Skip to main content

Advertisement

Log in

Hepatocellular carcinoma induced by hepatocyte Pten deletion reduces BAT UCP-1 and thermogenic capacity in mice, despite increasing serum FGF-21 and iWAT browning

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma (HCC) markedly enhances liver secretion of fibroblast growth factor 21 (FGF-21), a hepatokine that increases brown and subcutaneous inguinal white adipose tissues (BAT and iWAT, respectively) uncoupling protein 1 (UCP-1) content, thermogenesis and energy expenditure. Herein, we tested the hypothesis that an enhanced BAT and iWAT UCP-1-mediated thermogenesis induced by high levels of FGF-21 is involved in HCC-associated catabolic state and fat mass reduction. For this, we evaluated body weight and composition, liver mass and morphology, serum and tissue levels of FGF-21, BAT and iWAT UCP-1 content, and thermogenic capacity in mice with Pten deletion in hepatocytes that display a well-defined progression from steatosis to steatohepatitis (NASH) and HCC upon aging. Hepatocyte Pten deficiency promoted a progressive increase in liver lipid deposition, mass, and inflammation, culminating with NASH at 24 weeks and hepatomegaly and HCC at 48 weeks of age. NASH and HCC were associated with elevated liver and serum FGF-21 content and iWAT UCP-1 expression (browning), but reduced serum insulin, leptin, and adiponectin levels and BAT UCP-1 content and expression of sympathetically regulated gene glycerol kinase (GyK), lipoprotein lipase (LPL), and fatty acid transporter protein 1 (FATP-1), which altogether resulted in an impaired whole-body thermogenic capacity in response to CL-316,243. In conclusion, FGF-21 pro-thermogenic actions in BAT are context-dependent, not occurring in NASH and HCC, and UCP-1-mediated thermogenesis is not a major energy-expending process involved in the catabolic state associated with HCC induced by Pten deletion in hepatocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Authors agree to make any materials, data, code, and associated protocols available upon request.

References

  1. Albhaisi S, Chowdhury A, Sanyal AJ (2019) Non-alcoholic fatty liver disease in lean individuals. JHEP Rep 1:329. https://doi.org/10.1016/J.JHEPR.2019.08.002

    Article  PubMed  PubMed Central  Google Scholar 

  2. Badman MK, Pissios P, Kennedy AR et al (2007) Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab 5:426–437. https://doi.org/10.1016/J.CMET.2007.05.002

    Article  CAS  PubMed  Google Scholar 

  3. Bae JJ, Rho JW, Lee TJ et al (2007) Loss of heterozygosity on chromosome 10q23 and mutation of the phosphatase and tensin homolog deleted from chromosome 10 tumor suppressor gene in Korean hepatocellular carcinoma patients. Oncol Rep 18:1007–1013. https://doi.org/10.3892/or.18.4.1007

    Article  CAS  PubMed  Google Scholar 

  4. Becker AS, Zellweger C, Bacanovic S et al (2020) Brown fat does not cause cachexia in cancer patients: a large retrospective longitudinal FDG-PET/CT cohort study. PLoS One 15(10):e0239990. https://doi.org/10.1371/journal.pone.0239990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Berthou F, Sobolewski C, Abegg D et al (2022) Hepatic PTEN signaling regulates systemic metabolic homeostasis through hepatokines-mediated liver-to-peripheral organs crosstalk. Int J Mol Sci 23(7):3959. https://doi.org/10.3390/IJMS23073959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359. https://doi.org/10.1152/PHYSREV.00015.2003

    Article  CAS  PubMed  Google Scholar 

  7. Castro E, Silva TEO, Festuccia WT (2017) Critical review of beige adipocyte thermogenic activation and contribution to whole-body energy expenditure. Horm Mol Biol Clin Investig 31(2):20170042. https://doi.org/10.1515/hmbci-2017-0042

    Article  CAS  Google Scholar 

  8. Castro É, Vieira TS, Oliveira TE et al (2021) Adipocyte-specific mTORC2 deficiency impairs BAT and iWAT thermogenic capacity without affecting glucose uptake and energy expenditure in cold-acclimated mice. Am J Physiol Endocrinol Metab 321:E592–E605. https://doi.org/10.1152/AJPENDO.00587.2020

    Article  CAS  PubMed  Google Scholar 

  9. Chimin P, Andrade ML, Belchior T et al (2017) Adipocyte mTORC1 defciency promotes adipose tissue inflammation and NLRP3 inflammasome activation via oxidative stress and de novo ceramide synthesis. J Lipid Res 58(9):1797–1807. https://doi.org/10.1194/jlr.M074518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Claflin KE, Sullivan AI, Naber MC et al (2022) Pharmacological FGF21 signals to glutamatergic neurons to enhance leptin action and lower body weight during obesity. Mol Metab 64:101564. https://doi.org/10.1016/J.MOLMET.2022.101564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Clifford RJ, Zhang J, Meerzaman DM et al (2010) Genetic variations at loci involved in the immune response are risk factors for hepatocellular carcinoma. Hepatology 52:2034–2043. https://doi.org/10.1002/HEP.23943

    Article  CAS  PubMed  Google Scholar 

  12. Coskun T, Bina HA, Schneider MA et al (2008) Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 149:6018–6027. https://doi.org/10.1210/EN.2008-0816

    Article  CAS  PubMed  Google Scholar 

  13. de Jong JMA, Larsson O, Cannon B, Nedergaard J (2015) A stringent validation of mouse adipose tissue identity markers. Am J Physiol Endocrinol Metab 308:E1085–E1105. https://doi.org/10.1152/AJPENDO.00023.2015

    Article  PubMed  Google Scholar 

  14. Dushay J, Chui PC, Gopalakrishnan GS et al (2010) Increased fibroblast growth factor 21 in obesity and nonalcoholic fatty liver disease. Gastroenterology 139:456–463. https://doi.org/10.1053/J.GASTRO.2010.04.054

    Article  CAS  PubMed  Google Scholar 

  15. Eljalby M, Huang X, Becher T et al (2023) Brown adipose tissue is not associated with cachexia or increased mortality in a retrospective study of patients with cancer. Am J Physiol Endocrinol Metab 324:E144–E153. https://doi.org/10.1152/AJPENDO.00187.2022

    Article  CAS  PubMed  Google Scholar 

  16. Festuccia WTL, Guerra-Sá R, Kawashita NH et al (2003) Expression of glycerokinase in brown adipose tissue is stimulated by the sympathetic nervous system. Am J Physiol Regul Integr Comp Physiol 284(6):R1536–R1541. https://doi.org/10.1152/ajpregu.00764.2002

    Article  CAS  PubMed  Google Scholar 

  17. Fisher Ffolliott M, Kim MS, Doridot L et al (2016) A critical role for ChREBP-mediated FGF21 secretion in hepatic fructose metabolism. Mol Metab 6:14–21. https://doi.org/10.1016/J.MOLMET.2016.11.008

    Article  PubMed  PubMed Central  Google Scholar 

  18. Govaere O, Cockell S, Tiniakos D et al (2020) Transcriptomic profiling across the nonalcoholic fatty liver disease spectrum reveals gene signatures for steatohepatitis and fibrosis. Sci Transl Med 12(572):eaba4448. https://doi.org/10.1126/SCITRANSLMED.ABA4448

    Article  CAS  PubMed  Google Scholar 

  19. Han J, Meng Q, Shen L, Wu G (2018) Interleukin-6 induces fat loss in cancer cachexia by promoting white adipose tissue lipolysis and browning. Lipids Health Dis 17:1–8. https://doi.org/10.1186/S12944-018-0657-0/FIGURES/3

    Article  Google Scholar 

  20. Holland WL, Adams AC, Brozinick JT et al (2013) An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice. Cell Metab 17:790–797. https://doi.org/10.1016/J.CMET.2013.03.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Horie Y, Suzuki A, Kataoka E et al (2004) Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J Clin Invest 113:1774–1783. https://doi.org/10.1172/JCI20513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hotta Y, Nakamura H, Konishi M et al (2009) Fibroblast growth factor 21 regulates lipolysis in white adipose tissue but is not required for ketogenesis and triglyceride clearance in liver. Endocrinology 150:4625–4633. https://doi.org/10.1210/EN.2009-0119

    Article  CAS  PubMed  Google Scholar 

  23. Hu TH, Huang CC, Lin PR et al (2003) Expression and prognostic role of tumor suppressor gene PTEN/MMAC1/TEP1 in hepatocellular carcinoma. Cancer 97:1929–1940. https://doi.org/10.1002/CNCR.11266

    Article  CAS  PubMed  Google Scholar 

  24. Inagaki T, Dutchak P, Zhao G et al (2007) Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab 5:415–425. https://doi.org/10.1016/J.CMET.2007.05.003

    Article  CAS  PubMed  Google Scholar 

  25. Jensen-Cody SO, Potthoff MJ (2021) Hepatokines and metabolism: deciphering communication from the liver. Mol Metab 44:101138. https://doi.org/10.1016/J.MOLMET.2020.101138

    Article  CAS  PubMed  Google Scholar 

  26. Kaiyala KJ (2014) Mathematical model for the contribution of individual organs to non-zero y-intercepts in single and multi-compartment linear models of whole-body energy expenditure. PLoS One 9:e103301. https://doi.org/10.1371/JOURNAL.PONE.0103301

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kaiyala KJ, Morton GJ, Leroux BG et al (2010) Identification of body fat mass as a major determinant of metabolic rate in mice. Diabetes 59:1657–1666. https://doi.org/10.2337/DB09-1582

    Article  CAS  PubMed  Google Scholar 

  28. Kawashita NH, Festuccia WTL, Brito MN et al (2002) Glycerokinase activity in brown adipose tissue: a sympathetic regulation? Am J Physiol Regul Integr Comp Physiol 282(4):R1185–R1190. https://doi.org/10.1152/ajpregu.00419.2001

    Article  CAS  PubMed  Google Scholar 

  29. Kir S, White JP, Kleiner S et al (2014) Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia. Nature 513(7516):100–104. https://doi.org/10.1038/nature13528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Labbé SM, Caron A, Chechi K et al (2016) Metabolic activity of brown, “beige,” and white adipose tissues in response to chronic adrenergic stimulation in male mice. Am J Physiol Endocrinol Metab 311:E260–E268. https://doi.org/10.1152/AJPENDO.00545.2015

    Article  PubMed  PubMed Central  Google Scholar 

  31. Labbé SM, Caron XA, Festuccia WT et al (2018) Interscapular brown adipose tissue denervation does not promote the oxidative activity of inguinal white adipose tissue in male mice. Am J Physiol Endocrinol Metab 315:E815–E824. https://doi.org/10.1152/AJPENDO.00210.2018

    Article  PubMed  Google Scholar 

  32. Liang W, Menke AL, Driessen A et al (2014) Establishment of a general NAFLD scoring system for rodent models and comparison to human liver pathology. PLoS One 9(12):e115922. https://doi.org/10.1371/JOURNAL.PONE.0115922

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lin Z, Tian H, Lam KSL et al (2013) Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metab 17:779–789. https://doi.org/10.1016/J.CMET.2013.04.005

    Article  CAS  PubMed  Google Scholar 

  34. Magdalon J, Chimin P, Belchior T et al (2016) Constitutive adipocyte mTORC1 activation enhances mitochondrial activity and reduces visceral adiposity in mice. Biochim Biophys Acta Mol Cell Biol Lipids 1861. https://doi.org/10.1016/j.bbalip.2016.02.023

  35. Masaki T, Chiba S, Yasuda T et al (2003) Peripheral, but not central, administration of adiponectin reduces visceral adiposity and upregulates the expression of uncoupling protein in agouti yellow (Ay/a) obese mice. Diabetes 52:2266–2273. https://doi.org/10.2337/DIABETES.52.9.2266

    Article  CAS  PubMed  Google Scholar 

  36. McCullough AJ, Raguso C (1999) Effect of cirrhosis on energy expenditure. Am J Clin Nutr 69:1066–1068. https://doi.org/10.1093/AJCN/69.6.1066

    Article  CAS  PubMed  Google Scholar 

  37. Mouchiroud M, Camiré É, Aldow M et al (2019) The hepatokine TSK does not affect brown fat thermogenic capacity, body weight gain, and glucose homeostasis. Mol Metab 30:184–191. https://doi.org/10.1016/j.molmet.2019.09.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mouchiroud M, Camiré É, Aldow M et al (2019) The hepatokine Tsukushi is released in response to NAFLD and impacts cholesterol homeostasis. JCI Insight 4(15). https://doi.org/10.1172/jci.insight.129492

  39. Müller MJ, Böttcher J, Selberg O et al (1999) Hypermetabolism in clinically stable patients with liver cirrhosis. Am J Clin Nutr 69:1194–1201. https://doi.org/10.1093/AJCN/69.6.1194

    Article  PubMed  Google Scholar 

  40. Oliveira TE, Castro É, Belchior T et al (2019) Fish oil protects wild type and uncoupling protein 1-deficient mice from obesity and glucose intolerance by increasing energy expenditure. Mol Nutr Food Res 63. https://doi.org/10.1002/mnfr.201800813

  41. Oost LJ, Kustermann M, Armani A et al (2019) Fibroblast growth factor 21 controls mitophagy and muscle mass. J Cachexia Sarcopenia Muscle 10:630–642. https://doi.org/10.1002/JCSM.12409

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ortega-Molina A, Efeyan A, Lopez-Guadamillas E et al (2012) Pten positively regulates brown adipose function, energy expenditure, and longevity. Cell Metab 15:382–394. https://doi.org/10.1016/J.CMET.2012.02.001

    Article  CAS  PubMed  Google Scholar 

  43. Rahmouni K, Morgan DA, Morgan GM et al (2004) Hypothalamic PI3K and MAPK differentially mediate regional sympathetic activation to insulin. J Clin Invest 114:652–658. https://doi.org/10.1172/JCI21737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rinella ME (2015) Nonalcoholic fatty liver disease: a systematic review. JAMA 313:2263–2273. https://doi.org/10.1001/JAMA.2015.5370

    Article  CAS  PubMed  Google Scholar 

  45. Sáenz de Urturi D, Buqué X, Porteiro B et al (2022) Methionine adenosyltransferase 1a antisense oligonucleotides activate the liver-brown adipose tissue axis preventing obesity and associated hepatosteatosis. Nat Commun 13:1096. https://doi.org/10.1038/S41467-022-28749-Z

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sanders FWB, Griffin JL (2016) De novo lipogenesis in the liver in health and disease: more than just a shunting yard for glucose. Biol Rev Camb Philos Soc 91:452–468. https://doi.org/10.1111/BRV.12178

    Article  PubMed  Google Scholar 

  47. Schulze K, Imbeaud S, Letouzé E et al (2015) Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat Genet 47:505–511. https://doi.org/10.1038/NG.3252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shabalina IG, Petrovic N, deJong JMA et al (2013) UCP1 in brite/beige adipose tissue mitochondria is functionally thermogenic. Cell Rep 5:1196–1203. https://doi.org/10.1016/J.CELREP.2013.10.044

    Article  CAS  PubMed  Google Scholar 

  49. She QY, Bao JF, Wang HZ et al (2022) Fibroblast growth factor 21: A “rheostat” for metabolic regulation? Metabolism 130:155166. https://doi.org/10.1016/J.METABOL.2022.155166

    Article  CAS  PubMed  Google Scholar 

  50. Shellock FG, Riedinger MS, Fishbein MC (1986) Brown adipose tissue in cancer patients: possible cause of cancer-induced cachexia. J Cancer Res Clin Oncol 111:82–85. https://doi.org/10.1007/BF00402783

    Article  CAS  PubMed  Google Scholar 

  51. Steiner AA, Flatow EA, Brito CF et al (2017) Respiratory gas exchange as a new aid to monitor acidosis in endotoxemic rats: relationship to metabolic fuel substrates and thermometabolic responses. Physiol Rep 5:e13100. https://doi.org/10.14814/PHY2.13100

    Article  PubMed  PubMed Central  Google Scholar 

  52. Stiles B, Wang Y, Stahl A et al (2004) Liver-specific deletion of negative regulator Pten results in fatty liver and insulin hypersensitivity [corrected]. Proc Natl Acad Sci USA 101:2082–2087. https://doi.org/10.1073/PNAS.0308617100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Vinciguerra M, Veyrat-Durebex C, Moukil MA et al (2008) PTEN down-regulation by unsaturated fatty acids triggers hepatic steatosis via an NF-kappaBp65/mTOR-dependent mechanism. Gastroenterology 134:268–280. https://doi.org/10.1053/J.GASTRO.2007.10.010

    Article  CAS  PubMed  Google Scholar 

  54. Vitali A, Murano I, Zingaretti MC et al (2012) The adipose organ of obesity-prone C57BL/6J mice is composed of mixed white and brown adipocytes. J Lipid Res 53:619–629. https://doi.org/10.1194/JLR.M018846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang Q, Sharma VP, Shen H et al (2019) The hepatokine Tsukushi gates energy expenditure via brown fat sympathetic innervation. Nature Metabolism 1(2):251–260. https://doi.org/10.1038/s42255-018-0020-9

    Article  PubMed  PubMed Central  Google Scholar 

  56. Xu J, Lloyd DJ, Hale C et al (2009) Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes 58:250–259. https://doi.org/10.2337/DB08-0392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yang C, Lu W, Lin T et al (2013) Activation of liver FGF21 in hepatocarcinogenesis and during hepatic stress. BMC Gastroenterol 13:1–14. https://doi.org/10.1186/1471-230X-13-67/FIGURES/8

    Article  Google Scholar 

  58. Yilmaz Y, Eren F, Yonal O et al (2010) Increased serum FGF21 levels in patients with nonalcoholic fatty liver disease. Eur J Clin Invest 40:887–892. https://doi.org/10.1111/J.1365-2362.2010.02338.X

    Article  CAS  PubMed  Google Scholar 

  59. Zouhar P, Janovska P, Stanic S et al (2021) A pyrexic effect of FGF21 independent of energy expenditure and UCP1. Mol Metab 53. https://doi.org/10.1016/J.MOLMET.2021.101324

Download references

Acknowledgements

The oxygen consumption ANCOVA analysis was provided by the NIDDK Mouse Metabolic Phenotyping Centers (MMPC, www.mmpc.org) using their Energy Expenditure Analysis page (http://www.mmpc.org/shared/regression.aspx) and supported by grants DK076169 and DK115255.

Funding

This work was supported by grants from the São Paulo Research Foundation (FAPESP #15/19530-5, 19/01763-4, and 20/04159-8) and the Brazilian National Council for Scientific and Technological Development (CNPq #301756/2019-8 and #303784/2022-9) to W.F. and FAPESP to A.A.S. (#2018/03418-0). A.S.P. (#2017/23040-9 and 2022/02123-1), M.F.M. (#2017/17582-3), E.C. (#2020/166566), L.A.P. (#2019/17660-0), T.B. (#2015/22983-1), T.E.O. (#2019/04271-5), T.S.V. (#2020/10215-8), B.F.L. (#2021/14419-0), M. O-S. (#2017/12260-8), and E.H.M (#2020/09399-7) were recipients of a Ph.D. studentship from FAPESP. G.R.G. and C.A.T. were recipients of Ph.D. fellowship from CNPq and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), respectively.

Author information

Authors and Affiliations

Authors

Contributions

A.S.P., M.F.M., E.C., L.A.P., T.B., T.E.O., T.S.V., B.F.L., M.O-S., G.R.G., C.A.T., and L.P.S.J. performed the experiments and collected and analyzed the data. A.A.S. and E.H.M. performed the analysis of thermogenic capacity. W.F. performed the experiments, collected and analyzed the data, and wrote the paper. All authors revised the manuscript and declare that all data were generated in-house and that no paper mill was used.

Corresponding author

Correspondence to William T. Festuccia.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key points

• Hepatocellular carcinoma reduces BAT UCP-1 content and thermogenic capacity

• Thermogenic capacity was reduced despite increased serum FGF-21 and iWAT browning

• Pro-thermogenic actions of FGF-21 are context-dependent

• iWAT browning does not compensate for reduced BAT thermogenic capacity

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peixoto, Á.S., Moreno, M.F., Castro, É. et al. Hepatocellular carcinoma induced by hepatocyte Pten deletion reduces BAT UCP-1 and thermogenic capacity in mice, despite increasing serum FGF-21 and iWAT browning. J Physiol Biochem 79, 731–743 (2023). https://doi.org/10.1007/s13105-023-00970-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-023-00970-4

Keywords

Navigation