Skip to main content

Advertisement

Log in

Anesthesia Management and Recovery after Laparoscopic Colorectal Surgery

  • Review Article
  • Published:
Hellenic Journal of Surgery

Abstract

Open abdominal procedures are associated with high levels of postoperative surgical stress that can impede recovery of physiological functions. Trauma resulting from aggressive manipulation of organs, and especially the intestine, can increase postoperative complications and result in delay in normal recovery. In an attempt to minimize complications and overall duration of hospital stay, fast track strategies, called “early recovery after surgery” (ERAS) protocols, have been adopted. Laparoscopic surgery has recently been identified as a major component of rapid recovery. One of the key differences between the open and the laparoscopic approach is the use of pneumoperitoneum for organ exposure during laparoscopy. Prolonged increase in abdominal pressure in addition to patient positioning can have a profound effect on hemodynamic parameters such as central venous pressure (CVP), cardiac output and intracranial pressure. Modifications in fluid administration, the choice of anesthetic agent and the depth of neuromuscular blockade are indicated to accommodate to the conditions imposed by pneumoperitoneum. Postoperatively, laparoscopic surgery is usually associated with less aggressive analgesia management. Based on ERAS protocols, patients are encouraged to initiate early oral feeding and to resume physical activity as soon as possible after abdominal surgery. While laparoscopic abdominal surgery is associated with reduced needs for pain medication, there appear to be no significant differences in early enteral feeding and mobilization between laparoscopic procedures and open surgery. When all factors are taken into consideration, however, laparoscopic colorectal surgery is associated with significant reduction in the duration of the total hospital stay, and is therefore recommended whenever feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kehlet H, Dahl JB. Anaesthesia, surgery, and challenges in postoperative recovery. Lancet 2003;362:1921–8.

    Article  PubMed  Google Scholar 

  2. Chapman SJ, Pericleous A, Downey C, et al. Postoperative ileus following major colorectal surgery. Br J Surg 2018.

    Google Scholar 

  3. Hotokezaka M, Mentis EP, Patel SP, et al. Recovery of gastrointestinal tract motility and myoelectric activity change after abdominal surgery. Arch Surg 1997;132:410–7.

    Article  PubMed  CAS  Google Scholar 

  4. Asgeirsson T, El-Badawi KI, Mahmood A, et al. Postoperative ileus: It costs more than you expect. J Am Coll Surg 2010;210:228–31.

    Article  PubMed  Google Scholar 

  5. Badia JM, Whawell SA, Scott-Coombes DM, et al. Peritoneal and systemic cytokine response to laparotomy. Br J Surg 1996;83:347–8.

    Article  PubMed  CAS  Google Scholar 

  6. Riese J, Schoolmann S, Beyer A, et al. Production of IL-6 and MCP-1 by the human peritoneum in vivo during major abdominal surgery. Shock 2000;14:91–4.

    Article  PubMed  CAS  Google Scholar 

  7. Marana E, Scambia G, Maussier ML, et al. Neuroendocrine stress response in patients undergoing benign ovarian cyst surgery by laparoscopy, minilaparotomy, and laparotomy. J Am Assoc Gynecol Laparosc 2003;10:159–65.

    Article  PubMed  Google Scholar 

  8. Rychter J, Clave P. Intestinal inflammation in postoperative ileus: pathogenesis and therapeutic targets. Gut 2013;62:1534–5.

    Article  PubMed  Google Scholar 

  9. Schwarz NT, Kalff JC, Turler A, et al. Selective jejunal manipulation causes postoperative pan-enteric inflammation and dysmotility. Gastroenterology 2004;126:159–69.

    Article  PubMed  CAS  Google Scholar 

  10. Dorn S, Lembo A, Cremonini F. Opioid-induced bowel dysfunction: Epidemiology, pathophysiology, diagnosis, and initial therapeutic approach. Am J Gastroenterol Suppl 2014;2:31–7.

    Article  PubMed  CAS  Google Scholar 

  11. Marret E, Remy C, Bonnet F. Postoperative Pain Forum G. Meta-analysis of epidural analgesia versus parenteral opioid analgesia after colorectal surgery. Br J Surg 2007;94:665–73.

    Article  PubMed  CAS  Google Scholar 

  12. Varadhan KK, Neal KR, Dejong CH, et al. The enhanced recovery after surgery (ERAS) pathway for patients undergoing major elective open colorectal surgery: A meta-analysis of randomized controlled trials. Clin Nutr 2010;29:434–40.

    Article  PubMed  Google Scholar 

  13. Spanjersberg WR, Reurings J, Keus F, et al. Fast track surgery versus conventional recovery strategies for colorectal surgery. Cochrane Database Syst Rev 2011: CD007635. doi: 10.1002/14651858.CD007635.pub2.

  14. Group EC. The impact of enhanced recovery protocol compliance on elective colorectal cancer resection: Results from an international registry. Ann Surg 2015;261:1153–9.

    Article  Google Scholar 

  15. Kejriwal AK, Begum S, Krishan G, et al. Laparoscopic cholecystectomy under segmental thoracic spinal anesthesia: A feasible economical alternative. Anesth Essays Res 2017;11:781–3.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Grabowski JE, Talamini MA. Physiological effects of pneumoperitoneum. J Gastrointest Surg 2009;13:1009–16.

    Article  PubMed  Google Scholar 

  17. O'Malley C, Cunningham AJ. Physiologic changes during laparoscopy. Anesthesiol Clin North America 2001;19:1–19.

    Article  PubMed  CAS  Google Scholar 

  18. Gutt CN, Oniu T, Mehrabi A, et al. Circulatory and respiratory complications of carbon dioxide insufflation. Dig Surg 2004;21:95–105.

    Article  PubMed  CAS  Google Scholar 

  19. Neudecker J, Sauerland S, Neugebauer E, et al. The European Association for Endoscopic Surgery clinical practice guideline on the pneumoperitoneum for laparoscopic surgery. Surg Endosc 2002;16:1121–43.

    Article  PubMed  CAS  Google Scholar 

  20. Falabella A, Moore-Jeffries E, Sullivan MJ, et al. Cardiac function during steep Trendelenburg position and CO2 pneumoperitoneum for robotic-assisted prostatectomy: A trans-oesophageal Doppler probe study. Int J Med Robot 2007;3:312–5.

    Article  PubMed  Google Scholar 

  21. Awad H, Santilli S, Ohr M, et al. The effects of steep trendelenburg positioning on intraocular pressure during robotic radical prostatectomy. Anesth Analg 2009;109:473–8.

    Article  PubMed  Google Scholar 

  22. Serpa Neto A, Hemmes SN, Barbas CS, et al. Protective versus Conventional Ventilation for Surgery: A Systematic Review and Individual Patient Data Meta-analysis. Anesthesiology 2015;123:66–78.

    Article  PubMed  Google Scholar 

  23. Joshi GP. The role of carbon dioxide in facilitating emergence from inhalation anesthesia: Then & now. Anesth Analg 2012;114:933–4.

    Article  PubMed  Google Scholar 

  24. Boulanger A, Hardy JF. Intestinal distention during elective abdominal surgery: should nitrous oxide be banished? Can J Anaesth 1987;34:346–50.

    Article  PubMed  CAS  Google Scholar 

  25. Akca O, Lenhardt R, Fleischmann E, et al. Nitrous oxide increases the incidence of bowel distension in patients undergoing elective colon resection. Acta Anaesthesiol Scand 2004;48:894–8.

    Article  PubMed  CAS  Google Scholar 

  26. Kopman AF, Naguib M. Laparoscopic surgery and muscle relaxants: is deep block helpful? Anesth Analg 2015;120:51–8.

    Article  PubMed  CAS  Google Scholar 

  27. Miller TE, Raghunathan K, Gan TJ. State-of-the-art fluid management in the operating room. Best Pract Res Clin Anaesthesiol 2014;28:261–73.

    Article  PubMed  Google Scholar 

  28. Andersson L, Lindberg G, Bringman S, et al. Pneumoperitoneum versus abdominal wall lift: Effects on central haemodynamics and intrathoracic pressure during laparoscopic cholecystectomy. Acta Anaesthesiol Scand 2003;47:838–46.

    Article  PubMed  CAS  Google Scholar 

  29. Odeberg S, Ljungqvist O, Svenberg T, et al. Haemodynamic effects of pneumoperitoneum and the influence of posture during anaesthesia for laparoscopic surgery. Acta Anaesthesiol Scand 1994;38:276–83.

    Article  PubMed  CAS  Google Scholar 

  30. Michard F, Lopes MR, Auler JOJr. Pulse pressure variation: Beyond the fluid management of patients with shock. Crit Care 2007;11:131.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Huang CC, Fu JY, Hu HC, et al. Prediction of fluid responsiveness in acute respiratory distress syndrome patients ventilated with low tidal volume and high positive endexpiratory pressure. Crit Care Med 2008;36:2810–6.

    Article  PubMed  Google Scholar 

  32. Marik PE, Cavallazzi R, Vasu T, et al. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: A systematic review of the literature. Crit Care Med 2009;37:2642–7.

    Article  PubMed  Google Scholar 

  33. Michard F, Boussat S, Chemla D, et al. Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med 2000;162:134–8.

    Article  PubMed  CAS  Google Scholar 

  34. Rodig G, Prasser C, Keyl C, et al. Continuous cardiac output measurement: Pulse contour analysis vs thermodilution technique in cardiac surgical patients. Br J Anaesth 1999;82:525–30.

    Article  PubMed  CAS  Google Scholar 

  35. Derichard A, Robin E, Tavernier B, et al. Automated pulse pressure and stroke volume variations from radial artery: Evaluation during major abdominal surgery. Br J Anaesth 2009;103:678–84.

    Article  PubMed  CAS  Google Scholar 

  36. Benes J, Chytra I, Altmann P, et al. Intraoperative fluid optimization using stroke volume variation in high risk surgical patients: Results of prospective randomized study. Crit Care 2010;14:R118.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Concha MR, Mertz VF, Cortinez LI, et al. Pulse contour analysis and transesophageal echocardiography: A comparison of measurements of cardiac output during laparoscopic colon surgery. Anesth Analg 2009;109:114–8.

    Article  PubMed  Google Scholar 

  38. Hoiseth LO, Hoff IE, Myre K, et al. Dynamic variables of fluid responsiveness during pneumoperitoneum and laparoscopic surgery. Acta Anaesthesiol Scand 2012;56:777–86.

    Article  PubMed  CAS  Google Scholar 

  39. Nakasuji M, Okutani A, Miyata T, et al. Disagreement between fourth generation FloTrac and LiDCOrapid measurements of cardiac output and stroke volume variation during laparoscopic colectomy. J Clin Anesth 2016;35:150–6.

    Article  PubMed  Google Scholar 

  40. Chin JH, Kim WJ, Choi JH, et al. Unreliable tracking ability of the third–generation FloTrac/Vigileo System for changes in stroke volume after fluid administration in patients with high systemic vascular resistance during laparoscopic surgery. PLOS One 2015; doi: org/10.1371/journal.pone.0142125

    Google Scholar 

  41. Hadian M, Kim HK, Severyn DA, et al. Cross-comparison of cardiac output trending accuracy of LiDCO, PiCCO, FloTrac and pulmonary artery catheters. Crit Care 2010;14:R212.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Song T, Kim KH, Lee KW. The intensity of postlaparoscopic shoulder pain is positively correlated with the amount of residual pneumoperitoneum. J Minim Invasive Gynecol 2017;24:984–9 e1.

    Article  PubMed  Google Scholar 

  43. Werawatganon T, Charuluxanun S. Patient controlled intravenous opioid analgesia versus continuous epidural analgesia for pain after intra-abdominal surgery. Cochrane Database Syst Rev 2005:CD004088.

  44. Joshi GP, Schug SA, Kehlet H. Procedure-specific pain management and outcome strategies. Best Pract Res Clin Anaesthesiol 2014;28:191–201.

    Article  PubMed  Google Scholar 

  45. Kim AJ, Yong RJ, Urman RD. The role of transversus abdominis plane blocks in enhanced recovery after surgery pathways for open and laparoscopic colorectal surgery. J Laparoendosc Adv Surg Tech A 2017;27:909–14.

    Article  PubMed  Google Scholar 

  46. Helander EM, Webb MP, Bias M, et al. A comparison of multimodal analgesic approaches in institutional enhanced recovery after surgery protocols for colorectal surgery: pharmacological agents. J Laparoendosc Adv Surg Tech A 2017;27:903–8.

    Article  PubMed  Google Scholar 

  47. Bamgbade OA, Oluwole O, Khaw RR. Perioperative analgesia for Fast-Track laparoscopic bariatric surgery. Obes Surg 2017;27:1828–34.

    Article  PubMed  Google Scholar 

  48. Zhang H, Liu X, Jiang H, et al. Parecoxib increases muscle pain threshold and relieves shoulder pain after gynecologic laparoscopy: A randomized controlled trial. J Pain Res 2016;9:653–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Moiniche S, Jorgensen H, Wetterslev J, et al. Local anesthetic infiltration for postoperative pain relief after laparoscopy: A qualitative and quantitative systematic review of intraperitoneal, port-site infiltration and mesosalpinx block. Anesth Analg 2000;90:899–912.

    Article  PubMed  CAS  Google Scholar 

  50. Wick EC, Grant MC, Wu CL. Postoperative multimodal analgesia pain management with nonopioid analgesics and techniques: A Review. JAMA Surg 2017;152:691–7.

    Article  PubMed  Google Scholar 

  51. Andersen HK, Lewis SJ, Thomas S. Early enteral nutrition within 24h of colorectal surgery versus later commencement of feeding for postoperative complications. Cochrane Database Syst Rev 2006:CD004080.

  52. Zhuang CL, Ye XZ, Zhang CJ, et al. Early versus traditional postoperative oral feeding in patients undergoing elective colorectal surgery: A meta-analysis of randomized clinical trials. Dig Surg 2013;30:225–32.

    Article  PubMed  Google Scholar 

  53. Wolthuis AM, Bislenghi G, Fieuws S, et al. Incidence of prolonged postoperative ileus after colorectal surgery: A systematic review and meta-analysis. Colorectal Dis 2016;18:O1–9.

    Article  PubMed  CAS  Google Scholar 

  54. Mamidanna R, Burns EM, Bottle A, et al. Reduced risk of medical morbidity and mortality in patients selected for laparoscopic colorectal resection in England: A populationbased study. Arch Surg 2012;147:219–27.

    Article  PubMed  Google Scholar 

  55. Lourenco T, Murray A, Grant A, et al. Laparoscopic surgery for colorectal cancer: Safe and effective? - A systematic review. Surg Endosc 2008;22:1146–60.

    Article  PubMed  Google Scholar 

  56. Gatt M, Anderson AD, Reddy BS, et al. Randomized clinical trial of multimodal optimization of surgical care in patients undergoing major colonic resection. Br J Surg 2005;92:1354–62.

    Article  PubMed  CAS  Google Scholar 

  57. Paton F, Chambers D, Wilson P, et al. Initiatives to reduce length of stay in acute hospital settings: A rapid synthesis of evidence relating to enhanced recovery programmes. Southampton (UK)2014.

    Google Scholar 

  58. Zutshi M, Delaney CP, Senagore AJ, et al. Shorter hospital stay associated with fastrack postoperative care pathways and laparoscopic intestinal resection are not associated with increased physical activity. Colorectal Dis 2004;6:477–80.

    Article  PubMed  CAS  Google Scholar 

  59. Kennedy RH, Francis EA, Wharton R, et al. Multicenter randomized controlled trial of conventional versus laparoscopic surgery for colorectal cancer within an enhanced recovery programme: EnROL. J Clin Oncol 2014;32:1804–11.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to AM Nixon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nixon, A., Aggeli, C., Vavoura, A. et al. Anesthesia Management and Recovery after Laparoscopic Colorectal Surgery. Hellenic J Surg 90, 137–142 (2018). https://doi.org/10.1007/s13126-018-0458-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13126-018-0458-y

Key words

Navigation