steege, H., Bermudez, M. A., Mora, A., Sevink, J., et al. (2010c). Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science, 330, 927–931.PubMedGoogle Scholar
  100. Horton, B. K., Parra, M., Saylor, J. E., Nie, J., Mora, A., Torres, V., et al. (2010). Resolving uplift of the northern Andes using detrital zircon age signatures. GSA Today, 20, 4–9.Google Scholar
  101. Hovikoski, J., Wesselingh, F. P., Räsänen, M., Gingras, M., & Vonhof, H. B. (2010). Marine influence in Amazonia: evidence from the geological record. In C. Hoorn & F. P. Wesselingh (Eds.), Amazonia: landscape and species evolution. A look into the past (pp. 143–161). Chichester: Wiley–Blackwell.Google Scholar
  102. Ibrahim, K. M., Nichols, R. A., & Hewitt, G. M. (1996). Spatial patterns of genetic variation generated by different forms of dispersal during range expansion. Heredity, 77, 282–291.Google Scholar
  103. Irion, G., & Kalliola, R. (2010). Long-term landscape development processes in Amazonia. In C. Hoorn & F. P. Wesselingh (Eds.), Amazonia: landscape and species evolution. A look into the past (pp. 185–197). Chichester: Wiley–Blackwell.Google Scholar
  104. Irion, G., Rasanen, M., de Mello, N., Hoorn, C., Junk, W., & Wesselingh, F. (2005). D. Rossetti, P. Mann de Toledo, A.-M. Goes, New geological framework for Western Amazonia (Brazil) and implications for biogeography and evolution, quaternary research 63 (2005) 78–89. Quaternary Research, 64, 279–280.Google Scholar
  105. Jacobs, S. C., Larson, A., & Cheverud, J. M. (1995). Phylogenetic relationships and orthogenetic evolution of coat color among tamarins (genus Saguinus). Systematic Biology, 44, 515–532.Google Scholar
  106. Jaramillo, C., Rueda, M. J., & Mora, G. (2006). Cenozoic plant diversity in the Neotropics. Science, 311, 1893–1896.PubMedGoogle Scholar
  107. Kaandorp, R. J. G., Vonhof, H. B., Wesselingh, F. P., Pittman, L. R., Kroon, D., & van Hinte, J. E. (2005). Seasonal Amazonian rainfall variation in the Miocene Climate Optimum. Palaeogeography, Palaeoclimatology, Palaeoecology, 221, 1–6.Google Scholar
  108. Kaplan, N. L., Hudson, R. R., & Langley, C. H. (1989). The hitchhiking effect revisited. Genetics, 123, 887–899.PubMedGoogle Scholar
  109. Kastner, T. P., & Goñi, M. A. (2003). Constancy in the vegetation of the Amazon Basin during the late Pleistocene: evidence from the organic matter composition of Amazon deep sea fan sediments. Geology, 31, 291–294.Google Scholar
  110. Kirby, K. R., Laurance, W. F., Albernaz, A. K., Schroth, G., Fearnside, P. M., Bergen, S., et al. (2006). The future of deforestation in the Brazilian Amazon. Futures, 38, 432–453.Google Scholar
  111. Knowles, L. L. (2004). The burgeoning field of statistical phylogeography. Journal of Evolutionary Biology, 17, 1–10.PubMedGoogle Scholar
  112. Knowles, L. L. (2009). Statistical phylogeography. Annual Review of Ecology, Evolution, and Systematics, 40, 593–612.Google Scholar
  113. Knowles, L. L., & Maddison, W. P. (2002). Statistical phylogeography. Molecular Ecology, 11, 2623–2635.PubMedGoogle Scholar
  114. Kress, W. J., Heyer, W. R., Acevedo, P., Coddington, J., Cole, D., Erwin, T. L., et al. (1998). Amazonian biodiversity: assessing conservation priorities with taxonomic data. Biodiversity and Conservation, 7, 1577–1587.Google Scholar
  115. Kroonenberg, S. B., & de Roever, E. W. F. (2010). Geological evolution of the Amazonian Craton. In C. Hoorn & F. P. Wesselingh (Eds.), Amazonia: landscape and species evolution. A look into the past (pp. 7–28). Chichester: Wiley–Blackwell.Google Scholar
  116. Kuhner, M. K. (2008). Coalescent genealogy samplers: windows into population history. Trends in Ecology and Evolution, 24, 86–93.PubMedGoogle Scholar
  117. Laurance, W. F. (2005). When bigger is better: the need for Amazonian mega-reserves. Trends in Ecology and Evolution, 20, 645–648.Google Scholar
  118. Lee, J. Y., & Edwards, S. V. (2008). Divergence across Australia's Carpentarian Barrier: statistical phylogeography of the red-backed fairy wren (Malurus melanocephalus). Evolution, 62, 3117–3134.Google Scholar
  119. Lemos, R. (2012). Educate and innovate. Foreign Affairs, 91, 163–164.Google Scholar
  120. Lessa, E. P., Cook, J. A., & Patton, J. L. (2003). Genetic footprints of demographic expansion in North America, but not Amazonia, during the Late Quaternary. Proceedings of the National Academy of Sciences of the United States of America, 100, 10331–10334.PubMedGoogle Scholar
  121. López-Osorio, F., & Miranda-Esquivel, D. R. (2010). A Phylogenetic approach to conserving Amazonian biodiversity. Conservation Biology, 24, 1359–1366.Google Scholar
  122. Lötters, S., van der Meijden, A., Rödder, D., Köster, T. E., Kraus, T., La Marca, E., et al. (2010). Reinforcing and expanding the predictions of the disturbance vicariance hypothesis in Amazonian harlequin frogs: a molecular phylogenetic and climate envelope modelling approach. Biodiversity and Conservation, 19, 2125–2146.Google Scholar
  123. Lougheed, S. C., Gascon, C., Jones, D. A., Bogart, J. P., & Boag, P. T. (1999). Ridges and rivers: a test of competing hypotheses of Amazonian diversification using a dart-poison frog (Epipedobates femoralis). Proceedings of the Royal Society of London, Series B: Biological Sciences, 266, 1829–1835.Google Scholar
  124. Lynch, J. D. (1988). Refugia. In A. A. Myers & P. S. Giller (Eds.), Analytical biogeography: an integrated approach to the study of animal and plant distributions (pp. 309–342). New York: Chapman & Hall.Google Scholar
  125. Maddison, W. P. (1997). Gene trees in species trees. Systematic Biology, 46, 523–536.Google Scholar
  126. Massarani, L. (2012). Innovation is 'imperative', says Brazil science minister. Nature News. doi:10.1038/nature.2012.9903.Google Scholar
  127. Mayle, F. E., & Power, M. J. (2008). Impact of a drier Early–Mid-Holocene climate upon Amazonian forests. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 363, 1829–1838.Google Scholar
  128. Mayle, F. E., Beerling, D. J., Gosling, W. D., & Bush, M. B. (2004). Responses of Amazonian ecosystems to climatic and atmospheric carbon dioxide changes since the last glacial maximum. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 359, 499–514.Google Scholar
  129. McCormack, J. E., Heled, J., Delaney, K. S., Peterson, A. T., & Knowles, L. L. (2011). Calibrating divergence times on species trees versus gene trees: implications for speciation history of Aphelocoma jays. Evolution, 65, 184–202.PubMedGoogle Scholar
  130. McCormack, J. E., Hird, S. M., Zellmer, A. J., Carstens, B. C., & Brumfield, R. T. (2012). Applications of next-generation sequencing to phylogeography and phylogenetics. Molecular Phylogenetics and Evolution.Google Scholar
  131. Miller, K. G., Kominz, M. A., Browning, J. V., Wright, J. D., Mountain, G. S., Katz, M. E., et al. (2005). The Phanerozoic record of global sea-level change. Science, 310, 1293–1298.Google Scholar
  132. Mittelbach, G. G., Schemske, D. W., Cornell, H. V., Allen, A. P., Brown, J. M., Bush, M. B., et al. (2007). Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecology Letters, 10, 315–331.PubMedGoogle Scholar
  133. Moore, W. (1995). Inferring phylogenies from mtDNA variation: mitochondrial-gene trees versus nuclear-gene trees. Evolution, 49, 718–726.Google Scholar
  134. Mora, A., Baby, P., Roddaz, M., Parra, M., Brusset, S., Hermoza, W., et al. (2010). Tectonic history of the Andes and sub-Andean zones: implications for the development of the Amazon drainage basin. In C. Hoorn & F. P. Wesselingh (Eds.), Amazonia: landscape and species evolution. A look into the past (pp. 38–60). Chichester: Wiley–Blackwell.Google Scholar
  135. Moritz, C. (2002). Strategies to protect biological diversity and the evolutionary processes that sustain it. Systematic Biology, 51, 238–254.PubMedGoogle Scholar
  136. Moritz, C., & Faith, D. P. (1998). Comparative phylogeography and the identification of genetically divergent areas for conservation. Molecular Ecology, 7, 419–429.Google Scholar
  137. Moritz, C., Patton, J. L., Schneider, C. J., & Smith, T. B. (2000). Diversification of rainforest faunas: an integrated molecular approach. Annual Review of Ecology and Systematics, 31, 533–563.Google Scholar
  138. Nelson, B. W., Ferreira, C. A. C., da Silva, M. F., & Kawasaki, M. L. (1990). Endemism centres, refugia and botanical collection density in Brazilian Amazonia. Nature, 345, 714–716.Google Scholar
  139. Nielsen, R., & Beaumont, M. A. (2009). Statistical inferences in phylogeography. Molecular Ecology, 18, 1034–1047.PubMedGoogle Scholar
  140. Noonan, B. P., & Gaucher, P. (2005). Phylogeography and demography of Guianan harlequin toads (Atelopus): diversification within a refuge. Molecular Ecology, 14, 3017–3031.PubMedGoogle Scholar
  141. Noonan, B. P., & Gaucher, P. (2006). Refugial isolation and secondary contact in the dyeing poison frog Dendrobates tinctorius. Molecular Ecology, 15, 4425–4435.PubMedGoogle Scholar
  142. Noonan, B. P., & Wray, K. P. (2006). Neotropical diversification: the effects of a complex history on diversity within the poison frog genus Dendrobates. Journal of Biogeography, 33, 1007–1020.Google Scholar
  143. Nordborg, M. (2001). Coalescent theory. In D. J. Balding, M. Bishop, & C. Cannings (Eds.), Handbook of statistical genetics (p. 179212). Chichester: Wiley.Google Scholar
  144. Nores, M. (1999). An alternative hypothesis for the origin of Amazonian bird diversity. Journal of Biogeography, 26, 475–485.Google Scholar
  145. Ogden, R., & Thorpe, R. S. (2002). Molecular evidence for ecological speciation in tropical habitats. Proceedings of the National Academy of Sciences of the United States of America, 99, 13612–13615.PubMedGoogle Scholar
  146. Orr, M. R., & Smith, T. B. (1998). Ecology and speciation. Trends in Ecology and Evolution, 13, 502–506.PubMedGoogle Scholar
  147. Patterson, B. D. (2000). Patterns and trends in the discovery of new Neotropical mammals. Diversity and Distributions, 6, 145–151.Google Scholar
  148. Patton, J. L., & da Silva, M. N. F. (1998). Rivers, refuges, and ridges. The geography of speciation of Amazonian mammals. In D. J. Howard & S. H. Berlocher (Eds.), Endless forms: species and speciation (pp. 202–213). New York: Oxford University Press.Google Scholar
  149. Patton, J. L., & da Silva, M. N. F. (2001). Molecular phylogenetics and the diversification of Amazonian mammals. In I. C. G. Vieira, J. M. C. Silva, D. C. Oren, & M. A. D'Incao (Eds.), Diversidade biológica e cultural da Amazônia (pp. 139–164). Belém: Museu Paraense Emílio Goeldi.Google Scholar
  150. Patton, J. L., & Smith, M. F. (1992). MtDNA phylogeny of Andean mice: a test of diversification across ecological gradients. Evolution, 46, 174–183.Google Scholar
  151. Patton, J. L., da Silva, M. N. F., & Malcolm, J. R. (1994). Gene genealogy and differentiation among arboreal spiny rats (Rodentia, Echimyidae) of the Amazon Basin: a test of the riverine barrier hypothesis. Evolution, 48, 1314–1323.Google Scholar
  152. Patton, J. L., da Silva, M. N. F., & Malcolm, J. R. (2000). Mammals of the Rio Juruá and the evolutionary and ecological diversification of Amazonia. Bulletin of the American Museum of Natural History, 1–306.Google Scholar
  153. Pearse, D. E., & Crandall, K. A. (2004). Beyond FST: analysis of population genetic data for conservation. Conservation Genetics, 5, 585–602.Google Scholar
  154. Pennington, R. T., & Dick, C. W. (2010). Diversification of the Amazonian flora and its relation to key geological and environmental events: a molecular perspective. In C. Hoorn & F. P. Wesselingh (Eds.), Amazonia: landscape and species evolution. A look into the past (pp. 373–385). Chichester: Wiley–Blackwell.Google Scholar
  155. Peres, C. A., Patton, J. L., & daSilva, M. N. F. (1996). Riverine barriers and gene flow in Amazonian saddle-back tamarins. Folia Primatologica, 67, 113–124.Google Scholar
  156. Peres, C. A., Gardner, T. A., Barlow, J., Zuanon, J., Michalski, F., Lees, A. C., et al. (2010). Biodiversity conservation in human-modified Amazonian forest landscapes. Biological Conservation, 143, 2314–2327.Google Scholar
  157. Pons, D., & De Franceschi, D. (2007). Neogene woods from western Peruvian Amazon and palaeoenvironmental interpretation. Bulletin of Geosciences, 82, 343–354.Google Scholar
  158. Prance, G. T. (1982). Biological diversification in the Tropics. New York: Columbia University Press.Google Scholar
  159. Prance, G. T. (1985). The changing forests. In G. T. Prance & T. E. Lovejoy (Eds.), Key environments: Amazonia (pp. 146–165). Oxford: Pergamon.Google Scholar
  160. Provan, J., & Bennett, K. D. (2008). Phylogeographic insights into cryptic glacial refugia. Trends in Ecology and Evolution, 23, 564–571.PubMedGoogle Scholar
  161. Puritz, J. B., Addison, J. A., & Toonen, R. J. (2012). Next-generation phylogeography: a targeted approach for multilocus sequencing of non-model organisms. PLoS ONE, 7, e34241.Google Scholar
  162. Quijada-Mascareñas, J. A., Ferguson, J. E., Pook, C. E., Salomão, M. G., Thorpe, R. S., & Wüster, W. (2007). Phylogeographic patterns of trans-Amazonian vicariants and Amazonian biogeography: the Neotropical rattlesnake (Crotalus durissus complex) as an example. Journal of Biogeography, 34, 1296–1312.Google Scholar
  163. Räsänen, M., Salo, J. S., & Kalliola, R. J. (1987). Fluvial perturbance in the western Amazon Basin: regulation by long-term sub-Andean tectonics. Science, 238, 1398–1401.Google Scholar
  164. Räsänen, M. E., Salo, J. S., Jungnert, H., & Pittman, L. R. (1990). Evolution of the western Amazon lowland relief: impacts of Andean foreland dynamics. Terra Nova, 2, 320–332.Google Scholar
  165. Räsänen, M. E., Linna, A. M., Santos, J. C. R., & Negri, F. R. (1995). Late Miocene tidal deposits in the Amazonian foreland basin. Science, 269, 386–390.PubMedGoogle Scholar
  166. Renner, S., Neumann, D., Burkart, M., Feit, U., Giere, P., Gröger, A., et al. (2012). Import and export of biological samples from tropical countriesconsiderations and guidelines for research teams. Organisms Diversity and Evolution, 12, 81–98.Google Scholar
  167. Ribas, C. C., Aleixo, A., Nogueira, A. C. R., Miyaki, C. Y., & Cracraft, J. (2012). A palaeobiogeographic model for biotic diversification within Amazonia over the past three million years. Proceedings of the Royal Society B: Biological Sciences, 279, 681–689.PubMedGoogle Scholar
  168. Richards, C. L., Carstens, B. C., & Knowles, L. L. (2007). Distribution modelling and statistical phylogeography: an integrative framework for generating and testing alternative biogeographical hypotheses. Journal of Biogeography, 34, 1833–1845.Google Scholar
  169. Riddle, B. R., Dawson, M. N., Hadly, E. A., Hafner, D. J., Hickerson, M. J., Mantooth, S. J., et al. (2008). The role of molecular genetics in sculpting the future of integrative biogeography. Progress in Physical Geography, 173–202.Google Scholar
  170. Roberts, J. L., Brown, J. L., May, R., Arizabal, W., Schulte, R., & Summers, K. (2006). Genetic divergence and speciation in lowland and montane peruvian poison frogs. Molecular Phylogenetics and Evolution, 41, 149–164.PubMedGoogle Scholar
  171. Roberts, J. L., Brown, J. L., Schulte, R., Arizabal, W., & Summers, K. (2007). Rapid diversification of colouration among populations of a poison frog isolated on sky peninsulas in the central cordilleras of Peru. Journal of Biogeography, 34, 417–426.Google Scholar
  172. Roddaz, M., Hermoza, W., Mora, A., Baby, P., Parra, M., Christophoul, F., et al. (2010). Cenozoic sedimentary evolution of the Amazonian foreland basin system. In C. Hoorn & F. P. Wesselingh (Eds.), Amazonia: landscape and species evolution. A look into the past (pp. 61–88). Chichester: Wiley–Blackwell.Google Scholar
  173. Rodrigues, M. T. (2005). The conservation of Brazilian reptiles: challenges for a megadiverse country. Conservation Biology, 19, 659–664.Google Scholar
  174. Rossetti, D. F., & Valeriano, M. M. (2007). Evolution of the lowest amazon basin modeled from the integration of geological and SRTM topographic data. CATENA, 70, 253–265.Google Scholar
  175. Rossetti, D. F., de Toledo, P. M., & Góes, A. M. (2005). New geological framework for western Amazonia (Brazil) and implications for biogeography and evolution. Quaternary Research, 63, 78–89.Google Scholar
  176. Rull, V. (2008). Speciation timing and neotropical biodiversity: the TertiaryQuaternary debate in the light of molecular phylogenetic evidence. Molecular Ecology, 17, 2722–2729.PubMedGoogle Scholar
  177. Rull, V. (2011). Neotropical biodiversity: timing and potential drivers. Trends in Ecology and Evolution, 26, 508–513.PubMedGoogle Scholar
  178. Salati, E. (1985). The climatology and hydrology of Amazonia. In G. T. Prance & T. E. Lovejoy (Eds.), Key environments: Amazonia (pp. 18–48). Oxford: Pergamon.Google Scholar
  179. Salgado-Labouriau, M. L. (1997). Late Quaternary palaeoclimate in the savannas of South America. Journal of Quaternary Science, 12, 371–379Google Scholar
  180. Salo, J., Kalliola, R., Häkkinen, I., Mäkinen, Y., Niemelä, P., Puhakka, M., et al. (1986). River dynamics and the diversity of Amazon lowland forest. Nature, 322, 254–258.Google Scholar
  181. Sepulchre, P., Sloan, L. C., & Fluteau, F. (2010). Modelling the response of Amazonian climate to the uplift if the Andean mountain range. In C. Hoorn, & F. P. Wesselingh (Eds.), Amazonia: landscape and species evolution. A look into the past (pp. 211–222). Chichester: Wiley–Blackwell.Google Scholar
  182. Sick, H. (1967). Rios e enchentes como obstáculo para a avifauna. In H. Lent (Ed.), Atas do simpósio sobre a biota amazônica (Vol. 5, pp. 495–520). Rio de Janeiro: Conselho de Pesquisas.Google Scholar
  183. Silva, J. M. C., Rylands, A. B., & da Fonseca, G. A. B. (2005). The fate of the Amazonian areas of endemism. Conservation Biology, 19, 689–694.Google Scholar
  184. Sioli, H. (1984). The Amazon and its main affluents: hydrography, morphology of the rivers courses, and river types. In H. Sioli (Ed.), The Amazon: limnology and landscape ecology of a mighty tropical river and its basin (pp. 127–165). Dordrecht: Junk.Google Scholar
  185. Smith, T. B., Wayne, R. K., Girman, D. J., & Bruford, M. W. (1997). A role for ecotones in generating rainforest biodiversity. Science, 276, 1855–1857.Google Scholar
  186. Smith, T. B., Kark, S., Schneider, C. J., Wayne, R. K., & Moritz, C. (2001). Biodiversity hotspots and beyond: the need for preserving environmental transitions. Trends in Ecology and Evolution, 16, 431.Google Scholar
  187. Solomon, S. E., Bacci, M. Jr., Martins, J. Jr., Vinha, G. G., & Mueller, U. G. (2008). Paleodistributions and comparative molecular phylogeography of leafcutter ants (Atta spp.) provide new insight into the origins of Amazonian diversity. PLoS ONE, 3, e2738.PubMedGoogle Scholar
  188. Sunnucks, P. (2000). Efficient genetic markers for population biology. Trends in Ecology and Evolution, 15, 199–203.PubMedGoogle Scholar
  189. Symula, R., Schulte, R., & Summers, K. (2003). Molecular systematics and phylogeography of Amazonian poison frogs of the genus Dendrobates. Molecular Phylogenetics and Evolution, 26, 452–475.PubMedGoogle Scholar
  190. Thompson, L. G., Mosley-Thompson, E., & Henderson, K. A. (2000). Ice-core palaeoclimate records in tropical South America since the Last Glacial Maximum. Journal of Quaternary Science, 15, 377–394.Google Scholar
  191. Thomson, R. C., Wang, I. J., & Johnson, J. R. (2010). Genome-enabled development of DNA markers for ecology, evolution and conservation. Molecular Ecology, 19, 2184–2195.Google Scholar
  192. Valente, C. R., & Latrubesse, E. M. (2012). Fluvial archive of peculiar avulsive fluvial patterns in the largest Quaternary intracratonic basin of tropical South America: the Bananal Basin, Central-Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 356–357, 62–74.Google Scholar
  193. van der Hammen, T., & Hooghiemstra, H. (2000). Neogene and Quaternary history of vegetation, climate, and plant diversity in Amazonia. Quaternary Science Reviews, 19, 725–742.Google Scholar
  194. Vargas-Ramírez, M., Maran, J., & Fritz, U. (2010). Red- and yellow-footed tortoises, Chelonoidis carbonaria and C. denticulata (Reptilia: Testudines: Testudinidae), in South American savannahs and forests: do their phylogeographies reflect distinct habitats? Organisms Diversity and Evolution, 10, 161–172.Google Scholar
  195. Vonhof, H. B., & Kaandorp, R. J. G. (2010). Climate variation in Amazonia during the Neogene and the Quaternary. In C. Hoorn & F. P. Wesselingh (Eds.), Amazonia: landscape and species evolution. A look into the past (pp. 201–210). Wiley–Blackwell: Chichester.Google Scholar
  196. Vonhof, H. B., Wesselingh, F. P., & Ganssen, G. M. (1998). Reconstruction of the Miocene western Amazonian aquatic system using molluscan isotopic signatures. Palaeogeography, Palaeoclimatology, Palaeoecology, 141, 85–93.Google Scholar
  197. Wakeley, J. (2004). Recent trends in population genetics: more data! more math! simple models? Journal of Heredity, 95, 397–405.PubMedGoogle Scholar
  198. Wakeley, J. (2008). Coalescent theory: an introduction. Greenwood Village: Roberts.Google Scholar
  199. Wallace, A. R. (1852). On the monkeys of the Amazon. Proceedings of the Zoological Society of London, 20, 107–110.Google Scholar
  200. Wanderley-Filho, J. R., Eiras, J. F., & Vaz, P. T. (2007). Bacia do Solimões. Boletim de Geociências da Petrobrás, 15, 217–225.Google Scholar
  201. Wanderley-Filho, J. R., Eiras, J. F., da Cruz Cunha, P. R., & van der Ven, P. H. (2010). The Paleozoic Solimões and Amazonas basins and the Acre foreland basin of Brazil. In C. Hoorn & F. P. Wesselingh (Eds.), Amazonia: landscape and species evolution. A look into the past (pp. 29–37). Chichester: Wiley–Blackwell.Google Scholar
  202. Webb, S. D. (1995). Biological implications of the middle Miocene Amazon seaway. Science, 269, 361–362.PubMedGoogle Scholar
  203. Werneck, F. P. (2011). The diversification of eastern South American open vegetation biomes: historical biogeography and perspectives. Quaternary Science Reviews, 30, 1630–1648.Google Scholar
  204. Werneck, F. P., Costa, G. C., Colli, G. R., Prado, D. E., & Sites, J. W., Jr. (2011). Revisiting the historical distribution of Seasonally Dry Tropical Forests: new insights based on palaeodistribution modelling and palynological evidence. Global Ecology and Biogeography, 20, 272–288.Google Scholar
  205. Werneck, F. P., Gamble, T., Colli, G. R., Rodrigues, M. T., & Sites, J. J. W. (2012a). Deep diversification and long-term persistence in the South American 'dry diagonal': integrating continent-wide phylogeography and distribution modeling of geckos. Evolution, 66, 3014–3034.Google Scholar
  206. Werneck, F. P., Nogueira, C., Colli, G. R., Sites, J. W., Jr., & Costa, G. C. (2012b). Climatic stability in the Brazilian Cerrado: implications for biogeographical connection of South American savannas, species richness, and conservation in a biodiversity hotspot. Journal of Biogeography, 39, 1695–1706.Google Scholar
  207. Wesselingh, F., & Salo, J. A. (2006). A Miocene perspective on the evolution of the Amazonian biota. Scripta Geologica, 133, 439–458.Google Scholar
  208. Wesselingh, F. P., Hoorn, C., Kroonenberg, S. B., Antonelli, A., Lundberg, J. G., Vonhof, H. B., et al. (2010). On the origin of Amazonian landscapes and biodiversity: a synthesis. In C. Hoorn & F. P. Wesselingh (Eds.), Amazonia: landscape and species evolution. A look into the past (pp. 419–431). Chichester: Wiley–Blackwel.Google Scholar
  209. Whitmore, T. C., & Prance, G. T. (1987). Biogeography and Quaternary history in Tropical America. New York: Oxford University Press.Google Scholar
  210. Wiens, J. J. (2011). The causes of species richness patterns across space, time, and clades and the role of "ecological limits". Quarterly Review of Biology, 86, 75–96.PubMedGoogle Scholar
  211. Wiens, J. J., Graham, C. H., Moen, D. S., Smith, S. A., & Reeder, T. W. (2006). Evolutionary and ecological causes of the latitudinal diversity gradient in hylid frogs: treefrog trees unearth the roots of high tropical diversity. The American Naturalist, 168, 579–596.PubMedGoogle Scholar
  212. Wilkins, J. F., & Wakeley, J. (2002). The coalescent in a continuous, finite, linear population. Genetics, 161, 873–888.PubMedGoogle Scholar
  213. Wilkinson, M. J., Marshall, L. G., Lundberg, J. G., & Kreslavsky, M. H. (2010). Megafan environments in northern South America and their impact on Amazon Neogene aquatic ecosystems. In C. Hoorn & F. P. Wesselingh (Eds.), Amazonia: landscape and species evolution. A look into the past (pp. 162–184). Chichester: Wiley–Blackwell.Google Scholar
  214. Wüster, W., Ferguson, J. E., Quijada-Mascareñas, J. A., Pook, C. E., Salomão, M. G., & Thorpe, R. S. (2005). Tracing an invasion: landbridges, refugia, and the phylogeography of the Neotropical rattlesnake (Serpentes: Viperidae: Crotalus durissus). Molecular Ecology, 14, 1095–1108.Google Scholar
  215. Zachos, J., Pagani, M., Sloan, L., Thomas, E., & Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686–693.PubMedGoogle Scholar
  216. Zink, R. M., & Barrowclough, G. F. (2008). Mitochondrial DNA under siege in avian phylogeography. Molecular Ecology, 17, 2107–2121.PubMedGoogle Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2013

Authors and Affiliations

  1. 1.Department of BiologyBrigham Young UniversityProvoUSA
  2. 2.Monte L. Bean Life Science MuseumBrigham Young UniversityProvoUSA

Personalised recommendations