Organisms Diversity & Evolution

, Volume 10, Issue 5, pp 409–440 | Cite as

Phylogeny, molecular ecology and taxonomy of southern Iberian lineages of Triops mauritanicus (Crustacea: Notostraca)

  • Michael Korn
  • Andy J. Green
  • Margarida Machado
  • Juan García-de-Lomas
  • Margarida Cristo
  • Luís Cancela da Fonseca
  • Dagmar Frisch
  • José L. Pérez-Bote
  • Anna K. Hundsdoerfer
Original Article


We investigated the phylogeography of the main lineages in the tadpole shrimp Triops mauritanicus Ghigi in the south-western Iberian Peninsula, using mitochondrial 12S and 16S rDNA sequences. Our results indicate that a fourth, hitherto unknown main phylogenetic lineage occurs in Iberia, so that in total, the species is divided into six distinct clades, comprising T. m. mauritanicus, T. m. simplex Ghigi, and four as yet unnamed lineages that appear to be endemic to Iberia. Percentages of sequence divergence among the main clades in T. mauritanicus reach the range reported for recognized species in other notostracan lineages. A thorough morphological investigation also revealed that the differentiation among these lineages is higher than previously thought, and that populations of three of the main clades within T. mauritanicus can be reliably separated from each other and from the remaining lineages based on the morphology of adult males. The remaining clades also show a significant level of morphological differentiation, but include a certain proportion of populations for which the additional application of molecular methods is needed for a reliable determination. The geographic distributions of 12S haplotypes are indicative of frequent dispersal events and gene flow among populations belonging to the same main lineage, but give no evidence of recent migration events among different main lineages, suggesting that there is no gene flow among the latter. Our data thus suggest that the six main lineages within T. mauritanicus represent distinct species. We therefore describe the Iberian lineages as T. baeticus Korn n. sp., T. emeritensis Korn & Pérez-Bote n. sp., T. gadensis Korn & García-de-Lomas n. sp., and T. vicentinus Korn, Machado, Cristo & Cancela da Fonseca n. sp., and reinstate T. simplex Ghigi to full species status. Our data confirm the general, previously recognized pattern of a lower dispersal probability in gonochoric Triops taxa. However, we found evidence that passive dispersal in Triops may be further complicated by a strong habitat dependence of dispersal probability, mediated by prevailing dispersal vectors.


Phylogeography Gene diversity Passive dispersal Dispersal probability Gene flow Waterbird 



We are very grateful to Miguel Alonso (Barcelona), Federico Marrone (Palermo), Yasar Al-Khalili (Pest Management Consultants, Dubai) and Ernst-Gerhard Burmeister (München) for providing samples for this investigation, to Hugues Lefranc (Sevilla) for his help in taking samples, and to David Paz and Hector Garrido (Sevilla) for assistance in the field. We are greatly indebted to Christian Kehlmaier and Anke Müller (Dresden) for their dedicated engagement in the sequencing work. Katja Frohberg (Dresden) further contributed to the sequencing work in this study. We are grateful to two anonymous reviewers, as well as to Olaf R.P. Bininda-Emonds (Chief Editor) and Martin V. Sørensen (Associate Editor) for their most helpful suggestions that greatly improved the manuscript. We would further like to thank Ian J. Kitching (London) for advice on the taxonomy section.

Supplementary material

13127_2010_26_MOESM1_ESM.xls (128 kb)
Table 1 (XLS 128 kb)


  1. Alonso, M. (1985). A survey of the Spanish euphyllopoda. Miscel·lània Zoològica, 9, 179–208.Google Scholar
  2. Ballard, J. W., Olsen, G. J., Faith, D. P., Odgers, W. A., Rowell, D. M., & Atkinson, P. W. (1992). Evidence from 12S ribosomal RNA sequences that onychophorans are modified arthropods. Science, 258, 1345–1348.CrossRefPubMedGoogle Scholar
  3. Barnard, K. H. (1929). A revision of the South African branchiopoda phyllopoda. Annals. South African Museum, 29, 181–272.Google Scholar
  4. Bohonak, A. J., & Jenkins, D. G. (2003). Ecological and evolutionary significance of dispersal by freshwater invertebrates. Ecological Letters, 6, 783–796.CrossRefGoogle Scholar
  5. Cancela da Fonseca, L., Cristo, M., Machado, M., Sala, J., Reis, J., Alcazar, R., et al. (2008). Mediterranean temporary ponds in southern Portugal: key faunal groups as management tools? Pan-American Journal of Aquatic Sciences, 3, 304–320.Google Scholar
  6. Colbourne, J. K., Wilson, C. C., & Hebert, P. D. N. (2006). The systematics of Australian Daphnia and Daphniopsis (Crustacea: Cladocera): a shared phylogenetic history transformed by habitat-specific rates of evolution. Biological Journal of the Linnean Society, 89, 469–488.CrossRefGoogle Scholar
  7. De Meester, L., Gómez, A., Okamura, B., & Schwenk, K. (2002). The monopolization hypothesis and the dispersal-gene flow paradox in aquatic organisms. Acta Oecologica, 23, 121–135.CrossRefGoogle Scholar
  8. Eriksson, J., Hohmann, G., Boesch, C., & Vigilant, L. (2004). Rivers influence the population genetic structure of bonobos (Pan paniscus). Molecular Ecology, 13, 3425–3435.CrossRefPubMedGoogle Scholar
  9. Fletcher, W. J., Boski, T., & Moura, D. (2007). Palynological evidence for environmental and climatic change in the lower Guadiana valley, Portugal, during the last 13 000 years. Holocene, 17, 481–494.CrossRefGoogle Scholar
  10. Fletcher, W. J., & Sánchez Goñi, M. F. (2008). Orbital- and sub-orbital-scale climate impacts on vegetation of the western Mediterranean basin over the last 48,000 yr. Quaternary Research, 70, 451–464.CrossRefGoogle Scholar
  11. Fortelius, M. [coord.] (2003). Neogene of the Old World database of fossil mammals (NOW). University of Helsinki. Accessed 10 September 2009.
  12. Frantz, A. C., Pope, L. C., Etherington, T. R., Wilson, G. J., & Burke, T. (2010). Using isolation-by-distance-based approaches to assess the barrier effect of linear landscape elements on badger (Meles meles) dispersal. Molecular Ecology, 19, 1663–1674.CrossRefPubMedGoogle Scholar
  13. Frisch, D., Green, A. J., & Figuerola, J. (2007). High dispersal capacity of a broad spectrum of aquatic invertebrates via waterbirds. Aquatic Science, 69, 568–574.CrossRefGoogle Scholar
  14. Fryer, G. (1988). Studies on the functional morphology and biology of the Notostraca (Crustacea: Branchiopoda). Philosophical Transactions of the Royal Society of London, Series B, 321, 27–124.CrossRefGoogle Scholar
  15. Ghigi, A. (1921). Ricerche sui Notostraci di Cirenaica e di altri paesi del Mediterraneo. Atti della Società Italiana di Scienze Naturali, 60, 161–188.Google Scholar
  16. Granados Corona, M., Martin Vicente, A., & García Novo, F. (1988). Long-term vegetation changes on the stabilized dunes of Doñana National Park (SW Spain). Vegetatio, 75, 73–80.CrossRefGoogle Scholar
  17. Green, A. J., & Figuerola, J. (2005). Recent advances in the study of long-distance dispersal of aquatic invertebrates via birds. Diversity and Distributions, 11, 149–156.CrossRefGoogle Scholar
  18. Green, A. J., Jenkins, K. M., Bell, D., Morris, P. J., & Kingsford, R. T. (2008). The potential role of waterbirds in dispersing invertebrates and plants in arid Australia. Freshwater Biology, 53, 380–392.Google Scholar
  19. Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.Google Scholar
  20. Hamer, M., & Rayner, N. A. (1995). A note on the taxonomy and distribution of Triops Schrank (Crustacea: Branchiopoda: Notostraca) in southern Africa. Annals of the Natal Museum, 36, 9–19.Google Scholar
  21. Hartnoll, R. G. (1978). The determination of relative growth in Crustacea. Crustaceana, 34, 281–293.CrossRefGoogle Scholar
  22. Hawes, T. C. (2009). Origins and dispersal of the Antarctic fairy shrimp. Antarctic Science, 21, 477–482.CrossRefGoogle Scholar
  23. Huelsenbeck, J. P., & Ronquist, F. (2001). MRBAYES: bayesian inference of phylogeny. Bioinformatics, 17, 754–755.CrossRefPubMedGoogle Scholar
  24. Ishida, S., & Taylor, D. J. (2007). Mature habitats associated with genetic divergence despite strong dispersal ability in an arthropod. BMC Evolutionary Biology, 7, 52.CrossRefPubMedGoogle Scholar
  25. Kazantzidis, S., & Goutner, V. (2005). The diet of nestlings of three Ardeidae species (Aves, Ciconiiformes) in the Axios Delta, Greece. Belgian Journal of Zoology, 135, 165–170.Google Scholar
  26. Korn, M., & Hundsdoerfer, A. K. (2006). Evidence for cryptic species in the tadpole shrimp Triops granarius (Lucas, 1864) (Crustacea: Notostraca). Zootaxa, 1257, 57–68.Google Scholar
  27. Korn, M., Marrone, F., Pérez-Bote, J. L., Machado, M., Cristo, M., Cancela da Fonseca, L., et al. (2006). Sister species within the Triops cancriformis lineage (Crustacea, Notostraca). Zoologica Scripta, 35, 301–322.CrossRefGoogle Scholar
  28. Krapu, G. L., & Swanson, G. A. (1977). Foods of juvenile, brood hen, and post-breeding pintails in North Dakota. The Condor, 79, 504–507.CrossRefGoogle Scholar
  29. Kumar, S., Tamura, K., Jakobsen, I. B., & Nei, M. (2001). MEGA2—molecular evolutionary genetics analysis. Tempe: Arizona State University.Google Scholar
  30. Kurtén, B. (1968). Pleistocene mammals of Europe. [Reprint 2008]. New Brunswick: Aldine Transaction.Google Scholar
  31. Lance, R. F., Kennedy, M. L., & Leberg, P. (2000). Classification bias in discriminant function analyses used to evaluate putatively different taxa. Journal of Mammalogy, 81, 245–249.CrossRefGoogle Scholar
  32. Linder, F. (1952). Contributions to the morphology and taxonomy of the Branchiopoda Notostraca, with special reference to the North American species. Proceedings of the United States National Museum, 102, 1–69.Google Scholar
  33. Lo, P. L. (1991). Diet of the White-faced Heron on Manawatu pastures. Notornis, 38, 63–71.Google Scholar
  34. Longhurst, A. R. (1955). A review of the Notostraca. Bulletin of the British Museum (Natural History). Zoology, 3, 1–57.Google Scholar
  35. Lynch, J. E. (1972). Lepidurus couesii Packard (Notostraca) redescribed with a discussion of specific characters in the genus. Crustaceana, 23, 43–49.CrossRefGoogle Scholar
  36. Mantovani, B., Cesari, M., & Scanabissi, F. (2004). Molecular taxonomy and phylogeny of the ´living fossil´ lineages Triops and Lepidurus (Branchiopoda: Notostraca). Zoologica Scripta, 33, 367–374.CrossRefGoogle Scholar
  37. Mokany, A., Wood, J. T., & Cunningham, S. A. (2008). Effect of shade and shading history on species abundances and ecosystem processes in temporary ponds. Freshwater Biology, 53, 1917–1928.CrossRefGoogle Scholar
  38. Montes, C., Borja, F., Bravo, M. A., & Moreira, J. M. [Coords.]. (1998). Reconocimiento biofísico de espacios naturales protegidos. Doñana: una aproximación ecosistémica. Sevilla: Junta de Andalucía.Google Scholar
  39. Moorhead, D. L., Hall, D. L., & Willig, M. R. (1998). Succession of macroinvertebrates in playas of the Southern High Plains, USA. Journal of the North American Benthological Society, 17, 430–442.CrossRefGoogle Scholar
  40. Nei, M. (1987). Molecular evolutionary genetics. New York: Columbia University Press.Google Scholar
  41. Pérez-Bote, J. L., Muñoz, A., García, J. M., Rodríguez, S. P., Romero, A. J., Corbacho, P., et al. (2006). Distribución, estatus y conservación de los grandes branchiópodos (Crustacea, Branchiopoda) en Extremadura (SO de la Península Ibérica). Boletín de la Asociación Española de Entomología, 30, 41–57.Google Scholar
  42. Pérez-Hurtado, A., Hortas, F., Ruiz, J., & Solís, F. (1993). Importancia de la Bahía de Cádiz para las poblaciones de limícolas invernantes e influencia de las transformaciones humanas. Ardeola, 40, 133–142.Google Scholar
  43. Posada, D., & Crandall, K. A. (1998). Modeltest: testing the model of DNA substitution. Bioinformatics, 14, 817–818.CrossRefPubMedGoogle Scholar
  44. Proctor, V. W. (1964). Viability of crustacean eggs recovered from ducks. Ecology, 45, 656–658.CrossRefGoogle Scholar
  45. Quinn, G. P., & Keough, M. J. (2003). Experimental design and data analysis for biologists. Reprint with corrections. Cambridge: Cambridge University Press.Google Scholar
  46. Raes, J., & Van de Peer, Y. (1998). ForCon 1.0 for windows. Antwerp: University of Antwerp.Google Scholar
  47. Rendón, M. A., Green, A. J., Aguilera, E., & Almaraz, P. (2008). Status, distribution and long-term changes in the waterbird community wintering in Doñana, south-west Spain. Biological Conservation, 141, 1371–1388.CrossRefGoogle Scholar
  48. Rogers, D. C. (2001). Revision of the Nearctic Lepidurus (Notostraca). Journal of Crustacean Biology, 21, 991–1006.CrossRefGoogle Scholar
  49. Sánchez, M. I., Green, A. J., Amat, F., & Castellanos, E. M. (2007). Transport of brine shrimps via the digestive system of migratory waders: dispersal probabilities depend on diet and season. Marine Biology, 151, 1407–1415.CrossRefGoogle Scholar
  50. Sassaman, C., Simovich, M. A., & Fugate, M. (1997). Reproductive isolation and genetic differentiation in North American species of Triops (Crustacea: Branchiopoda: Notostraca). Hydrobiologia, 359, 125–147.CrossRefGoogle Scholar
  51. Schneider, S., Roessli, D., & Excoffier, L. (2000). Arlequin, version 2.000. A software for population genetics data analysis. Geneva: University of Geneva, Genetics & Biometry Laboratory.Google Scholar
  52. Schram, F. R., & Koenemann, S. (2004). Developmental genetics and arthropod evolution: On body regions of Crustacea. In G. Scholtz (Ed.), Evolutionary developmental biology of Crustacea, Crustacean Issues, 15 (pp. 75–92). Lisse: Balkema.Google Scholar
  53. Serrano, L., Reina, M., Martín, G., Reyes, I., Arechederra, A., León, D., et al. (2006). The aquatic systems of Doñana (SW Spain): watersheds and frontiers. Limnetica, 25, 11–32.Google Scholar
  54. Stamatakis, A., Hoover, P., & Rougemont, J. (2008). A rapid bootstrap algorithm for the RAxML web-servers. Systems Biology, 75, 758–771.Google Scholar
  55. Suno-Uchi, N., Sasaki, F., Chiba, S., & Kawata, M. (1997). Morphological stasis and phylogenetic relationships in tadpole shrimps, Triops (Crustacea: Notostraca). Biological Journal of the Linnean Society, 61, 439–457.Google Scholar
  56. Swofford, D. L. (2003). PAUP*—phylogenetic analysis using parsimony (*and other methods). Version 4. Sunderland: Sinauer.Google Scholar
  57. Thiéry, A. (1987). Les crustacés branchiopodes Anostraca Notostraca & Conchostraca des milieux limniques temporaires (dayas) au Maroc. Taxonomie, biogéographie, écologie. Doctoral thesis. Marseille: Université Aix-Marseille III.Google Scholar
  58. Thompson, J. D. (2005). Plant evolution in the Mediterranean. New York: Oxford University Press.CrossRefGoogle Scholar
  59. Tourenq, C., Aulagnier, S., Durieux, L., Lek, S., Mesléard, F., Johnson, A., et al. (2001). Identifying rice fields at risk from damage by the Greater Flamingo. Journal of Applied Ecology, 38, 170–179.CrossRefGoogle Scholar
  60. Vanschoenwinkel, B., Waterkeyn, A., Vandecaetsbeek, T., Pineau, O., Grillas, P., & Brendonck, L. (2008). Dispersal of freshwater invertebrates by large terrestrial mammals: a case study with wild boar (Sus scrofa) in Mediterranean wetlands. Freshwater Biology, 53, 2264–2273.Google Scholar
  61. Vekhoff, N. V. (1993). The fauna and zoogeography of fairy and tadpole shrimps of Russia and adjacent lands (Crustacea Anostraca, Notostraca). Arthropoda Selecta, 2, 11–42.Google Scholar
  62. Xia, X., & Xie, Z. (2001). DAMBE: data analysis in molecular biology and evolution. The Journal of Heredity, 92, 371–373.CrossRefPubMedGoogle Scholar
  63. Zierold, T., Hanfling, B., & Gómez, A. (2007). Recent evolution of alternative reproductive modes in the ‘living fossil’ Triops cancriformis. BMC Evolutionary Biology, 7, 161.CrossRefPubMedGoogle Scholar
  64. Zwickl, D. J. (2006). Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the Maximum Likelihood criterion. PhD dissertation. Austin: University of Texas. [Genetic algorithm for rapid likelihood inference software available from].

Copyright information

© Gesellschaft für Biologische Systematik 2010

Authors and Affiliations

  • Michael Korn
    • 1
    • 2
  • Andy J. Green
    • 3
  • Margarida Machado
    • 4
    • 5
  • Juan García-de-Lomas
    • 6
  • Margarida Cristo
    • 4
    • 5
  • Luís Cancela da Fonseca
    • 5
    • 7
  • Dagmar Frisch
    • 3
  • José L. Pérez-Bote
    • 8
  • Anna K. Hundsdoerfer
    • 2
  1. 1.Limnological InstituteUniversity of KonstanzKonstanzGermany
  2. 2.Museum of ZoologySenckenberg Naturhistorische Sammlungen DresdenDresdenGermany
  3. 3.Wetland Ecology DepartmentDoñana Biological Station-CSICSevillaSpain
  4. 4.CCMarUniversidade do AlgarveFaroPortugal
  5. 5.FCTUniversidade do AlgarveFaroPortugal
  6. 6.Departamento de Biología (Área de Ecología), Facultad de Ciencias del Mar y Ambientales, Edif. CASEMUniversity of CádizPuerto RealSpain
  7. 7.Laboratório Marítimo da Guia/Centro de Oceanografia (FCUL)CascaisPortugal
  8. 8.Grupo de Investigación en Ecosistemas Acuáticos Continentales, Área de Zoología, Facultad de CienciasUniversidad de ExtremaduraBadajozSpain

Personalised recommendations