Organisms Diversity & Evolution

, Volume 11, Issue 2, pp 135–150 | Cite as

Hypotheses on rostral shield evolution in fossorial lizards derived from the phylogenetic position of a new species of Paracontias (Squamata, Scincidae)

  • Aurélien Miralles
  • Jörn Köhler
  • David R. Vieites
  • Frank Glaw
  • Miguel Vences
Original Article

Abstract

In squamate reptiles the rostral shield constitutes one of the most advanced cases of reduction in the number of scales in the rostral region, an evolutionary trend clearly associated with a burrowing lifestyle. This structure is characterized by the fusion of the rostral scale with all adjacent scales into a large, smooth and conical plate covering the snout, totally encompassing the nostrils, with a horizontal groove running posteriorly from either nostril. In lizards this structure evolved several times independently, in various lineages of limbless skinks and in the family Dibamidae. We performed a multilocus phylogenetic analysis of combined mitochondrial and nuclear DNA sequences from the fossorial genus Paracontias, including P. vermisaurus, a new species described herein under an integrative taxonomic approach. The resulting phylogeny supports monophyly of Paracontias, with the following internal topology: [P. kankana (P. vermisaurus sp. n. (((P. minimus + P. brocchii) (P. manify + P. hildebrandti)) (P. rothschildi + P. fasika)))]. The molecular data, coupled with a comparative morphological study, allows us to investigate the evolution of the snout scales into a single large rostral shield in Paracontias. We discuss the evolutionary processes through which the rostral shield may have originated (e.g. fusion of scales, number and order of steps involved), and conclude that intuitive and apparently obvious hypotheses for scale homologies based on position and size only (as usually formulated in squamate taxonomy) may be highly misleading, even in closely related species. We develop the hypothesis that the rostral shield may provide several functional advantages for fossorial species in facilitating burrowing and protecting the head from strong physical stress, e.g. smoother surface reducing friction between the tegument and the substrate, reduction in the number of flexible sutures resulting in strengthened tegument, and the rostral tip likely playing a role as a shock-absorbing buffer.

Keywords

Burrowing lifestyle Scincidae Paracontias vermisaurus sp. n. Madagascar Scalation Molecular phylogeny 

References

  1. Andreone, F., & Greer, A. E. (2002). Malagasy scincid lizards: Descriptions of nine new species, with notes on the morphology, reproduction and taxonomy of some previously described species (Reptilia, Squamata: Scincidae). Journal of Zoology, London, 258, 139–181.CrossRefGoogle Scholar
  2. Angel, F. (1942). Les lézards de Madagascar. Mémoires de l’Académie Malgache, 39, 1–139.Google Scholar
  3. Ávila-Pires, T. C. S. (1995). Lizards of Brazilian Amazonia (Reptilia: Squamata). Zoologische Verhandelingen, Leiden, 299, 1–706.Google Scholar
  4. Brandley, M. C., Huelsenbeck, J. P., & Wiens, J. J. (2008). Rates and patterns in the evolution of snake-like body form in squamate reptiles: Evidence for repeated re-evolution of lost digits and long-term persistence of intermediate body forms. Evolution, 62, 2042–2064.PubMedCrossRefGoogle Scholar
  5. Broadley, D. G. (2006). A new species of Typhlacontias (Reptilia: Scincidae: Feylininae) from West Tanzania. Proceedings of the California Academy of Sciences, 57, 557–560.Google Scholar
  6. Broadley, D. G., & Wallach, V. (2009). A review of the eastern and southern African blind-snakes (Serpentes: Typhlopidae), excluding Letheobia Cope, with the description of two new genera and a new species. Zootaxa, 2255, 1–100.Google Scholar
  7. Bruford, M. W., Hanotte, O., Brookfield, J. F. Y., & Burke, T. (1992). Single-locus and multilocus DNA fingerprint. In A. R. Hoelzel (Ed.), Molecular genetic analysis of populations: A practical approach (pp. 225–269). Oxford: IRL Press.Google Scholar
  8. Brygoo, E. R. (1980). Systématique des lézards scincidés de la région malgache. III. Les «Acontias» de Madagascar: Pseudoacontias Barboza du Bocage, 1889, Paracontias Mocquard, 1894, Pseudacontias Hewitt, 1929, et Malacontias Greer, 1970. IV. Amphiglossus reticulatus (Kaudern, 1922) nov. comb., troisième espèce du genre; ses rapports avec Amphiglossus waterloti (Angel, 1920). Bulletin du Muséum National d’Histoire Naturelle, Section A Zoologie, Biologie et Ecologie Animale, 2(3), 905–918Google Scholar
  9. Chippaux, J. P. (2001). Les serpents d’Afrique occidentale et centrale. Paris: Institut de Recherche pour le Développement, Collection faune et flore tropicalesGoogle Scholar
  10. Crottini, A., Dordel, J., Köhler, J., Glaw, F., Schmitz, A., & Vences, M. (2009). A multilocus phylogeny of Malagasy scincid lizards elucidates the relationships of the fossorial genera Androngo and Cryptoscincus. Molecular Phylogenetics and Evolution, 53, 345–350.PubMedCrossRefGoogle Scholar
  11. Daniels, S. R., Heideman, N. J. L., Hendricks, M. G., & Crandall, K. A. (2006). Taxonomic subdivisions within fossorial skink subfamily Acontinae (Squamata: Scincidae) reconsidered: A multilocus perspective. Zoologica Scripta, 35, 353–362.CrossRefGoogle Scholar
  12. Das, I., & Lim, K. K. P. (2003). Two new species of Dibamus (Squamata: Dibamidae) from Borneo. The Raffles Bulletin of Zoology, 51, 137–141.Google Scholar
  13. Dayrat, B. (2005). Toward integrative taxonomy. Biological Journal of the Linnean Society, 85, 407–415.CrossRefGoogle Scholar
  14. Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39, 783–791.CrossRefGoogle Scholar
  15. Fitzsimons, V. F. (1943). The lizards of South Africa. Transvaal Museum Memoirs, Pretoria, 1, 1–528.Google Scholar
  16. Gans, C. (1974). Biomechanics: An approach to vertebrate biology. Philadelphia: Lippincott Co.Google Scholar
  17. Gans, C. (1975). Tetrapod limblessness: Evolution and functional corollaries. American Zoologist, 15, 455–467.Google Scholar
  18. Glaw, F., & Vences, M. (2007). A field guide to the amphibians and reptiles of Madagascar (3rd ed.). Cologne: Vences und Glaw Verlag.Google Scholar
  19. Greer, A. E. (2002). The loss of the external ear opening in scincid lizards. Journal of Herpetology, 36, 544–555.Google Scholar
  20. Greer, A. E., & Shea, G. (2000). A major new head scale character in non-lygosomine scincid lizards. Journal of Herpetology, 34, 631–636.Google Scholar
  21. Koch, A., Arida, E., McGuire, J. A., Iskandar, D. T., & Böhme, W. (2009). A new species of Calamaria (Squamata: Colubridae) similar to C. ceramensis de Rooij, 1913, from the Banggai Islands, east of Sulawesi, Indonesia. Zootaxa, 2196, 19–30.Google Scholar
  22. Köhler, J., Vences, M., Erbacher, M., & Glaw, F. (2010). Systematics of limbless scincid lizards from northern Madagascar: Morphology, phylogenetic relationships and implications for classification (Squamata: Scincidae). Organisms Diversity & Evolution, 10, 147–159.CrossRefGoogle Scholar
  23. Köhler, J., Vieites, D. R., Glaw, F., Kaffenberger, N., & Vences, M. (2009). A further new species of limbless skink, genus Paracontias, from eastern Madagascar. African Journal of Herpetology, 58, 98–105.CrossRefGoogle Scholar
  24. Kohlsdorf, T., & Wagner, G. P. (2006). Evidence for the reversibility of digit loss: A phylogenetic study of limb evolution in Bachia (Gymnophthalmidae: Squamata). Evolution, 60, 1896–1912.PubMedGoogle Scholar
  25. Lee, M. S. Y. (1998). Convergent evolution and character correlation in burrowing reptiles: Towards a resolution of squamate relationships. Biological Journal of the Linnean Society, London, 65, 369–453.CrossRefGoogle Scholar
  26. Malia, M. J., Jr., Lipscomb, D. L., & Allard, M. W. (2003). The misleading effects of composite taxa in supermatrices. Molecular Phylogenetics and Evolution, 27, 522–527.PubMedCrossRefGoogle Scholar
  27. Marx, H., & Rabb, G. B. (1970). Character analysis: An empirical approach applied to advanced snakes. Journal of Zoology, London, 161, 525–548.CrossRefGoogle Scholar
  28. Measey, G. J., & Herrel, A. (2006). Rotational feeding in caecilians: Putting a spin on the evolution of cranial design. Biological Letters, 2, 485–487.CrossRefGoogle Scholar
  29. Miralles, A. (2001). L’évolution des plaques supra-céphaliques chez les serpents colubroïdes. Dissertation. Paris: DEA de Systématique Animale et Végétale, Muséum national d’Histoire NaturelleGoogle Scholar
  30. Miralles, A. (2006). A new species of Mabuya (Reptilia, Squamata, Scincidae) from the isolated Caribbean island of San Andrés, with a new interpretation of nuchal scales, character of systematic importance. Herpetological Journal, 16, 1–7.Google Scholar
  31. Mott, T., & Vieites, D. R. (2009). Molecular phylogenetics reveals extreme morphological homoplasy in Brazilian worm lizards challenging current taxonomy. Molecular Phylogenetics and Evolution, 51, 190–200.PubMedCrossRefGoogle Scholar
  32. Padial, J. M., Miralles, A., De la Riva, I., & Vences, M. (2010). The integrative future of taxonomy. Frontiers in Zoology, 7, 16. doi:10.1186/1742-9994-7-16.PubMedCrossRefGoogle Scholar
  33. Pianka, E. R., & Vitt, L. J. (2003). Lizards: Windows to the evolution of diversity. Berkeley: University of California Press.Google Scholar
  34. de Queiroz, K. (1998). The general lineage concept of species, species criteria, and the process of speciation: A conceptual unification and terminological recommendations. In D. J. Howard & S. H. Berlocher (Eds.), Endless forms: Species and speciation (pp. 57–75). New York: Oxford University Press.Google Scholar
  35. de Queiroz, K. (2007). Species concepts and species delimitation. Systematic Biology, 56, 879–886.PubMedCrossRefGoogle Scholar
  36. Rieppel, O. (1984). The cranial morphology of the fossorial lizard genus Dibamus with a consideration of its phylogenetic relationships. Journal of Zoology, 204, 289–327.CrossRefGoogle Scholar
  37. Rieppel, O., Kley, N. J., & Maisano, J. A. (2009). Morphology of the skull of the white-nosed blindsnake, Liotyphlops albirostris (Scolecophidia: Anomalepididae). Journal of Morphology, 270, 536–557.PubMedCrossRefGoogle Scholar
  38. Rieppel, O., & Maisano, J. A. (2007). The skull of the rare Malaysian snake Anomochilus leonardi Smith, based on high-resolution X-ray computed tomography. Zoological Journal of the Linnean Society, 149, 671–685.CrossRefGoogle Scholar
  39. Ronquist, F., & Huelsenbeck, J. P. (2003). MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574.PubMedCrossRefGoogle Scholar
  40. Sakata, S., & Hikida, T. (2003). A fossorial lizard with forelimbs only: Description of a new genus and species of Malagasy skink (Reptilia: Squamata: Scincidae). Current Herpetology, 22, 9–15.Google Scholar
  41. Savitzky, A. H. (1983). Coadapted character complexes among snakes: Fossoriality, piscivory, and durophagy. American Zoologist, 23, 397–409.Google Scholar
  42. Schmitz, A., Brandley, M. C., Mausfeld, P., Vences, M., Glaw, F., Nussbaum, R. A., et al. (2005). Opening the black box: Phylogenetics and morphological evolution of the Malagasy fossorial lizards of the subfamily “Scincinae”. Molecular Phylogenetics and Evolution, 34, 118–133.PubMedCrossRefGoogle Scholar
  43. Shapiro, M. D. (2002). Developmental morphology of limb reduction in Hemiergis (Squamata: Scincidae): Chondrogenesis, osteogenesis, and heterochrony. Journal of Morphology, 254, 211–231.PubMedCrossRefGoogle Scholar
  44. Skinner, A., Lee, S. Y. M., & Hutchinson, M. N. (2008). Rapid and repeated limb loss in a clade of scincid lizards. BMC Evolutionary Biology, 8, 310.PubMedCrossRefGoogle Scholar
  45. Smith, M. A. (1935). The fauna of British India, including Ceylon and Burma: Reptilia and Amphibia, vol. 2—Sauria. London: Taylor and Francis.Google Scholar
  46. Somaweera, R., & Somaweera, N. (2009). Lizards of Sri Lanka, a colour guide with field keys. Frankfurt am Main: Edition Chimaira.Google Scholar
  47. Swofford, D. L. (2002). PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4.0.b10. Sunderland: Sinauer Associates.Google Scholar
  48. Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution. doi:10.1093/molbev/msm092.PubMedGoogle Scholar
  49. Whiting, A. S., Bauer, A. M., & Sites, J. W., Jr. (2003). Phylogenetic relationships and limb loss in sub-Saharan African scincine lizards (Squamata: Scincidae). Molecular Phylogenetics and Evolution, 29, 582–598.PubMedCrossRefGoogle Scholar
  50. Whiting, A. S., Sites, J. W., Jr., & Bauer, A. M. (2004). Molecular phylogenetics of Malagasy skinks (Squamata: Scincidae). African Journal of Herpetology, 53, 135–146.CrossRefGoogle Scholar
  51. Wiens, J. J., Brandley, M. C., & Reeder, T. W. (2006). Why does a trait evolve multiple times within a clade? Repeated evolution of snakelike body form in squamate reptiles. Evolution, 60, 123–141.PubMedGoogle Scholar
  52. Wiens, J. J., & Slingluff, J. L. (2001). How lizards turn into snakes: A phylogenetic analysis of body-form evolution in anguid lizards. Evolution, 55, 2303–2318.PubMedGoogle Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2011

Authors and Affiliations

  • Aurélien Miralles
    • 1
  • Jörn Köhler
    • 2
  • David R. Vieites
    • 3
  • Frank Glaw
    • 4
  • Miguel Vences
    • 1
  1. 1.Division of Evolutionary Biology, Zoological InstituteTechnical University of BraunschweigBraunschweigGermany
  2. 2.Hessisches Landesmuseum DarmstadtDarmstadtGermany
  3. 3.Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
  4. 4.Zoologische Staatssammlung MünchenMünchenGermany

Personalised recommendations