Skip to main content
Log in

A hands-on overview of tissue preservation methods for molecular genetic analyses

  • Methods and Applications
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

DNA studies have overwhelming importance in biological science. The aim of this paper is to present a compact and hands-on summary of widely available tissue preservation methods by listing dry, fluid/buffered and freezing techniques. Thereby, practical aspects, advantages and disadvantages, safety and feasibility issues of each method are discussed and compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, R. P., Zhong, M., & Fei, Y. (1999). Preservation of DNA in plant specimens—inactivation and reactivation of DNAses in field specimens. Molecular Ecology, 8, 681–683.

    CAS  Google Scholar 

  • Arctander, P. (1988). Comparative studies of avian DNA by restriction fragment length polymorphism analysis: convenient procedures based on blood samples from live birds. Journal of Ornithology, 129, 205–216.

    Google Scholar 

  • Armbruster, G. F. J., Koller, B., & Baur, B. (2005). Foot mucus and periostracum fraction as non-destructive source of DNA in the land snail Arianta arbustorum, and the development of new microsatellite loci. Conservation Genetics, 6, 313–316.

    Google Scholar 

  • Armitage, C. R., Hunger, R. M., Sherwood, J. L., & Weeks, D. L. (1989). Storage of wheat foliage prior to enzyme-linked immunosorbent assay for detection of wheat soil-borne mosaic virus. Journal of Phytopathology, 127, 116–122.

    Google Scholar 

  • Asahida, T., Kobayashi, T., Saitoh, K., & Nakayama, I. (1996). Tissue preservation and total DNA extraction from fish stored at ambient temperature using buffers containing high concentration of urea. Fisheries Science, 62, 727–730.

    Google Scholar 

  • Austin, A. D., & Dillon, N. (1997). Extraction and PCR of DNA from parasitoid wasps that have been chemically dried. Australian Journal of Entomology, 36, 241–244.

    Google Scholar 

  • Bahl, A., & Pfenninger, M. (1996). A rapid method for isolation of DNA using laundry detergent. Nucleic Acids Research, 24, 1587–1588.

    CAS  PubMed  Google Scholar 

  • Barrett, M. T., Glogovac, J., Porter, P., Reid, B. J., & Rabinovitch, P. S. (1999). High yields of RNA and DNA suitable for array analysis from cell sorter purified epthelial cell and tissue populations. Nature Genetics, 23, 32–33.

    Google Scholar 

  • Bosman, F. T., & Go, P. M. N. Y. H. (1981). Polyethylene glycol embedded tissue sections for immunoelectronmicroscopy. Histochemistry and Cell Biology, 73, 195–199.

    CAS  Google Scholar 

  • Brzuzan, P. (1997). A method of DNA isolation using a commercial washing powder. Polish Archives of Hydrobiology, 44, 385–387.

    CAS  Google Scholar 

  • Campanella, J. J., & Smalley, J. V. (2006). A minimally invasive method of piscine tissue collection and an analysis of long-term field-storage conditions for samples. BMC Genetics, 7, 32.

    PubMed  Google Scholar 

  • Chase, M. W., & Hills, H. G. (1991). Silica gel: an ideal material for field preservation of leaf samples for DNA studies. Taxon, 40, 215–220.

    Google Scholar 

  • Chirgwin, J. M., Przybyla, A. E., MacDonald, R. J., & Rutter, W. J. (1979). Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry, 18, 5294–5299.

    CAS  PubMed  Google Scholar 

  • Chissoe, W. F., Vezey, E. L., & Skvarla, J. J. (1994). Hexamethyldisilazane as a drying agent for pollen scanning electron microscopy. Biotechnic & Histochemistry, 69, 192–198.

    CAS  Google Scholar 

  • Chomczynski, P., & Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry, 162, 156–159.

    CAS  PubMed  Google Scholar 

  • Conrad, K. F., Robertson, R. J., & Boag, P. T. (2000). Difficulties storing and preserving tyrant flycatcher blood samples used for genetic analyses. The Condor, 102, 191–193.

    Google Scholar 

  • Dalén, L., Gotherstrom, A., Meijer, T., & Shapiro, B. (2007). Recovery of DNA from footprints in the snow. The Canadian Field-Naturalist, 121, 321–324.

    Google Scholar 

  • Dawson, M. N., Raskoff, K. A., & Jacobs, D. K. (1998). Field preservation of marine invertebrate tissue for DNA analyses. Molecular Marine Biology and Biotechnology, 7, 145–152.

    CAS  PubMed  Google Scholar 

  • Dean, M. D., & Ballard, J. W. O. (2001). Factors affecting mitochondrial DNA quality from museum preserved Drosophila simulans. Entomologia Experimentalis et Applicata, 98, 279–283.

    CAS  Google Scholar 

  • Dessauer, H. C., Cole, C. J., & Hafner, M. S. (1990). Collection and storage of tissues. In D. M. Hillis & C. Moritz (Eds.), Molecular systematics (pp. 25–41). Sunderland: Sinauer.

    Google Scholar 

  • Dessauer, H. C., Cole, C. J., & Hafner, M. S. (1996). Collection and storage of tissues. In D. M. Hillis & C. Moritz (Eds.), Molecular systematics (2nd ed., pp. 29–47). Sunderland: Sinauer.

    Google Scholar 

  • Dillon, N., Austin, A. D., & Bartowsky, E. (1996). Comparison of preservation techniques for DNA extraction from hymenopterous insects. Insect Molecular Biology, 5, 21–24.

    CAS  PubMed  Google Scholar 

  • Douglas, M. P., & Rogers, S. O. (1998). DNA damage caused by common cytological fixatives. Mutation Research / Fundamental and Molecular Mechanisms of Mutagenesis, 401, 77–88.

    CAS  Google Scholar 

  • Doyle, J. J., & Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19, 11–15.

    Google Scholar 

  • Flournoy, L. E., Adams, R. P., & Pandy, R. N. (1996). Interim and archival preservation of plant specimens in alcohols for DNA studies. BioTechniques, 20, 657–660.

    CAS  PubMed  Google Scholar 

  • Frantzen, M. A. J., Silk, J. B., Ferguson, J. W. H., Wayne, R. K., & Kohn, M. H. (1998). Empirical evaluation of preservation methods for faecal DNA. Molecular Ecology, 7, 1423–1428.

    CAS  PubMed  Google Scholar 

  • French, M. C., & Jefferies, D. J. (1971). The preservation of biological tissue for organochlorine insecticide analysis. Bulletin of Environmental Contamination and Toxicology, 6, 460–463.

    CAS  PubMed  Google Scholar 

  • Fukatsu, T. (1999). Acetone preservation: a practical technique for molecular analysis. Molecular Ecology, 8, 1935–1945.

    CAS  PubMed  Google Scholar 

  • Gilbert, M. T. P., Moore, W., Melchior, L., & Worobey, M. (2007). DNA extraction from dry museum beetles without conferring external morphological damage. Public Library of Science ONE, 2, e272.

    PubMed  Google Scholar 

  • Guthrie, R., & Susi, A. (1963). A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics, 32, 338–343.

    CAS  PubMed  Google Scholar 

  • Hamvas, A., Trusgnich, M., Brice, H., Baumgartner, J., Hong, Y. L., Nogee, L. M., et al. (2001). Population-based screening for rare mutations: high-throughput DNA extraction and molecular amplification from Guthrie cards. Pediatric Research, 50, 666–668.

    CAS  PubMed  Google Scholar 

  • Hanner, R., & Webster, B. (2002). Cryopreservation of whole flies, a technique for the preparation of genetic voucher specimens. Drosophila Information Service, 84, 185–186.

    Google Scholar 

  • Häussermann, V. (2004). Identification and taxonomy of soft-bodied hexacorals exemplified by Chilean sea anemones; including guidelines for sampling, preservation and examination. Journal of the Marine Biological Association of the United Kingdom, 84, 931–936.

    Google Scholar 

  • Heraty, J., & Hawks, D. (1998). Hexamethyldisilazane: a chemical alternative for drying insects. Entomological News, 109, 369–374.

    Google Scholar 

  • Hodkinson, T., Waldren, S., Parnell, J., Kelleher, C., Salamin, K., & Salamin, N. (2007). DNA banking for plant breeding, biotechnology and biodiversity evaluation. Journal of Plant Research, 120, 17–29.

    CAS  PubMed  Google Scholar 

  • Hunter, S. J., Goodall, T. I., Walsh, K. A., Owen, R., & Day, J. C. (2008). Nondestructive DNA extraction from blackflies (Diptera: Simuliidae): retaining voucher specimens for DNA barcoding projects. Molecular Ecology Resources, 8, 56–61.

    CAS  Google Scholar 

  • Isachenko, E., Isachenko, V., Nawroth, F., Rahimi, G., Kreienberg, R., Reinsberg, J., et al. (2008). Human ovarian tissue preservation: is vitrification acceptable method for assisted reproduction? Cryoletters, 29, 301–314.

    CAS  PubMed  Google Scholar 

  • ISBER = International Society for Biological and Environmental Repositories. (2008). 2008 Best practices for repositories—collection, storage, retrieval and distribution of biological materials for research. Cell Preservation Technology, 6, 1–56.

    Google Scholar 

  • Ito, K. (1992). Nearly complete loss of nucleic acids by commercially available highly purified ethanol. BioTechniques, 12, 69–70.

    CAS  PubMed  Google Scholar 

  • Jennings, T. A. (1999). Lyophilization: Introduction and basic principles. Boca Raton: CRC.

    Google Scholar 

  • Johanson, H. C., Hyland, V., Wicking, C., & Sturm, R. A. (2009). DNA elution from buccal cells stored on Whatman FTA Classic Cards using a modified methanol fixation method. BioTechniques, 46, 309–311.

    CAS  PubMed  Google Scholar 

  • Karlsson, J. O. M., & Toner, M. (1996). Long-term storage of tissues by cryopreservation: critical issues. Biomaterials, 17, 243–256.

    CAS  PubMed  Google Scholar 

  • Kilpatrick, C. W. (2002). Noncryogenic preservation of mammalian tissues for DNA extraction: an assessment of storage methods. Biochemical Genetics, 40, 53–62.

    CAS  PubMed  Google Scholar 

  • King, J. R., & Porter, S. D. (2004). Recommendations on the use of alcohols for preservation of ant specimens (Hymenoptera, Formicidae). Insectes Sociaux, 51, 197–202.

    Google Scholar 

  • Konomi, N., Lebwohl, E., & Zhang, D. (2002). Comparison of DNA and RNA extraction methods for mummified tissues. Molecular and Cellular Probes, 16, 445–451.

    CAS  PubMed  Google Scholar 

  • Krizman, M., Jakse, J., Baricevic, D., Javornik, B., & Prosek, M. (2006). Robust CTAB-activated charcoal protocol for plant DNA extraction. Acta Agriculturae Slovenica, 87, 427–433.

    CAS  Google Scholar 

  • Kuch, U., Pfenninger, M., & Bahl, A. (1999). Laundry detergent effectively preserves amphibian and reptile blood and tissues for DNA isolation. Herpetological Review, 30, 80–82.

    Google Scholar 

  • Lansman, R. A., Shade, R. O., Shapira, J. F., & Avise, J. C. (1981). The use of restriction endonucleases to measure mitochondrial DNA sequence relatedness in natural populations, III: techniques and potential applications. Journal of Molecular Evolution, 17, 214–226.

    CAS  PubMed  Google Scholar 

  • Liston, A., Rieseberg, L. D., Adams, R. P., Do, M., & Zhu, G. (1990). A method for collecting dried plant specimens for DNA and isozyme analyses and the results of a field test in Xinjiang, China. Annals of the Missouri Botanical Garden, 77, 859–863.

    Google Scholar 

  • Longmire, J. L. (1997). Use of “lysis buffer” in DNA isolation and its implications for museum collections. Occasional Papers, The Museum of Texas Tech University, 163, 1–3.

    Google Scholar 

  • Lucentini, L., Palomba, A., Lancioni, H., Mauro, N., & Panara, F. (2006). A nondestructive, rapid, reliable and inexpensive method to sample, store and extract high-quality DNA from fish body mucus and bucal cells. Molecular Ecology Notes, 6, 257–260.

    Google Scholar 

  • Maiers, L. D., Carmichael, T. J., Reist, J. D., & Bodaly, R. A. (D). (1998). Enhanced recovery of DNA from frozen fish tissues treated with dimethyl sulphoxide (DMSO). Archiv für Hydrobiologie, Special Issues, Advances in Limnology, 50, 371–374.

    CAS  Google Scholar 

  • Makowski, G. S., Davis, E. L., Aslanzadeh, J., & Hopfer, S. M. (1995). Enhanced direct amplification of Guthrie card DNA following selective elution of PCR inhibitors. Nucleic Acids Research, 23, 3788–3789.

    CAS  PubMed  Google Scholar 

  • Makowski, G. S., Davis, E. L., & Hopfer, S. M. (1997). Amplification of Guthrie card DNA: Effect of guanidine thiocyanate on binding of natural whole blood PCR inhibitors. Journal of Clinical Laboratory Analysis, 11, 87–93.

    CAS  PubMed  Google Scholar 

  • Malherbe, G. P., Maude, G., & Bastos, A. D. S. (2009). Genetic clues from olfactory cues: brown hyaena scent marks provide a non-invasive source of DNA for genetic profiling. Conservation Genetics, 10, 759–762.

    CAS  Google Scholar 

  • Mandrioli, M., Borsatti, F., & Mola, L. (2006). Factors affecting DNA preservation from museum-collected lepidopteran specimens. Entomologia Experimentalis et Applicata, 120, 239–244.

    CAS  Google Scholar 

  • Martin, J. E. H. (1977). The insects and arachnids of Canada. Part 1: Collecting, preparing, and preserving insects, mites, and spiders. Hull: Publication 1643, Research Branch, Canada Department of Agriculture.

    Google Scholar 

  • Martinkova, N., & Searle, J. B. (2006). Amplification success rate of DNA from museum skin collections: a case study of stoats from 18 museums. Molecular Ecology Notes, 6, 1014–1017.

    CAS  Google Scholar 

  • Mitchell, R. D., & Cook, D. R. (1952). The preservation and mounting of water-mites. Turtox News, 30, 169–172.

    Google Scholar 

  • Mitchell, K. R., & Takacs-Vesbach, C. D. (2008). A comparison of methods for total community DNA preservation and extraction from various thermal environments. Journal of Industrial Microbiology and Biotechnology, 35, 1139–1147.

    CAS  PubMed  Google Scholar 

  • Morgan, C. A., Herman, N., White, P. A., & Vesey, G. (2006). Preservation of micro-organisms by drying; a review. Journal of Microbiological Methods, 66, 183–193.

    CAS  PubMed  Google Scholar 

  • Munson, L. (2000). Necropsy procedures for wild animals. In L. White & A. Edwards (Eds.), Conservation research in the African rain forests: A technical handbook (pp. 203–224). New York: Wildlife Conservation Society.

    Google Scholar 

  • Murphy, M. A., Waits, L. P., Kendall, K. C., Wasser, S. K., Higbee, J. A., & Bogden, R. (2002). An evaluation of long-term preservation methods for brown bear (Ursus arctos) faecal DNA samples. Conservation Genetics, 3, 435–440.

    CAS  Google Scholar 

  • Mutter, G. L., Zahrieh, D., Liu, C., Neuberg, D., Finkelstein, D., Baker, H. E., et al. (2004). Comparison of frozen and RNALater solid tissue storage methods for use in RNA expression microarrays. BMC Genomics, 5, 88.

    PubMed  Google Scholar 

  • Narang, S. K., & Seawright, J. A. (1990). Hexane preserves biological activity of isozymes and DNA. Journal of the American Mosquito Control Association, 6, 533–534.

    CAS  PubMed  Google Scholar 

  • Narang, S. K., Seawright, J. A., Mitchell, S. E., Kaiser, P. E., & Carlson, D. A. (1993). Multiple-technique identification of sibling species of the Anopheles quadrimaculatus complex. Journal of the American Mosquito Control Association, 9, 463–464.

    CAS  PubMed  Google Scholar 

  • Nishiguchi, M. K., Doukakis, P., Egan, M., Kizirian, D., Phillips, A., Prendini, L., et al. (2002). DNA isolation procedures. Methods and tools in biosciences and medicine. In R. DeSalle, G. Giribet, & W. Wheeler (Eds.), Techniques in molecular systematics and evolution (pp. 249–287). Basle: Birkhäuser.

    Google Scholar 

  • Nsubuga, A. M., Robbins, M. M., Roeder, A. D., Morin, P. A., Boesch, C., & Vigilant, L. (2004). Factors affecting the amount of genomic DNA extracted from ape faeces and the identification of an improved sample storage method. Molecular Ecology, 13, 2089–2094.

    CAS  PubMed  Google Scholar 

  • Oakenfull, E. A. (1994). Vodka, meths and DNA. Trends in Ecology and Evolution, 9, 26.

    Google Scholar 

  • O’Brien, I. E. W., Reutelingsperger, C. P. M., & Holdaway, K. M. (1997). Annexin-V and TUNEL use in monitoring the progression of apoptosis in plants. Cytometry, 29, 28–33.

    PubMed  Google Scholar 

  • Olert, J., Wiedorn, K.-H., Goldmann, T., Kühl, H., Mehraein, Y., Scherthan, H., et al. (2001). HOPE fixation: a novel fixing method and paraffin-embedding technique for human soft tissues. Pathology, Research and Practice, 197, 823–826.

    CAS  PubMed  Google Scholar 

  • Phillips, A. J., & Simon, C. (1995). Simple, efficient, and nondestructive DNA extraction protocol for arthropods. Annals of the Entomological Society of America, 88, 281–283.

    CAS  Google Scholar 

  • Pichler, F. B., Dalebout, M. L., & Baker, C. S. (2001). Nondestructive DNA extraction from sperm whale teeth and scrimshaw. Molecular Ecology Notes, 1, 106–109.

    CAS  Google Scholar 

  • Post, R. J., Flook, P. K., & Millest, A. L. (1993). Methods for the preservation of insects for DNA studies. Biochemical Systematics and Ecology, 21, 85–92.

    CAS  Google Scholar 

  • Prendini, L., Hanner, R., & DeSalle, R. (2002). Obtaining, storing and archiving specimens and tissue samples for use in molecular studies. In R. DeSalle, G. Giribet, & W. Wheeler (Eds.), Techniques in molecular systematics and evolution (pp. 176–248). Basle: Birkhäuser.

    Google Scholar 

  • Pyle, M. M., & Adams, R. P. (1989). In-situ preservation of DNA in plant specimens. Taxon, 38, 576–581.

    Google Scholar 

  • Quicke, D. L. J., Lopez-Vaamonde, C., & Belshaw, R. (1999). Preservation of hymenopteran specimens for subsequent molecular and morphological study. Zoologica Scripta, 28, 261–267.

    Google Scholar 

  • Rake, A. V. (1972). Isopropanol preservation of biological samples for subsequent DNA extraction and reassociation studies. Analytical Biochemistry, 48, 365–368.

    CAS  PubMed  Google Scholar 

  • Reiss, R. A., Schwert, D. P., & Ashworth, A. C. (1995). Field preservation of Coleoptera for molecular-genetic analyses. Environmental Entomology, 24, 716–719.

    Google Scholar 

  • Rey, I., Dorda, B. A., & Valdecasas, A. G. (2002). Traditional water mite fixatives and their compatibility with later DNA studies. Experimental and Applied Acarology, 34, 59–65.

    Google Scholar 

  • Roeder, A. D., Archer, F. I., Poinar, H. N., & Morin, P. A. (2004). A novel method for collection and preservation of faeces for genetic studies. Molecular Ecology Notes, 4, 761–764.

    CAS  Google Scholar 

  • Rogstad, S. H. (1992). Saturated NaCl-CTAB solution as a means of field preservation of leaves for DNA analyses. Taxon, 41, 701–708.

    Google Scholar 

  • Rohland, N., Siedel, H., & Hofreiter, M. (2004). Nondestructive DNA extraction method for mitochondrial DNA analyses of museum specimens. BioTechniques, 36, 814–821.

    CAS  PubMed  Google Scholar 

  • Rowland, L. J., & Nguyen, B. (1993). Use of polyethylene glycol for purification of DNA from leaf tissue of woody plants. BioTechniques, 14, 735–736.

    Google Scholar 

  • Rowley, D. L., Coddington, J. A., Gates, M. W., Norrbom, A. L., Ochoa, R. A., Vandenberg, N. J., et al. (2007). Vouchering DNA-barcoded specimens: test of a nondestructive extraction protocol for terrestrial arthropods. Molecular Ecology Notes, 7, 915–924.

    CAS  Google Scholar 

  • Saito, Y., & Osakabe, M. (1992). A new fixation method for preparing mite specimens for optical and SEM microscopic observations. Applied Entomology and Zoology, 27, 427–436.

    Google Scholar 

  • Sato, Y., Mukai, K., Matsuno, Y., Furuya, S., Kagami, Y., Miwa, M., et al. (1990). The AMeX method: a multipurpose tissue-processing and paraffin-embedding method. II. Extraction of spooled DNA and its application to Southern blot hybridization analysis. American Journal of Pathology, 136, 267–271.

    CAS  PubMed  Google Scholar 

  • Saunders, J. B. deC. M., & Rice, A. H. (1944). A practical technique for preserving surgical and anatomical dissections. The Journal of Bone and Joint Surgery, 26, 185–188.

    Google Scholar 

  • Schneeberger, C., Kury, F., Larsen, J., Speiser, P., & Zeillinger, R. (1992). A simple method for extraction of DNA from Guthrie cards. PCR Methods and Applications, 2, 177–179.

    CAS  PubMed  Google Scholar 

  • Seutin, G., White, B. N., & Boag, P. T. (1991). Preservation of avian blood and tissue samples for DNA analyses. Canadian Journal of Zoology, 69, 82–90.

    CAS  Google Scholar 

  • Shahjahan, R. M., Hughes, K. J., Leopold, R. A., & DeVault, J. D. (1995). Lower incubation temperature increases yield of insect genomic DNA isolated by the CTAB method. BioTechniques, 19, 332–334.

    CAS  PubMed  Google Scholar 

  • Smith, L. M., & Burgoyne, L. A. (2004). Collecting, archiving and processing DNA from wildlife samples using FTA® databasing paper. BMC Ecology, 4, 4.

    CAS  PubMed  Google Scholar 

  • Smith, S., & Morin, P. A. (2005). Optimal storage conditions for highly dilute DNA samples: a role for trehalose as a preserving agent. Journal of Forensic Science, 50, 1101–1108.

    Article  CAS  Google Scholar 

  • Srinivasan, M., Sedmak, D., & Jewell, S. (2002). Effect of fixatives and tissue processing on the content and integrity of nucleic acids. American Journal of Pathology, 161, 1961–1971.

    CAS  PubMed  Google Scholar 

  • Storchová, H., Hrdlicková, R., Chrtek, J., Tetera, M., Fitze, D., & Fehrer, J. (2000). An improved method of DNA isolation from plants collected in the field and conserved in saturated NaCl/CTAB solution. Taxon, 49, 79–84.

    Google Scholar 

  • Stoycheva, T., Venkov, P., & Tsvetkov, T. (2007). Mutagenic effect of freezing on mitochondrial DNA of Saccharomyces cerevisiae. Cryobiology, 54, 243–250.

    CAS  PubMed  Google Scholar 

  • Strugnell, J., Norman, M., & Cooper, A. (2006). DNA from beach-washed shells of the ram’s horn squid, Spirula spirula. Bulletin of Marine Science, 78, 389–391.

    Google Scholar 

  • Taberlet, P., & Fumagalli, L. (1996). Owl pellets as a source of DNA for genetic studies of small mammals. Molecular Ecology, 5, 301–305.

    CAS  PubMed  Google Scholar 

  • Thomson, J. A. (2002). An improved non-cryogenic transport and storage preservative facilitating DNA extraction from ‘difficult’ plants collected at remote sites. Telopea, 9, 755–760.

    Google Scholar 

  • Trumen, J. W. (1968). Acetone treatment for preservation of adult and larval mosquitoes. Annals of the Entomological Society of America, 61, 779–780.

    Google Scholar 

  • Valdecasas, A. G., & Baltanás, A. (1989). A note on the use of Angelier’s fluid for freshwater invertebrates. Archiv für Hydrobiologie, 115, 313–316.

    Google Scholar 

  • van Noort, S. (1995). A simple yet effective method for drying alcohol preserved specimens. Chalcid Forum, 18, 3–4.

    Google Scholar 

  • Vincek, V., Nassiri, M., Nadji, M., & Morales, A. R. (2003). A tissue fixative that protects macromolecules (DNA, RNA, and protein) and histomorphology in clinical samples. Laboratory Investigation, 83, 1427–1435.

    CAS  PubMed  Google Scholar 

  • Vindeløv, L. L., Christensen, I. J., Keiding, N., Spang-Thomsen, M., & Nissen, N. I. (1983). Long-term storage of samples for flow cytometric DNA analysis. Cytometry A, 3, 317–322.

    Google Scholar 

  • Vink, C. J., Thomas, S. M., Paquin, P., Hayashi, C. Y., & Hedin, M. (2005). The effects of preservatives and temperatures on arachnid DNA. Invertebrate Systematics, 19, 99–104.

    CAS  Google Scholar 

  • Walpole, D. E., Coetzee, M., & Lalkhan, C. M. (1988). The use of acetone vapour for dehydration of insect specimens for scanning electron microscopy. Journal of the Entomological Society of South Africa, 51, 293–294.

    Google Scholar 

  • Ware, A. B., & Cross, R. H. M. (1989). Preparation of small delicate insects for scanning electron microscopy. Proceedings of the Electron Microscopy Society of South Africa, 19, 39–40.

    Google Scholar 

  • Weir, I. E. (2001). Analysis of apoptosis in plant cells. Methods in Cell Biology, 63, 505–526.

    CAS  PubMed  Google Scholar 

  • Winnepenninckx, B., Backeljau, T., & Dewachter, R. (1993). Extraction of high molecular weight DNA from molluscs. Trends in Genetics, 9, 407.

    CAS  PubMed  Google Scholar 

  • Wisely, S. M., Maldonado, J. E., & Fleischer, R. C. (2004). A technique for sampling ancient DNA that minimizes damage to museum specimens. Conservation Genetics, 5, 105–107.

    CAS  Google Scholar 

  • Withers, L. A. (1980). Low temperature storage of plant tissue cultures. Advances in Biomedical Engineering / Biotechnology, 18, 101–150.

    Google Scholar 

  • Wolosewick, J. J. (1980). The application of polyethylene glycol (PEG) to electron microscopy. The Journal of Cell Biology, 86, 675–681.

    CAS  PubMed  Google Scholar 

  • Yagi, N., Satonaka, K., Horio, M., Shimogaki, H., Tokuda, Y., & Maeda, S. (1996). The role of DNAse and EDTA on DNA degradation in formaldehyde fixed tissues. Biotechnic & Histochemistry, 71, 123–129.

    CAS  Google Scholar 

Download references

Acknowledgements

This overview was compiled in accordance with the aims and research topics of the Joint Experimental Molecular Unit of the Royal Belgian Institute of Natural Sciences (RBINS, Brussels) and the Royal Museum for Central Africa (RMCA, Tervuren) that is funded by the Belgian Science Policy Office. The author appreciates the kind support of Thierry Backeljau and Erik Verheyen (both RBINS), as well as the valuable comments of two referees enabling the improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltán Tamás Nagy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagy, Z.T. A hands-on overview of tissue preservation methods for molecular genetic analyses. Org Divers Evol 10, 91–105 (2010). https://doi.org/10.1007/s13127-010-0012-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-010-0012-4

Keywords

Navigation