Organisms Diversity & Evolution

, Volume 13, Issue 2, pp 255–266 | Cite as

Genetic differentiation of the African dwarf crocodile Osteolaemus tetraspis Cope, 1861 (Crocodylia: Crocodylidae) and consequences for European zoos

  • Franziska Anni Franke
  • Fabian Schmidt
  • Christin Borgwardt
  • Detlef Bernhard
  • Christoph Bleidorn
  • Wolf-Eberhard Engelmann
  • Martin Schlegel
Original Article


The endangered African dwarf crocodile Osteolaemus tetraspis is distributed in Central and Western Africa. Conventionally, two subspecies were distinguished: Osteolaemus tetraspis tetraspis and Osteolaemus tetraspis osborni. The taxonomic significance of diagnostic morphological characters is still being discussed and the existence of additional species in the Osteolaemus group remains unclear. Recent molecular studies suggest the existence of three allopatric species in the genus Osteolaemus. These results supported a division of the dwarf crocodile into a Congo Basin form (O. osborni), an Ogooué Basin form (O. tetraspis), and a third separate evolutionary lineage from Western Africa. Several European zoos host African dwarf crocodiles. For reasons of conservation and possible reintroduction, it is important to clarify provenance of these zoo animals. Therefore, we conducted molecular and phylogenetic analyses of three mitochondrial and two nuclear gene sequences with all available samples from European zoos and museums. We also estimated the origin of the zoo animals by comparing sequences of wild animals and museum samples of known provenance. Our study strongly supports three distinct lineages of Osteolaemus as recently postulated, but also reveals a fourth evolutionary lineage. We demonstrate that, of the European zoo animals sampled, only one dwarf crocodile corresponds to the Congo Basin form (O. osborni) whereas the majority of individuals correspond to the three other forms. Four zoo animals belong to the new fourth group; but their provenance is still unresolved. The origin of these animals is probably located in an African region from which no wild animal samples are currently available. Further investigations and sampling of other regions should be completed to clarify the identity of this fourth lineage. We found potential hybrids from European zoological gardens using nuclear DNA sequences. The European Studbook will use these results for further breeding programmes to keep genetically suitable ex-situ populations as reassurance colonies for prospective reintroduction into African countries.


African dwarf crocodile Osteolaemus Phylogenetic diversity Cryptic species European zoological gardens European Studbook Breeding programmes 



We would like to thank all the zoological gardens in Europe and Toronto, Canada, and the natural historical museums in Hamburg, Bonn, Vienna, and Basel that provided blood and tissue samples. We gratefully acknowledge private breeders and institutions for supplying blood samples. We are grateful to the Zoo Leipzig GmbH, Germany for support and organization during this study. We acknowledge Mitchell Eaton for transmitting sequence data of wild animals and for helpful comments on the manuscript. We acknowledge Matthew Shirley, who provided samples from West Africa (Ghana and Côte d´Ivoire) via Mitchell Eaton (personal communication and Eaton el al. 2009a). We would also like to thank Prof. Dr. Ernst Spiess and Dr. Christian Häberling for providing the map of Africa (© SWISS WORLD ATLAS 2010–2012). In addition, we thank Michael Weidhase and Annemarie Geißler for supporting the laboratory work; we also thank Kevin M. Kocot, who provided helpful comments and Michael Gerth for bioinformatics assistance. We also acknowledge the reviewers for their valuable comments on the manuscript and their constructive suggestions.

Supplementary material

13127_2012_107_MOESM1_ESM.pdf (1.1 mb)
ESM 1 (PDF 1.11 mb)


  1. Academy of natural sciences of philadelphia. 1860. [December 11th]. Proceedings of the Academy of National Sciences of Philadelphia, 12, 548–551.Google Scholar
  2. Altekar, G., Dwarkadas, S., Huelsenbeck, J. P., & Ronquist, F. (2004). Parallel Metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. Bioinformatics, 20, 407–415.PubMedCrossRefGoogle Scholar
  3. Ballard, J. W. O., & Whitlock, C. M. (2004). The incomplete natural history of mitochondria. Molecular Ecology, 13, 729–744.PubMedCrossRefGoogle Scholar
  4. Brochu, C. A. (2007). Morphology, relationships, and biogeographical significance of an extinct horned crocodile (Crocodylia, Crocodylidae) from the Quaternary of Madagascar. Zoological Journal of the Linnean Society, 150(4), 835–863.CrossRefGoogle Scholar
  5. Brown, W. M., George, M., & Wilson, A. C. (1979). Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sciences, 76, 1967–1971.CrossRefGoogle Scholar
  6. Clement, M., Posada, D., & Crandall, K. A. (2000). TCS: a computer program to estimate gene genealogies. Molecular Ecology, 9, 1657–1659.PubMedCrossRefGoogle Scholar
  7. Crocodile Specialist Group (1996). Osteolaemus tetraspis. IUCN 2011. IUCN Red List of Threatened Species. Version 2011.1.Google Scholar
  8. Dathe, H. (1978). The Meaning and Value of Breeds Representing Pure Subspecies in Zoological Gardens. Der Zoologische Garten NF, 48(2/3), 164–166.Google Scholar
  9. Eaton, M. J., Martin, A., Thorbjarnarson, J., & Amato, G. (2009). Species-level diversification of African dwarf crocodiles (Genus Osteolaemus): a geographic and phylogenetic perspective. Molecular Phylogenetics and Evolution, 50, 496–506.PubMedCrossRefGoogle Scholar
  10. Eaton, M. J., Meyer, G. E., Kolokotronis, S. O., Leslie, M. S., Martin, P. A., & Amato, G. (2009). Barcoding bushmeat: molecular identification of Central African and South American harvested vertebrates. Conservation Genetics, 11, 1389–1404.CrossRefGoogle Scholar
  11. Ence, D. D., & Carstens, B. C. (2010). SpedeSTEM: a rapid and accurate method for species delimitation. Molecular Ecology Ressources, 11, 473–480.CrossRefGoogle Scholar
  12. Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39, 783–791.CrossRefGoogle Scholar
  13. Gatesy, J., Baker, R. H., & Hayashi, C. (2004). Inconsistencies in arguments for the supertree approach: supermatrices versus supertrees of Crocodylia. Systematic Biology, 53(2), 342–355.PubMedCrossRefGoogle Scholar
  14. Hajibabaei, M., Janzen, D. H., Burns, J. M., Hallwachsm, W., & Hebert, P. D. N. (2006). DNA barcodes distinguish species of tropical Lepidoptera. Proceedings of the National Academy of Sciences, 103, 968–971.CrossRefGoogle Scholar
  15. Hajibabaei, M., Singer, G. A. C., Hebert, P. D. N., & Hickey, D. A. (2007). DNA barcoding: How it complements taxonomy, molecular phylogenetics and population genetics. Trends in Genetics, 23(4), 167–172.PubMedCrossRefGoogle Scholar
  16. Hall, T. A. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.Google Scholar
  17. Hart, M. W., & Sunday, J. (2007). Things fall apart: biological species form unconnected parsimony networks. Biology Letters, 3, 509–512.PubMedCrossRefGoogle Scholar
  18. Hart, M. W., Keever, C. K., Dartnall, A. J., & Byrne, M. (2006). Morphological and genetic variation indicate cryptic species within Lamarck’s little sea star, Parvulastra (= Patiriella) exigua. The Biological Bulletin, 210, 158–167.PubMedCrossRefGoogle Scholar
  19. Hebert, P. D. N., Ratnasingham, S., & de Waard, J. R. (2003). Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society B, 270, 96–99.CrossRefGoogle Scholar
  20. Hekkala, E., Shirley, M. H., Amato, G., Austin, J. D., Charter, S., Thorbjarnarson, J., Vliet, K. A., Houck, M. L., DeSalle, R., & Blum, M. J. (2011). An ancient icon reveals new mysteries: mummy DNA resurrects a cryptic species within the Nile crocodile. Molecular Ecology, 20, 4199–4215.CrossRefGoogle Scholar
  21. Huelsenbeck, J. P., & Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17, 754–755.PubMedCrossRefGoogle Scholar
  22. Inger, R. F. (1948). The systematic status of the crocodile Osteoblepharon osborni. Copeia, 1, 15–19.CrossRefGoogle Scholar
  23. Janke, A., Gullberg, A., Hughes, S., Aggarwal, R., & Arnason, U. (2005). Mitogenomic analyses place the gharial (Gavialis gangeticus) on the crocodile tree and provide pre-K/T divergence times for most crocodilians. Journal of Molecular Evolution, 61, 620–626.PubMedCrossRefGoogle Scholar
  24. Kälin, J. A. (1933). Beiträge zur vergleichenden Osteologie des Crocodilidenschadels. Zoologisches Jahrbuch Anatomie, 57, 535–714.Google Scholar
  25. Katoh, K., Kuma, K., Toh, H., & Mitaya, T. (2005). MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Research, 33(2), 511–518.PubMedCrossRefGoogle Scholar
  26. Kimura, M. (1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120.PubMedCrossRefGoogle Scholar
  27. King, F. W., & Burke, R. L. (1989). Crocodilian, Tuatara, and Turtle Species of the World. Washington, DC: Association of Systematics Collections.Google Scholar
  28. Lacy, R. (1991). Zoos and the surplus problem: an alternative solution. Zoo Biology, 10, 293–297.CrossRefGoogle Scholar
  29. Letunic, I., & Bork, P. (2006). Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics, 23(1). Google Scholar
  30. Letunic, I., & Bork, P. (2011). Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Research. doi: 10.1093/nar/gkr201.
  31. Marker-Kraus, L., & Grisham, J. (1993). Captive Breeding of Cheetahs in North American Zoos: 1987–1991. Zoo Biology, 12, 5–18.CrossRefGoogle Scholar
  32. McAliley, L. R., Willis, R. E., Ray, D. A., White, P. S., Brochu, C. A., & Densmore, L. D., III. (2006). Are crocodiles really monophyletic?—Evidence for subdivisions from sequence and morphological data. Molecular Phylogenetics and Evolution, 3, 16–32.CrossRefGoogle Scholar
  33. Meganathan, P. R., Dubey, B., Batze, M. A., Ray, D. A., & Haque, I. (2010). Molecular phylogenetic analyses of genus Crocodylus (Eusuchia, Crocodylia, Crocodylidae) and the taxonomic position of Crocodylus porosus. Molecular Phylogenetics and Evolution, 57, 393–402.PubMedCrossRefGoogle Scholar
  34. Meredith, R. W., Hekkala, E. R., Amato, G., & Gatesy, J. (2011). A phylogenetic hypothesis for Crocodylus (Crocodylia) based on mitochondrial DNA: evidence for a trans-Atlantic voyage from Africa to the New World. Molecular Phylogenetics and Evolution, 60, 183–191.PubMedCrossRefGoogle Scholar
  35. Mertens, R. (1943). Die rezenten Krokodile des Natur-Museums Senkenberg. Senckenbergiana, 26, 252–312.Google Scholar
  36. Mishler, B. D., & Theriot, E. C. (2000). The phylogenetic species concept (sensu Mishler and Theriot). In Q. D. Wheeler & N. Platnick (Eds.), Species concepts and phylogenetic theory (pp. 44–54). New York: Columbia University Press.Google Scholar
  37. Monaghan, M. T., Balke, M., Pons, J., & Vogler, A. P. (2006). Beyond barcodes: complex DNA taxonomy of a south Pacific island radiation. Proceedings of the Royal Society B, 273, 887–893.PubMedCrossRefGoogle Scholar
  38. Morando, M., Avila, L. J., & Sites, J. W. (2003). Sampling strategies for delimiting species: genes, individuals, and populations in the Liolaemus elongates-kriegi complex (Squamata: Liolaemidae) in the Andean–Patagonian South America. Systematic Biology, 52, 159–185.PubMedCrossRefGoogle Scholar
  39. Oaks, J. R. (2011). A time-calibrated species tree of Crocodylia reveals a recent radiation of the true crocodiles. Evolution, 65–11, 3285–3297.CrossRefGoogle Scholar
  40. Page, R. D. (1996). TreeView: an application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences, 12(4), 357–358.PubMedGoogle Scholar
  41. Pons, J., Barraclough, T. G., Gomez-Zurita, J., Cardoso, A., Duran, D. P., Hazell, S., Kamooun, S., Sumlin, W. D., & Vogler, A. P. (2006). Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology, 55, 595–609.PubMedCrossRefGoogle Scholar
  42. Ratnasingham, S., & Hebert, P. D. N. (2007). BOLD: the barcode of life data system. Molecular Ecology Notes, 7(3), 355–364.PubMedCrossRefGoogle Scholar
  43. Ray, D. A., White, P. S., Duong, H. V., Cullen, T., & Densmore, L. D. (2000). High levels of genetic variability in West African dwarf crocodiles Osteolaemus tetraspis tetraspis. In G. C. Grigg, F. Seebacher, & C. E. Franklin (Eds.), Crocodilian Biology and Evolution (pp. 58–63). Australia: Beatty, Chipping Norton.Google Scholar
  44. Rodriguez, F., Oliver, J. L., Marin, A., & Medina, J. R. (1990). The general stochastic model of nucleotide substitution. Journal of Theoretical Biology, 142, 485–501.PubMedCrossRefGoogle Scholar
  45. Ronquist, F., & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574.PubMedCrossRefGoogle Scholar
  46. Ross, F. D. (2006). African dwarf-croc quandary persists. Crocodile Specialist Group Bulletin, 25(1), 19–21.Google Scholar
  47. Saccone, C., De Giorgi, C., Gissi, C., Pesole, G., & Reyes, A. (1999). Evolutionary genomics in Metazoa: the mitochondrial DNA as a model system. Gene, 238, 195–209.PubMedCrossRefGoogle Scholar
  48. Schmidt, K. P. (1919). Contributions to the herpetology of the Belgian Congo based on the collection of the American Museum Congo Expedition, 1909–1915. Part 1. Turtles, crocodiles, lizards, and chameleons. Bulletin American Museum of Natural History, 39, Reprint 1998 Society for the Study of Amphibians and Reptiles, 420–435.Google Scholar
  49. Schmitz, A., Mansfield, P., Hekkala, E., Shine, T., Nickel, H., Amato, G., & Böhme, W. (2003). Molecular evidence for species level divergence in African Nile crocodiles Crocodylus niloticus (Laurenti, 1786). Evolution (General Phylogenetics and systematic Theory). Comptes Rendus Palevol, 2, 703–712.CrossRefGoogle Scholar
  50. Shirley, M., & Eaton, M. J. (2010). African biogeography and its impact on recent developments in the systematics of African crocodiles. Crocodiles: Actes du 2ème Congrès du Groupe des Spécialistes des Crocodiles sur la promotion et la conservation des crocodiliens en Afrique de l’Ouest ténu à Nazinga, Burkina Faso du 2–6 mars 2010, 89–99.Google Scholar
  51. Stamatakis, A. (2006). RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22, 2688–2690.PubMedCrossRefGoogle Scholar
  52. Swofford, D. L. (2002). PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer, Sunderland, Massachusetts.Google Scholar
  53. Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24(8), 1596–1599.PubMedCrossRefGoogle Scholar
  54. Trutnau, L., & Sommerlad, R. (2006). Krokodile—Biologie und Haltung. Frankfurt: Chimaira.Google Scholar
  55. Van Bemmel, A. C. V. (1971). Keeping and breeding of pure subspecies in Zoos and National Parks. Der Zoologische Garten NF, 40(3), 160–162.Google Scholar
  56. Wangchuk, T., Inouye, D. W., & Hare, M. P. (2008). The emergence of an endangered species: evolution and phylogeny of the Trachypithecus geei of Bhutan. International Journal of Primatology, 29, 565–582.CrossRefGoogle Scholar
  57. Wermuth, H. (1953). Systematik der rezenten Krokodile. Mitteilungen des Zoologischen Museum Berlin, 28(2), 458–467.Google Scholar
  58. Wermuth, H., & Mertens, R. (1961). Schildkröten, Krokodile und Brückenechsen. Gustav Fischer Verlag Jena, Nachdruck, 1996, 422.Google Scholar
  59. Wiens, J. J., & Penkrot, T. A. (2002). Delimiting species using DNA and morphological variation and discordant species limits in spiny lizards (Sceloporus). Systematic Biology, 51, 69–91.PubMedCrossRefGoogle Scholar
  60. Wilson, A. C., Cann, R. L., Carr, S. M., George, M., Gyllensten, U. B., Helm-Bychowski, K. M., Higuchi, R. G., Palumbi, S. R., Prager, E. M., Sage, R. D., & Stoneking, M. (1985). Mitochondrial DNA and two perspectives on evolutionary genetics. Biological Journal of the Linnean Society London, 26, 375–400.CrossRefGoogle Scholar
  61. Zhang, C., Zhang, D.-X., Zhu, T., & Yang, Z. (2011). Evaluation of a Bayesian coalescent method of species delimitation. Systematic Biology, 60, 747–761.PubMedCrossRefGoogle Scholar
  62. Zoer, R. (2010). A final report to the Conservation Agency. Prins Bernhard Cultuurfonds, Stichting Fundatie van de Vrijvrouwe van Renswoude. Dutch Zoo Conservation Fund.Google Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2012

Authors and Affiliations

  • Franziska Anni Franke
    • 1
    • 3
  • Fabian Schmidt
    • 2
  • Christin Borgwardt
    • 1
  • Detlef Bernhard
    • 1
  • Christoph Bleidorn
    • 1
  • Wolf-Eberhard Engelmann
    • 2
  • Martin Schlegel
    • 1
  1. 1.Institute of Biology, Molecular Evolution and Animal SystematicsUniversity LeipzigLeipzigGermany
  2. 2.Zoo Leipzig GmbHLeipzigGermany
  3. 3.Institute of Biology, Animal Evolution and DevelopmentUniversity LeipzigLeipzigGermany

Personalised recommendations