Organisms Diversity & Evolution

, Volume 11, Issue 3, pp 193–199 | Cite as

A new perspective on the evolution of white blister rusts: Albugo s.str. (Albuginales; Oomycota) is not restricted to Brassicales but also present on Fabales

  • Young-Joon Choi
  • Marco Thines
  • Hyeon-Dong Shin
Original Article


For almost all groups of pathogens, unusual and rare host species have been reported. Often, such associations are based on single or few collections only, which are frequently hard to access. Many of them later prove to be due to misidentification of the host, the pathogen, or both. Therefore, such reports are often disregarded, or treated anecdotally in taxonomic and phylogenetic studies, regardless of their potential importance to unravelling the evolution of the entire group. Concerning oomycete biotrophs there are several reports of unusual and rare hosts for hardly known pathogens. In the order Fabales, for example, a single species of Albugo, A. mauginii, was described as parasitic to Onobrychis crista-galli about 80 years ago, but not recorded again. All other confirmed members of Albugo s.str. are parasitic to representatives of the families Brassicaceae, Capparaceae, Cleomaceae, and Resedaceae in the order Brassicales. In the present study, molecular phylogenetic analysis of cox2 mtDNA sequences and morphological investigations on an original specimen confirmed the occurrence of a member of Albugo on Fabaceae hosts, with the characteristic thin wall of the secondary sporangia, which is almost uniform in thickness. In phylogenetic analyses the species results as embedded within Albugo s.str. Therefore, it is concluded that the natural host range of Albugo s.str. extends from Brassicales to Fabales via host jumping. Our results underscore that unrevised reports of pathogens from unusual hosts should be reconsidered carefully to obtain a more complete picture of pathogen diversity and evolution.


Ancient DNA cox2 mtDNA Host jumping Pathogen evolution Unusual hosts 



The authors are grateful to the curator at BPI for providing the Albugo specimen investigated. This work was financially supported by research grants from the Korea Research Foundation (KRF-2003-015-C00611) and the research funding programme “LOEWE—Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz” of the State Ministry of Higher Education, Research, and the Arts (Hessen, Germany).


  1. Ahangarian, S., Kazempour, O. S., & Maassoumi, A. A. (2007). Molecular phylogeny of the tribe Hedysareae with special reference to Onobrychis (Fabaceae) as inferred from nrDNA ITS sequences. Iranian Journal of Botany, 13, 64–74.Google Scholar
  2. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.PubMedGoogle Scholar
  3. APG [Angiosperm Phylogeny Group]. (2009). An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society, 161, 105–121.CrossRefGoogle Scholar
  4. Begerow, D., Stoll, M., & Bauer, R. (2006). A phylogenetic hypothesis of Ustilaginomycotina based on multiple gene analyses and morphological data. Mycologia, 98, 906–916.PubMedCrossRefGoogle Scholar
  5. Biga, M. L. B. (1955). Review of the species of the genus Albugo based on the morphology of the conidia. Sydowia, 9, 339–358.Google Scholar
  6. Birch, P. R., Rehmany, A. P., Pritchard, L., Kamoun, S., & Beynon, J. L. (2006). Trafficking arms: oomycete effectors enter host plant cells. Trends in Microbiology, 14, 8–11.PubMedCrossRefGoogle Scholar
  7. Choi, D., & Priest, M. J. (1995). A key to the genus Albugo. Mycotaxon, 53, 261–272.Google Scholar
  8. Choi, Y. J., Hong, S. B., & Shin, H. D. (2005). A re-consideration of Pseudoperonospora cubensis and Ps. humuli based on molecular and morphological data. Mycological Research, 109, 841–848.PubMedCrossRefGoogle Scholar
  9. Choi, Y. J., Hong, S. B., & Shin, H. D. (2006). Genetic diversity within the Albugo candida complex (Peronosporales, Oomycota) inferred from phylogenetic analysis of ITS rDNA and COX2 mtDNA sequences. Molecular Phylogenetics and Evolution, 40, 400–409.PubMedCrossRefGoogle Scholar
  10. Choi, Y. J., Shin, H. D., Hong, S. B., & Thines, M. (2007). Morphological and molecular discrimination among Albugo candida materials infecting Capsella bursa-pastoris world-wide. Fungal Diversity, 27, 11–34.Google Scholar
  11. Choi, Y. J., Shin, H. D., Ploch, S., & Thines, M. (2008). Evidence for uncharted biodiversity in the Albugo candida complex, with the description of a new species. Mycological Research, 112, 1327–1334.PubMedCrossRefGoogle Scholar
  12. Choi, Y. J., Shin, H. D., Ploch, S., & Thines, M. (2011). Three new phylogenetic lineages are the closest relatives of the widespread species Albugo candida. Fungal Biology. doi: 10.1016/j.funbio.2011.02.006.Google Scholar
  13. Choi, Y. J., Shin, H. D., & Thines, M. (2009). The host range of Albugo candida extends from Brassicaceae through Cleomaceae to Capparaceae. Mycological Progress, 8, 329–335.CrossRefGoogle Scholar
  14. Choi, Y. J., & Thines, M. (2010). Morphological and molecular confirmation of Albugo resedae (Albuginales; Oomycota) as a distinct species from A. candida. Mycological Progress. doi: 10.1007/s11557-010-0683-4.Google Scholar
  15. Constantinescu, O., & Thines, M. (2006). Dimorphism of sporangia in the Albuginaceae (Chromista, Peronosporomycetes). Sydowia, 58, 178–190.Google Scholar
  16. El-Buni, A. M., & Rattan, S. S. (1981). Check-list of Libyan fungi. Tripolis: Al-Faateh University, Faculty of Science, Department of Botany.Google Scholar
  17. Farris, J. S. (1989). The retention index and the rescaled consistency index. Cladistics, 5, 417–419.CrossRefGoogle Scholar
  18. Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39, 783–791.CrossRefGoogle Scholar
  19. Hudspeth, D. S. S., Nadler, S. A., & Hudspeth, M. E. S. (2000). A COX2 molecular phylogeny of the Peronosporomycetes. Mycologia, 92, 674–684.CrossRefGoogle Scholar
  20. Hudspeth, D. S. S., Stenger, D., & Hudspeth, M. E. S. (2003). A COX2 phylogenetic hypothesis of the downy mildews and white rusts. Fungal Diversity, 13, 47–57.Google Scholar
  21. Inuma, T., Khodaparast, S. A., & Takamatsu, S. (2007). Multilocus phylogenetic analyses within Blumeria graminis, a powdery mildew fungus of cereals. Molecular Phylogenetics and Evolution, 44, 741–751.PubMedCrossRefGoogle Scholar
  22. Kemler, M., Göker, M., Oberwinkler, F., & Begerow, D. (2006). Implications of molecular characters for the phylogeny of the Microbotryaceae (Basidiomycota: Urediniomycetes). BMC Evolutionary Biology, 6, 35.PubMedCrossRefGoogle Scholar
  23. Kluge, A. G., & Farris, J. S. (1969). Quantitative phyletics and the evolution of anurans. Systematic Zoology, 30, 1–32.CrossRefGoogle Scholar
  24. Kranz, J. (1965). A list of plant pathogenic and other fungi of Cyrenaica (Libya). Phytopathology Papers, 6, 1–24.Google Scholar
  25. Lee, S. B., & Taylor, J. W. (1990). Isolation of DNA from fungal mycelia and single spores. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols: a guide to methods and applications (pp. 282–287). San Diego: Academic.Google Scholar
  26. Matsuda, S., & Takamatsu, S. (2003). Evolution of host-parasite relationship of Golovinomyces (Ascomycetes: Erysiphales) inferred from nuclear rDNA sequences. Molecular Phylogenetics and Evolution, 27, 314–327.PubMedCrossRefGoogle Scholar
  27. Morgan, W., & Kamoun, S. (2007). RXLR effectors of plant pathogenic Oomycetes. Current Opinion in Microbiology, 10, 332–338.PubMedCrossRefGoogle Scholar
  28. Page, R. D. M. (1996). TREEVIEW: an application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences, 12, 357–358.PubMedGoogle Scholar
  29. Parisi, S. (1926) [“1925”]. Di un Cystopus, dell Onobrychis Cristata-galli Lam. di Cirenaica. Bullettino dell’Orto Botanico della Regia Universitá di Napoli, 8, 217–221.Google Scholar
  30. Ploch, S., Choi, Y. J., Rost, C., Shin, H. D., Schilling, E., & Thines, M. (2010). Evolution of diversity in Albugo is driven by high host specificity and multiple speciation events on closely related Brassicaceae. Molecular Phylogenetics and Evolution, 57, 812–820.PubMedCrossRefGoogle Scholar
  31. Riethmüller, A., Voglmayr, H., Göker, M., Weiß, M., & Oberwinkler, F. (2002). Phylogenetic relationships of the downy mildews (Peronosporales) and related groups based on nuclear large subunit ribosomal DNA sequences. Mycologia, 94, 834–849.PubMedCrossRefGoogle Scholar
  32. Runge, F., Choi, Y.-J., & Thines, M. (2011). Host matrix has major impact on the morphology of Pseudoperonospora cubensis. European Journal of Plant Pathology, 129, 147–156.CrossRefGoogle Scholar
  33. Savile, D. B. O. (1979). Fungi as aids in higher plant classification. Botanical Review, 45, 377–503.CrossRefGoogle Scholar
  34. Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22, 2688–2690.PubMedCrossRefGoogle Scholar
  35. Swofford, D. L. (2002). PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods). Sunderland: Sinauer.Google Scholar
  36. Thines, M., Cano, L., & Kamoun, S. (2009a). Effector evolution in the Hyaloperonospora arabidopsidis species complex. Fungal Genetics Reports, 56(Supplement), 243.Google Scholar
  37. Thines, M., Choi, Y. J., Kemen, E., Ploch, S., Holub, E. B., Shin, H. D., et al. (2009b). A new species of Albugo parasitic to Arabidopsis thaliana reveals new evolutionary patterns in white blister rusts (Albuginaceae). Persoonia, 22, 123–128.PubMedGoogle Scholar
  38. Thines, M., Göker, M., Telle, S., Ryley, M., Mathur, K., Narayana, Y. D., et al. (2008). Phylogenetic relationships of graminicolous downy mildews based on cox2 sequence data. Mycological Research, 112, 345–351.PubMedCrossRefGoogle Scholar
  39. Thines, M., & Kamoun, S. (2010). Oomycete-plant coevolution: recent advances and future prospects. Current Opinion in Plant Biology, 13, 427–433.PubMedCrossRefGoogle Scholar
  40. Thines, M., & Spring, O. (2005). A revision of Albugo (Chromista, Peronosporomycetes). Mycotaxon, 92, 443–458.Google Scholar
  41. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 24, 4876–4882.CrossRefGoogle Scholar
  42. van der Merwe, M. M., Walker, J., Ericson, L., & Burdon, J. J. (2008). Coevolution with higher taxonomic host groups within the Puccinia/Uromyces rust lineage obscured by host jumps. Mycological Progress, 112, 1387–1408.Google Scholar
  43. Voglmayr, H., Piątek, M., & Mossebo, D. C. (2009). Pseudoperonospora cubensis causing downy mildew disease on Impatiens irvingii in Cameroon: a new host for the pathogen. Plant Pathology, 58, 394.CrossRefGoogle Scholar
  44. Voglmayr, H., & Riethmüller, A. (2006). Phylogenetic relationships of Albugo species (white blister rusts) based on LSU rDNA sequence and oospore data. Mycological Research, 110, 75–85.PubMedCrossRefGoogle Scholar
  45. Walker, J., & Priest, M. J. (2007). A new species of Albugo on Pterostylis (Orchidaceae) from Australia: confirmation of the genus Albugo on a monocotyledonous host. Australasian Plant Pathology, 36, 181–185.CrossRefGoogle Scholar
  46. White, T. J., Bruns, T., Lee, S., & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols: a guide to methods and applications (pp. 315–322). San Diego: Academic.Google Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2011

Authors and Affiliations

  • Young-Joon Choi
    • 1
    • 2
  • Marco Thines
    • 3
    • 4
  • Hyeon-Dong Shin
    • 1
  1. 1.Division of Environmental Science and Ecological EngineeringKorea UniversitySeoulSouth Korea
  2. 2.Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeUSA
  3. 3.Biodiversity and Climate Research Centre (BiK-F)FrankfurtGermany
  4. 4.Institute of Ecology, Evolution and Diversity, Department of Biological SciencesJohann Wolfgang Goethe UniversityFrankfurtGermany

Personalised recommendations