Skip to main content

Molecular and phytochemical systematics of the subtribe Hypochaeridinae (Asteraceae, Cichorieae)

Abstract

The systematics of the Hypochaeridinae subtribe was re-evaluated based on a combination of published and new molecular data. Newly found clades were additionally characterized using published and new phytochemical data. In addition to flavonoids and sesquiterpene lactones, which had been reviewed recently as chemosystematic markers in the Cichorieae, we analysed the reported occurrences of caffeic acid derivatives and their potential as chemosystematic markers. Our molecular results required further changes in the systematics of the genus Leontodon. Based on previous molecular data, Leontodon s.l.—i.e. including sections Asterothrix, Leontodon, Thrincia, Kalbfussia, and Oporinia (Widder 1975)—had been split into the genera Leontodon s.str. (sections Asterothrix, Leontodon, and Thrincia) and Scorzoneroides (sections Kalbfussia and Oporinia). Instead of splitting Leontodon into even a higher number of segregate genera we propose to include Hedypnois into Leontodon s.str. and here into section Leontodon. Moreover, sections Asterothrix and Leontodon should be merged into a single section Leontodon. The newly defined genus Leontodon is characterised by the unique occurrence of hydroxyhypocretenolides. The monophyly of the genus Hypochaeris is neither supported nor contradicted and potentially comprises two separate molecular clades. The clade Hypochaeris I comprises the majority of the European and Mediterranean as well as all South American taxa of Hypochaeris s.l. while the clade Hypochaeris II encompasses only H. achyrophorus L., H. glabra L., H. laevigata Benth. & Hook.f., and H. radicata L.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Babcock, E. B. (1947a). The Genus Crepis, part one, The Taxonomy, Phylogeny. Distribution and Evolution of Crepis: Universtiy of California Publications. 21.

    Google Scholar 

  2. Babcock, E. B. (1947b). The Genus Crepis, part two. Systematic Treatment: University of California Publications. 22.

    Google Scholar 

  3. Bailly, F., & Cotelle, P. (2005). Anti-HIV activities of natural antioxidant caffeic acid derivatives: toward an antiviral supplement diet. Current Medincinal Chemistry, 12, 1811–1818.

    Article  CAS  Google Scholar 

  4. Blattner, F. R. (1999). Direct amplification of the entire ITS region from poorly preserved plant material using recombinant PCR. BioTechniques, 27, 1180–1186.

    PubMed  CAS  Google Scholar 

  5. Carr, G. D., King, R. M., Powell, A. M., & Robinson, H. (1999). Chromosome numbers in Compositae, XVIII. American Journal of Botany, 896, 1003–1013.

    Article  Google Scholar 

  6. Cerbah, M., Souza-Chies, T., Jubier, M. F., Lejeune, B., & Siljak-Yakovlev, S. (1998). Molecular phylogeny of the genus Hypochaeris using internal transcribed spacers of nuclear rDNA: Inference for chromosomal evolution. Molecular Biology and Evolution, 15, 345–354.

    PubMed  CAS  Google Scholar 

  7. Enke, N., Fuchs, J., & Gemeinholzer, B. (2011). Shrinking genomes? Evidence from genome size variation in Crepis L. (Cichorieae, Compositae). Plant Biology, 13, 185–193.

    PubMed  Article  CAS  Google Scholar 

  8. Enke, N., & Gemeinholzer, B. (2008). Babcock revisited: new insights into generic delimitation and character evolution in Crepis L. (Compositae: Cichorieae) from ITS and matK sequence data. Taxon, 57, 756–768.

    Google Scholar 

  9. Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39, 783–791.

    Article  Google Scholar 

  10. Greuter, W., Gutermann, W., & Talavera, S. (2006). A preliminary conspectus of Scorzoneroides (Compositae, Cichorieae) with validation of the required new names. Willdenowia, 36, 689–692.

    Google Scholar 

  11. Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.

    CAS  Google Scholar 

  12. Hsiao, C., Chatterton, N. J., Asay, K. H., & Jensen, K. B. (1995). Molecular phylogeny of the Pooideae (Poaceae) based on nuclear rDNA (ITS) sequences. Theoretical and Applied Genetics, 90, 389–398.

    Article  CAS  Google Scholar 

  13. ICN International Cichorieae Network, General editors Hand, R., Kilian, N., & Raab-Straube, E. von (2009+). Cichorieae Portal. Published at http://wp6-chichorieae-e-taxonomy.eu/portal/ [accessed 15.03.2011]

  14. Izuzquiza, A., & Feliner, G. N. (1991). Cytotaxonomic notes on the genus Leontodon (Asteraceae, Hypochoeridinae). Willdenowia, 21, 215–224.

    Google Scholar 

  15. Kilian, N., Gemeinholzer, B., & Lack, H. W. (2009). Tribe Cichorieae Lam. & DC. In V. A. Funk, A. Susanna, T. Stuessy, & R. Bayer (Eds.), Systematics, Evolution and Biogeography of the Compositae. Austria: IAPT, Vienna.

    Google Scholar 

  16. Kisiel, W. (1994). Hypocretenolides from Crepis aurea. Fitoterapia, 65, 381.

    CAS  Google Scholar 

  17. Lippi, M. M., & Garbari, F. (2004). Leontodon villarsii (Willd.) Loisel. and L. rosani (Ten.) DC. (Asteraceae): nomenclatural, palynological, karyological, and micromorphological aspects. Plant Biosystems, 138, 165–174.

    Article  Google Scholar 

  18. Nordenstam, B. (1971). Cytogeography of the genus Hedypnois (Compositae). Botaniska Notiser, 124, 483–489.

    Google Scholar 

  19. Pittoni, H. (1974). Behaarung und Chromosomenzahlen sternhaariger Leontodon-Sippen. Phyton (Austria), 16, 165–188.

    Google Scholar 

  20. Posada, D., & Crandall, K. A. (1998). Modeltest: testing the model of DNA substitution. Bioinformatics, 14, 817–818.

    PubMed  Article  CAS  Google Scholar 

  21. Rambaut, A. (2008). Figtree v1.2.2. Insitute of Evolutionary Biology, University of Edinburgh. Available at http://tree.bio.ed.ac.uk/software/figtree

  22. Rios, J. L., Giner, R. M., Cuellar, M. J., Recio, M. C., & Serrano, A. (1992). Phenolics from some species of subtribe Leontodontinae. Planta Medica, 58(Suppl. 1), A701.

    Article  Google Scholar 

  23. Ronquist, F., & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574.

    PubMed  Article  CAS  Google Scholar 

  24. Samuel, R., Gutermann, W., Stuessy, T. F., Ruas, C. F., Lack, H. W., Tremetsberger, K., Talavera, S., Hermanowski, B., & Ehrendorfer, F. (2006). Molecular phylogenetics reveals Leontodon (Asteraceae, Lactuceae) to be diphyletic. American Journal of Botany, 93, 1193–1205.

    PubMed  Article  CAS  Google Scholar 

  25. Samuel, R., Stuessy, T. F., Tremetsberger, K., Baeza, C. M., & Siljak-Yakovlev, S. (2003). Phylogenetic relationships among species of Hypochaeris (Asteraceae, Cichorieae) based on ITS, plastid trnL intron, trnL-F spacer, and matK sequences. American Journal of Botany, 90, 496–507.

    PubMed  Article  CAS  Google Scholar 

  26. Sareedenchai, V., & Zidorn, C. (2010). Flavonoids as chemosystematic markers in the tribe Cichorieae of the Asteraceae. Biochemical Systematics and Ecology, 38, 935–957.

    Article  CAS  Google Scholar 

  27. Siljak-Yakovlev, S., Bartoli, A., Roitman, G., Barghi, N., & Mugnier, C. (1994). Etude caryologique de trois espèces d’Hypochaeris originaires d’Argentine: H. chiliensis (H. B. K.) Hieron, H. megapotamica Cabr. et H. microcephala (Sch. Bip.) Cabr. var. albiflora (O.K.) Cabr. Canadian Journal of Botany, 72, 1496–1502.

    Article  Google Scholar 

  28. Stamatakis, A. (2006). RAXML-VI-HPC: Maximum-Likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22, 2688–2690.

    PubMed  Article  CAS  Google Scholar 

  29. Stamatakis, A., Hoover, P., & Rougemont, J. (2008). A rapid bootstrap algorithm for the RAxML web-servers. Systematic Biology, 75, 758–771.

    Article  Google Scholar 

  30. Stebbins, G. L., Jenkins, J. A., & Walters, M. S. (1953). Chromosomes and phylogeny in the Compositae, tribe Chichorieae. University of California Publications in Botany, 26, 401–429.

    Google Scholar 

  31. Swofford, D. L. (2002). PAUP*: Phylogenetic analyses using parsimony (* and other methods), version 4.0beta. Sunderland: Sinauer.

    Google Scholar 

  32. Tavaré, S. (1986). Some probabilistic and statistical problems in the analsyis of DNA sequences. Lectures on Mathematics in the Life Sciences, 17, 57–86.

    Google Scholar 

  33. Tremetsberger, K., Weiss-Schneeweiss, H., Stuessy, T., Samuel, R., Kadlec, G., Angeles Ortiz, M., & Talavera, S. (2005). Nuclear ribosomal DNA and karyotypes indicate a NW African origin of South American Hypochaeris (Asteraceae, Chichorieae). Molecular Phylogenetics and Evolution, 35, 102–116.

    PubMed  Article  CAS  Google Scholar 

  34. Tzevelev, N. N., & Fedorov, A. A. (2003). Flora of Russia: The European Part and Bordering Regions. Rotterdam: A.A. Balkema.

    Google Scholar 

  35. Weiss, H., Stuessy, T. F., Grau, J., & Baeza, C. M. (2003). Chromosome reports from South American Hypochaeris (Asteraceae). Annals of the Missouri Botanical Garden, 90, 56–63.

    Article  Google Scholar 

  36. Weiss-Schneeweiss, H., Stuessy, T. F., Siljak-Yakovlev, S., Baeza, C. M., & Parker, J. (2003). Karyotype evolution in South American species of Hypochaeris (Asteraceae, Lactuceae). Plant Systematics and Evolution, 241, 171–184.

    Article  Google Scholar 

  37. White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols. A guide to methods and applications (pp. 315–322). San Diego: Academic.

    Google Scholar 

  38. Widder, F. J. (1975). Die Gliederung der Gattung Leontodon. Phyton (Austria), 17, 23–29.

    Google Scholar 

  39. Wink, M. (2003). Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry, 64, 3–19.

    PubMed  Article  CAS  Google Scholar 

  40. Zidorn, C. (1998). Phytochemie, Pharmakologie, Chemotaxonomie und Morphologie von Leontodon hispidus L. s.l. Shaker Verlag, Aachen. Also as PhD thesis. Innbruck: University of Innsbruck.

    Google Scholar 

  41. Zidorn, C. (2006). Sesquiterpenoids as chemosystematic markers in the subtribe Hypochaeridinae (Lactuceae, Asteraceae). Biochemical Systematics and Ecology, 34, 144–159.

    Article  CAS  Google Scholar 

  42. Zidorn, C. (2008a). Plant Chemosystematics. In M. Waksmunzka-Hajnos, J. Sherma, & T. Kowalska (Eds.), Thin Layer Chromatography in Phytochemistry (pp. 77–101). Boca Raton: Taylor & Francis.

    Google Scholar 

  43. Zidorn, C. (2008b). Sesquiterpene lactones and their precursors as chemosystematic markers in the tribe Cichorieae of the Asteraceae. Phytochemistry, 69, 2270–2296.

    PubMed  Article  CAS  Google Scholar 

  44. Zidorn, C., Gottschlich, G., & Stuppner, H. (2002). Chemosystematic investigations on phenolics from flowerheads of central European taxa of Hieracium sensu lato (Asteraceae). Plant Systematics and Evolution, 231, 39–58.

    Article  CAS  Google Scholar 

  45. Zidorn, C., Pschorr, S., Ellmerer, E. P., & Stuppner, H. (2006). Occurrence of equisetumpyrone and other phenolics in Leontodon crispus. Biochemical Systematics and Ecology, 34, 185–187.

    Article  CAS  Google Scholar 

  46. Zidorn, C., Schubert, B., & Stuppner, H. (2005). Altitudinal differences in the contents of phenolics in flowering heads of three members of the tribe Lactuceae (Asteraceae) occurring as introduced species in New Zealand. Biochemical Systematics and Ecology, 33, 855–872.

    Article  CAS  Google Scholar 

  47. Zidorn, C., Schubert, B., & Stuppner, H. (2008). Phenolics as chemosystematics markers in and for the genus Crepis (Asteraceae, Cichorieae). Scientia Pharmaceutica, 76, 743–750.

    Article  CAS  Google Scholar 

  48. Zidorn, C., Spitaler, R., Grass, S., Mader, J., Müller, T., Ellmerer, E. P., & Stuppner, H. (2007). Four new hypocretenolides (guaian-12,5-olides) from Leontodon rosani (Asteraceae, Cichorieae). Biochemical Systematics and Ecology, 35, 301–307.

    Article  CAS  Google Scholar 

  49. Zidorn, C., & Stuppner, H. (2001). Chemosystematics of taxa from the Leontodon section Oporinia. Biochemical Systematics and Ecology, 29, 827–837.

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Renate Spitaler (Innsbruck) and Jonas Zimmermann (Berlin) for proof reading, the latter also for help with the molecular work; Michaela Posch, Birthe Schubert, and Judith Strauch (all Innsbruck) for phytochemical assistance; Serhat Cicek (Innsbruck) for HPLC/MS measurements; and Eckhard von Raab-Straube, Ralf Hand and Wolf-Henning Kusber (all Berlin) for advice with regards to botanical nomenclature. This work was supported by the Fonds zur Förderung der wissenschaftlichen Forschung (FWF, project P20278-B16).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Neela Enke or Christian Zidorn.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Enke, N., Gemeinholzer, B. & Zidorn, C. Molecular and phytochemical systematics of the subtribe Hypochaeridinae (Asteraceae, Cichorieae). Org Divers Evol 12, 1–16 (2012). https://doi.org/10.1007/s13127-011-0064-0

Download citation

Keywords

  • Asteraceae
  • Chemosystematics
  • Cichorieae
  • Hypochaeridinae
  • Molecular systematics