Skip to main content
Log in

Effect of chronic cold stress on gut microbial diversity, intestinal inflammation and pyroptosis in mice

  • Research
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Hypothermia is an essential environmental factor in gastrointestinal diseases, but the main molecular mechanisms of pathogenesis remain unclear. The current study sought to better understand how chronic cold stress affects gut damage and its underlying mechanisms. In this work, to establish chronic cold stress (CS)-induced intestinal injury model, mice were subjected to continuous cold exposure (4 °C) for 3 h per day for 3 weeks. Our results indicated that CS led to gut injury via inducing changes of heat shock proteins 70 (HSP70) and apoptosis-related (caspases-3, Bax and Bcl-2) proteins; enhancing expression of intestinal tight-related (ZO-1 and occludin) proteins; promoting releases of inducible nitric oxide synthase (iNOS), tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), high mobility group box 1 (HMGB1), interleukin1β (IL-1β), IL-18 and IL-6 inflammatory mediators in the ileum; and altering gut microbial diversity. Furthermore, persistent cold exposure resulted in the cleavage of pyroptosis-related Gasdermin D (GSDMD) protein by regulating the NLRP3/ASC/caspase-1 and caspase-11 pathway, and activation of toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)-mediated nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways, which are strongly associated with changes in gut microbiota diversity. Taken together, these investigations provide new insights into the increased risk of intestinal disorders at extremely low temperatures and establish a theoretical foundation for the advancement of novel pharmaceutical interventions targeting cold-related ailments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The original data analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Ananthakrishnan AN, Bernstein CN, Iliopoulos D et al (2018) Environmental triggers in IBD: a review of progress and evidence. Nat Rev Gastroenterol Hepatol 15:39–49. https://doi.org/10.1038/nrgastro.2017.136

    Article  PubMed  Google Scholar 

  2. Bakker G J, Nieuwdorp M (2017) Fecal Microbiota Transplantation: Therapeutic Potential for a Multitude of Diseases beyond Clostridium difficile. Microbiol Spectr 5. https://doi.org/10.1128/microbiolspec.BAD-0008-2017

  3. Broz P, Dixit VM (2016) Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol 16:407–420. https://doi.org/10.1038/nri.2016.58

    Article  CAS  PubMed  Google Scholar 

  4. Bulek K, Zhao J, Liao Y et al (2020) Epithelial-derived gasdermin D mediates nonlytic IL-1beta release during experimental colitis. J Clin Invest 130:4218–4234. https://doi.org/10.1172/JCI138103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen X, Liu G, Yuan Y, Wu G, Wang S, Yuan L (2019) NEK7 interacts with NLRP3 to modulate the pyroptosis in inflammatory bowel disease via NF-kappaB signaling. Cell Death Dis 10:906. https://doi.org/10.1038/s41419-019-2157-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chevalier C, Stojanovic O, Colin DJ et al (2015) Gut Microbiota Orchestrates Energy Homeostasis during Cold. Cell 163:1360–1374. https://doi.org/10.1016/j.cell.2015.11.004

    Article  CAS  PubMed  Google Scholar 

  7. Cui L, Wang W, Luo Y et al (2019) Polysaccharide from Scutellaria baicalensis Georgi ameliorates colitis via suppressing NF-kappaB signaling and NLRP3 inflammasome activation. Int J Biol Macromol 132:393–405. https://doi.org/10.1016/j.ijbiomac.2019.03.230

    Article  CAS  PubMed  Google Scholar 

  8. Cui L, Guan X, Ding W et al (2021) Scutellaria baicalensis Georgi polysaccharide ameliorates DSS-induced ulcerative colitis by improving intestinal barrier function and modulating gut microbiota. Int J Biol Macromol 166:1035–1045. https://doi.org/10.1016/j.ijbiomac.2020.10.259

    Article  CAS  PubMed  Google Scholar 

  9. Dabke K, Hendrick G, Devkota S (2019) The gut microbiome and metabolic syndrome. J Clin Invest 129:4050–4057. https://doi.org/10.1172/JCI129194

    Article  PubMed  PubMed Central  Google Scholar 

  10. Di Cerbo A, Carnevale G, Avallone R, Zavatti M, Corsi L (2020) Protective Effects of Borago officinalis (Borago) on Cold Restraint Stress-Induced Gastric Ulcers in Rats: A Pilot Study. Front Vet Sci 7:427. https://doi.org/10.3389/fvets.2020.00427

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fink SL, Cookson BT (2006) Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell Microbiol 8:1812–1825. https://doi.org/10.1111/j.1462-5822.2006.00751.x

    Article  PubMed  Google Scholar 

  12. Fiorini C, Gilleron J, Carette D et al (2008) Accelerated internalization of junctional membrane proteins (connexin 43, N-cadherin and ZO-1) within endocytic vacuoles: an early event of DDT carcinogenicity. Biochim Biophys Acta 1778:56–67. https://doi.org/10.1016/j.bbamem.2007.08.032

    Article  CAS  PubMed  Google Scholar 

  13. Gao B, Ahmad MF, Nagy LE, Tsukamoto H (2019) Inflammatory pathways in alcoholic steatohepatitis. J Hepatol 70:249–259. https://doi.org/10.1016/j.jhep.2018.10.023

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gasparrini A, Guo Y, Hashizume M et al (2015) Mortality risk attributable to high and low ambient temperature: a multicountry observational study. Lancet 386:369–375. https://doi.org/10.1016/S0140-6736(14)62114-0

    Article  PubMed  PubMed Central  Google Scholar 

  15. Guo J, Hu H, Chen Z et al (2022) Cold Exposure Induces Intestinal Barrier Damage and Endoplasmic Reticulum Stress in the Colon via the SIRT1/Nrf2 Signaling Pathway. Front Physiol 13:822348. https://doi.org/10.3389/fphys.2022.822348

    Article  PubMed  PubMed Central  Google Scholar 

  16. Huang Y, Xu W, Zhou R (2021) NLRP3 inflammasome activation and cell death. Cell Mol Immunol 18:2114–2127. https://doi.org/10.1038/s41423-021-00740-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jia Y, Cui R, Wang C et al (2020) Metformin protects against intestinal ischemia-reperfusion injury and cell pyroptosis via TXNIP-NLRP3-GSDMD pathway. Redox Biol 32:101534. https://doi.org/10.1016/j.redox.2020.101534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jiang S, Guo R, Zhang Y, Zou Y, Ren J (2013) Heavy metal scavenger metallothionein mitigates deep hypothermia-induced myocardial contractile anomalies: role of autophagy. Am J Physiol Endocrinol Metab 304:E74-86. https://doi.org/10.1152/ajpendo.00176.2012

    Article  CAS  PubMed  Google Scholar 

  19. Ju M, Liu B, He H et al (2018) MicroRNA-27a alleviates LPS-induced acute lung injury in mice via inhibiting in fl ammation and apoptosis through modulating TLR4/MyD88/NF-kappaB pathway. Cell Cycle 17:2001–2018. https://doi.org/10.1080/15384101.2018.1509635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kaser A, Lee AH, Franke A et al (2008) XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134:743–756. https://doi.org/10.1016/j.cell.2008.07.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kayagaki N, Stowe IB, Lee BL et al (2015) Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526:666–671. https://doi.org/10.1038/nature15541

    Article  CAS  PubMed  Google Scholar 

  22. Kelley KW, Blecha F, Regnier JA (1982) Cold exposure and absorption of colostral immunoglobulins by neonatal pigs. J Anim Sci 55:363–368. https://doi.org/10.2527/jas1982.552363x

    Article  CAS  PubMed  Google Scholar 

  23. Kim HJ, Li H, Collins JJ, Ingber DE (2016) Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc Natl Acad Sci U S A 113:E7-15. https://doi.org/10.1073/pnas.1522193112

    Article  CAS  PubMed  Google Scholar 

  24. Knorr J, Wree A, Feldstein AE (2022) Pyroptosis in Steatohepatitis and Liver Diseases. J Mol Biol 434:167271. https://doi.org/10.1016/j.jmb.2021.167271

    Article  CAS  PubMed  Google Scholar 

  25. Lacagnina MJ, Watkins LR, Grace PM (2018) Toll-like receptors and their role in persistent pain. Pharmacol Ther 184:145–158. https://doi.org/10.1016/j.pharmthera.2017.10.006

    Article  CAS  PubMed  Google Scholar 

  26. Lang L, Xu B, Yuan J et al (2020) GABA-mediated activated microglia induce neuroinflammation in the hippocampus of mice following cold exposure through the NLRP3 inflammasome and NF-kappaB signaling pathways. Int Immunopharmacol 89:106908. https://doi.org/10.1016/j.intimp.2020.106908

    Article  CAS  PubMed  Google Scholar 

  27. Li X, He C, Li N et al (2020) The interplay between the gut microbiota and NLRP3 activation affects the severity of acute pancreatitis in mice. Gut Microbes 11:1774–1789. https://doi.org/10.1080/19490976.2020.1770042

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lian S, Wang D, Xu B et al (2018) Prenatal cold stress: Effect on maternal hippocampus and offspring behavior in rats. Behav Brain Res 346:1–10. https://doi.org/10.1016/j.bbr.2018.02.002

    Article  CAS  PubMed  Google Scholar 

  29. Liu C, Chaudhry MT, Zhao D, Lin T, Tian Y, Fu J (2019) Heat shock protein 70 protects the quail cecum against oxidant stress, inflammatory injury, and microbiota imbalance induced by cold stress. Poult Sci 98:5432–5445. https://doi.org/10.3382/ps/pez327

    Article  CAS  PubMed  Google Scholar 

  30. Liu L, Dong Y, Ye M et al (2017) The Pathogenic Role of NLRP3 Inflammasome Activation in Inflammatory Bowel Diseases of Both Mice and Humans. J Crohns Colitis 11:737–750. https://doi.org/10.1093/ecco-jcc/jjw219

    Article  PubMed  PubMed Central  Google Scholar 

  31. Liu X, Zhang Z, Ruan J et al (2016) Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535:153–158. https://doi.org/10.1038/nature18629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ma H, Zhou M, Duan W, Chen L, Wang L, Liu P (2020) Anemoside B4 prevents acute ulcerative colitis through inhibiting of TLR4/NF-kappaB/MAPK signaling pathway. Int Immunopharmacol 87:106794. https://doi.org/10.1016/j.intimp.2020.106794

    Article  CAS  PubMed  Google Scholar 

  33. Ma L, Li C, Lian S et al (2021) Procyanidin B2 alleviates liver injury caused by cold stimulation through Sonic hedgehog signalling and autophagy. J Cell Mol Med 25:8015–8027. https://doi.org/10.1111/jcmm.16733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Marafini I, Sedda S, Dinallo V, Monteleone G (2019) Inflammatory cytokines: from discoveries to therapies in IBD. Expert Opin Biol Ther 19:1207–1217. https://doi.org/10.1080/14712598.2019.1652267

    Article  CAS  PubMed  Google Scholar 

  35. O’Neill LA, Golenbock D, Bowie AG (2013) The history of Toll-like receptors - redefining innate immunity. Nat Rev Immunol 13:453–460. https://doi.org/10.1038/nri3446

    Article  CAS  PubMed  Google Scholar 

  36. Pastorelli L, De Salvo C, Mercado JR, Vecchi M, Pizarro TT (2013) Central role of the gut epithelial barrier in the pathogenesis of chronic intestinal inflammation: lessons learned from animal models and human genetics. Front Immunol 4:280. https://doi.org/10.3389/fimmu.2013.00280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pergel A, Tumkaya L, Colakoglu MK et al (2019) Effects of infliximab against carbon tetrachloride-induced intestinal injury via lipid peroxidation and apoptosis. Hum Exp Toxicol 38:1275–1282. https://doi.org/10.1177/0960327119867758

    Article  CAS  PubMed  Google Scholar 

  38. Robinson JD, Powell JR (2016) Long-term recovery from acute cold shock in Caenorhabditis elegans. BMC Cell Biol 17:2. https://doi.org/10.1186/s12860-015-0079-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sable A, Rai KM, Choudhary A, Yadav VK, Agarwal SK, Sawant SV (2018) Inhibition of Heat Shock proteins HSP90 and HSP70 induce oxidative stress, suppressing cotton fiber development. Sci Rep 8:3620. https://doi.org/10.1038/s41598-018-21866-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schwarzer R, Laurien L, Pasparakis M (2020) New insights into the regulation of apoptosis, necroptosis, and pyroptosis by receptor interacting protein kinase 1 and caspase-8. Curr Opin Cell Biol 63:186–193. https://doi.org/10.1016/j.ceb.2020.02.004

    Article  CAS  PubMed  Google Scholar 

  41. Shao S, Jia R, Zhao L et al (2021) Xiao-Chai-Hu-Tang ameliorates tumor growth in cancer comorbid depressive symptoms via modulating gut microbiota-mediated TLR4/MyD88/NF-kappaB signaling pathway. Phytomedicine 88:153606. https://doi.org/10.1016/j.phymed.2021.153606

    Article  CAS  PubMed  Google Scholar 

  42. Shi J, Zhao Y, Wang K et al (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526:660–665. https://doi.org/10.1038/nature15514

    Article  CAS  PubMed  Google Scholar 

  43. Singh A, Zapata RC, Pezeshki A, Workentine ML, Chelikani PK (2019) Host genetics and diet composition interact to modulate gut microbiota and predisposition to metabolic syndrome in spontaneously hypertensive stroke-prone rats. FASEB J 33:6748–6766. https://doi.org/10.1096/fj.201801627RRR

    Article  CAS  PubMed  Google Scholar 

  44. Song X, Wang S, Hu Y et al (2017) Impact of ambient temperature on morbidity and mortality: An overview of reviews. Sci Total Environ 586:241–254. https://doi.org/10.1016/j.scitotenv.2017.01.212

    Article  CAS  PubMed  Google Scholar 

  45. Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140:805–820. https://doi.org/10.1016/j.cell.2010.01.022

    Article  CAS  PubMed  Google Scholar 

  46. Wang Y, Zhou X, Zou K et al (2021) Monocarboxylate Transporter 4 Triggered Cell Pyroptosis to Aggravate Intestinal Inflammation in Inflammatory Bowel Disease. Front Immunol 12:644862. https://doi.org/10.3389/fimmu.2021.644862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wu QJ, Liu N, Wu XH, Wang GY, Lin L (2018) Glutamine alleviates heat stress-induced impairment of intestinal morphology, intestinal inflammatory response, and barrier integrity in broilers. Poult Sci 97:2675–2683. https://doi.org/10.3382/ps/pey123

    Article  CAS  PubMed  Google Scholar 

  48. Xu B, Zang SC, Li SZ et al (2019) HMGB1-mediated differential response on hippocampal neurotransmitter disorder and neuroinflammation in adolescent male and female mice following cold exposure. Brain Behav Immun 76:223–235. https://doi.org/10.1016/j.bbi.2018.11.313

    Article  CAS  PubMed  Google Scholar 

  49. Xu Q, Zhou X, Strober W, Mao L (2021) Inflammasome Regulation: Therapeutic Potential for Inflammatory Bowel Disease. Molecules 26. https://doi.org/10.3390/molecules26061725

  50. Yang J, Wise L, Fukuchi KI (2020) TLR4 Cross-Talk With NLRP3 Inflammasome and Complement Signaling Pathways in Alzheimer’s Disease. Front Immunol 11:724. https://doi.org/10.3389/fimmu.2020.00724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang S, Zhang Y, Ahsan MZ et al (2019) Atorvastatin Attenuates Cold-Induced Hypertension by Preventing Gut Barrier Injury. J Cardiovasc Pharmacol 74:143–151. https://doi.org/10.1097/FJC.0000000000000690

    Article  CAS  PubMed  Google Scholar 

  52. Zhang XY, Sukhchuluun G, Bo TB et al (2018) Huddling remodels gut microbiota to reduce energy requirements in a small mammal species during cold exposure. Microbiome 6:103. https://doi.org/10.1186/s40168-018-0473-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang Y, Hu N, Hua Y, Richmond KL, Dong F, Ren J (2012) Cardiac overexpression of metallothionein rescues cold exposure-induced myocardial contractile dysfunction through attenuation of cardiac fibrosis despite cardiomyocyte mechanical anomalies. Free Radic Biol Med 53:194–207. https://doi.org/10.1016/j.freeradbiomed.2012.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang Y, Wu S, Liu Y et al (2021) Acute Cold Water-Immersion Restraint Stress Induces Intestinal Injury and Reduces the Diversity of Gut Microbiota in Mice. Front Cell Infect Microbiol 11:706849. https://doi.org/10.3389/fcimb.2021.706849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zietak M, Kovatcheva-Datchary P, Markiewicz LH, Stahlman M, Kozak LP, Backhed F (2016) Altered Microbiota Contributes to Reduced Diet-Induced Obesity upon Cold Exposure. Cell Metab 23:1216–1223. https://doi.org/10.1016/j.cmet.2016.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant no. 32202862), the General Financial from the Natural Science Foundation of Heilongjiang Province of China (grant no. YQ2021C028), the General Project of National Natural Science Foundation of China (grant no. 31972637), Heilongjiang Bayi Agricultural University Support Program for San Heng San Zong (grant no. ZRCQC202305).

Author information

Authors and Affiliations

Authors

Contributions

This manuscript was accomplished by Hongming Lv, Shijie Xia, Yuxi He, Chunyu Qiao, Jiahe Liu, Jingru Guo and Shize Li. Moreover, HM L and SJ X wrote original draft and performed the experiments; YX H, JH L, and CY Q, performed methodology and software; JR G contributed to supervise the experiments and paper; SZ L contributed to funding acquisition and review and editing the paper. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jingru Guo or Shize Li.

Ethics declarations

Ethical approval

This study has been approved by the Institutional Animal Care and Use Committee of Heilongjiang Bayi Agricultural University.

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 311 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, H., Xia, S., He, Y. et al. Effect of chronic cold stress on gut microbial diversity, intestinal inflammation and pyroptosis in mice. J Physiol Biochem (2024). https://doi.org/10.1007/s13105-024-01019-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13105-024-01019-w

Keywords

Navigation